Circular design encompasses the use of inventive construction methodologies that possess the capability to be readily dismantled,repurposed,or recycled upon reaching the conclusion of their functional lifespan.This wo...Circular design encompasses the use of inventive construction methodologies that possess the capability to be readily dismantled,repurposed,or recycled upon reaching the conclusion of their functional lifespan.This work specifically examines the creation of a reusable design case-study idea for seismic frame design,which is commonly employed in steel-frame constructions in New Zealand.A reusable optimized design for the full seismic frame was proposed in the research.Optimizing the dimensions of welded structures,whether in terms of weight or cost,leads to a decrease in the weight of the steel utilized.The decrease in weight is directly associated with a decrease in environ-mental impact,as the environmental impact is directly proportional to the mass of the construction.The environmental consequences associated with welding technique are contingent upon the dimensions of the weld,hence exerting an indirect influence on the overall mass of the structure.Given the presence of mass dependence in all three areas,albeit in distinct manners,this work employed a multi-objective function optimization strategy to simultaneously address these areas while also partially evaluating them separately.On this way substantial reductions can be achieved both at structural mass and environmental effects.展开更多
Many staircases in reinforced concrete (RC) frame structures suffered severe damage during the Wenchuan earthquake. Elastic analyses for 18 RC structure models with and without staircases are conducted and compared ...Many staircases in reinforced concrete (RC) frame structures suffered severe damage during the Wenchuan earthquake. Elastic analyses for 18 RC structure models with and without staircases are conducted and compared to study the influence of the staircase on the stiffness, displacements and internal forces of the structures. To capture the yielding development and damage mechanism of frame structures, elasto-plastic analysis is carried out for one of the 18 models. Based on the features observed in the analyses, a new type of staircase design i.e., isolating them from the master structure to eliminate the effect of K-type struts, is proposed and discussed. It is concluded that the proposed method of staircase isolation is effective and feasible for engineering design, and does not significantly increase the construction cost.展开更多
A procedure is proposed whereby input and hysteretic energy spectra developed for single-degree-of-freedom (SDOF) systems are applied to multi-degree-of-freedom (MDOF) steel moment resisting frames. The proposed p...A procedure is proposed whereby input and hysteretic energy spectra developed for single-degree-of-freedom (SDOF) systems are applied to multi-degree-of-freedom (MDOF) steel moment resisting frames. The proposed procedure is verified using four frames, viz., frame with three-, five-, seven- and nine-stories, each of which is subjected to the fault- normal and fault-parallel components of three actual earthquakes. A very good estimate for the three- and five-story frames, and a reasonably acceptable estimate for the seven-, and nine-story frames, have been obtained. A method for distributing the hysteretic energy over the frame height is also proposed. This distribution scheme allows for the determination of the energy demand component of a proposed energy-based seismic design (EBSD) procedure for each story. To address the capacity component of EBSD, a story-wise optimization design procedure is developed by utilizing the energy dissipating capacity from plastic hinge formation/rotation for these moment frames. The proposed EBSD procedure is demonstrated in the design of a three-story one-bay steel moment frame.展开更多
Tubular hydroforming has attracted increased attention in the vehicle industry recently. This paper covers a complete hydroforming process design for an instrum ent panel frame by finite element simulation using the e...Tubular hydroforming has attracted increased attention in the vehicle industry recently. This paper covers a complete hydroforming process design for an instrum ent panel frame by finite element simulation using the explicit code LS-DYNA. The manufacturing process for the instrument panel frame consists of tube pre-be nding and final hydroforming. To accomplish hydroforming process design successf ully, a thorough investigation of proper combination of process parameters such as internal hydraulic pressure and axial feeding is carried out by finite element simulation to predict the tube wall thickness and shape. An optimized process parameter combination is obtained and verified by the instrument panel frame hyd roforming experiment. The experiment shows that designed process parameters can be used in real production through FEA simulation, but tubular thinned amplitu de by FEA is less than that with the experiment.展开更多
Based on the analyses on arch and peltate venation structures, the design of reinforcing frames was improved. First, distribution rules of the arch structure were summarized. According to the load condition and the st...Based on the analyses on arch and peltate venation structures, the design of reinforcing frames was improved. First, distribution rules of the arch structure were summarized. According to the load condition and the structure of the frame, a mechanical model of arch structure was devel- oped, and two solutions for the model were analyzed and compared with each other. Through the a- nalysis, application rules of arch structure for improving the design were obtained. Then, distribu- tion rules of peltate venation structure were summarized. By using the same method, application rules of peltate venation structure for improving the design were also obtained. Finally, mechanical problem of the frame was described, and rib arrangement of the frame was redesigned. A parameter optimization for the widths of ribs in bionic arrangement was also carried out to accomplish the im- proving design. Comparison between bionic and conventional reinforcing frames shows that the weight is reduced by as much as 15.3%.展开更多
The general computer-aided design (CAD) software cannot meet the mould design requirement of the autoclave process for composites, because many parameters such as temperature and pressure should be considered in the...The general computer-aided design (CAD) software cannot meet the mould design requirement of the autoclave process for composites, because many parameters such as temperature and pressure should be considered in the mould design process, in addition to the material and geometry of the part. A framed-mould computer-aided design system (FMCAD) used in the autoclave moulding process is proposed in this paper. A function model of the software is presented, in which influence factors such as part structure, mould structure, and process parameters are considered; a design model of the software is established using object oriented (O-O) technology to integrate the stiffness calculation, temperature field calculation, and deformation field calculation of mould in the design, and in the design model, a hybrid model of mould based on calculation feature and form feature is presented to support those calculations. A prototype system is developed, in which a mould design process wizard is built to integrate the input information, calculation, analysis, data storage, display, and design results of mould design. Finally, three design examples are used to verify the prototype.展开更多
Unreinforced Masonry (URM) is the most common partitioning material in framed buildings in India and many other countries. Although it is well-known that under lateral loading the behavior and modes of failure of the ...Unreinforced Masonry (URM) is the most common partitioning material in framed buildings in India and many other countries. Although it is well-known that under lateral loading the behavior and modes of failure of the frame buildings change significantly due to infill-frame interaction, the general design practice is to treat infills as nonstructural elements and their stiffness, strength and interaction with the frame is often ignored, primarily because of difficulties in simulation and lack of modeling guidelines in design codes. The Indian Standard, like many other national codes, does not provide explicit insight into the anticipated performance and associated vulnerability of infilled frames. This paper presents an analytical study on the seismic performance and fragility analysis of Indian code-designed RC frame buildings with and without URM infills. Infills are modeled as diagonal struts as per ASCE 41 guidelines and various modes of failure are considered. HAZUS methodology along with nonlinear static analysis is used to compare the seismic vulnerability of bare and infilled frames. The comparative study suggests that URM infills result in a significant increase in the seismic vulnerability of RC frames and their effect needs to be properly incorporated in design codes.展开更多
In this paper, a Web-based Mechanical Design and A na lysis Framework (WMDAF) is proposed. This WMADF allows designers to develop web -based computer aided programs in a systematic way during the collaborative mec han...In this paper, a Web-based Mechanical Design and A na lysis Framework (WMDAF) is proposed. This WMADF allows designers to develop web -based computer aided programs in a systematic way during the collaborative mec hanical system design and analysis process. This system is based on an emerg ing web-based Content Management System (CMS) called eXtended Object Oriented P ortal System (XOOPS). Due to the Open Source Status of the XOOPS CMS, programs d eveloped with this framework can be further customized to satisfy the demands of the user. To introduce the use of this framework, this paper exams three differ ent types of mechanical design and analysis problems. First, a repetitive design consideration and calculation process is transferred into WMADF programs to gai n efficiency for wired collaborative team. Second, the considered product solid model is created directly through the use of XOOPS program and Microsoft Compone nt Object Model (COM) instances. To the end of the paper, an example linked with ANSYS is used to indicate the possible application of this framework.展开更多
Performance-based seismic design(PBSD) aims to assess structures at different damage states. Since damage can be directly associated to displacements, seismic design with consideration of displacement seems to be logi...Performance-based seismic design(PBSD) aims to assess structures at different damage states. Since damage can be directly associated to displacements, seismic design with consideration of displacement seems to be logical. In this study, simple formulae to estimate the peak floor displacement patterns of eccentrically braced frames(EBFs) at different performance levels subjected to earthquake ground motions are proposed. These formulae are applicable in a PBSD and especially in direct displacement-based design(DDBD). Parametric study is conducted on a group of 30 EBFs under a set of 15 far field and near field accelerograms which they scaled to different amplitudes to adapt various performance levels. The results of thousands of nonlinear dynamic analyses of EBFs have been post-processed by nonlinear regression analysis in order to recognize the major parameters that influence the peak displacement pattern of these frames. Results show that suggested displacement patterns have relatively good agreement with those acquired by an exact nonlinear dynamic analysis.展开更多
This study investigates the seismic design factors for three reinforced concrete (RC) framed buildings with 4, 16 and 32-stories in Dubai, UAE utilizing nonlinear analysis. The buildings are designed according to th...This study investigates the seismic design factors for three reinforced concrete (RC) framed buildings with 4, 16 and 32-stories in Dubai, UAE utilizing nonlinear analysis. The buildings are designed according to the response spectrum procedure defined in the 2009 International Building Code (IBC'09). Two ensembles of ground motion records with 10% and 2% probability of exceedance in 50 years (10/50 and 2/50, respectively) are used. The nonlinear dynamic resPonses to the earthquake records are computed using IDARC-2D. Key seismic design parameters are evaluated; namely, response modification factor (R), deflection amplification factor (Cd), system overstrength factor (Ωo), and response modification factor for ductility (Rd) in addition to inelastic interstory drift. The evaluated seismic design factors are found to significantly depend on the considered ground motion (10/50 versus 2/50). Consequently, resolution to the controversy of Dubai seismicity is urged. The seismic design factors for the 2/50 records show an increase over their counterparts for the 10/50 records in the range of 200%-400%, except for the D~ factor, which shows a mere 30% increase. Based on the observed trends, perioddependent R and Cd factors are recommended if consistent collapse probability (or collapse prevention performance) in moment frames with varying heights is to be expected.展开更多
In view of the low ranging efficiency of the conventional fixed frame-length algorithm in the inter-satellite link,an adaptive frame-length algorithm is proposed. The frame length is adjusted adaptively according to t...In view of the low ranging efficiency of the conventional fixed frame-length algorithm in the inter-satellite link,an adaptive frame-length algorithm is proposed. The frame length is adjusted adaptively according to the results of ranging and velocity measuring to improve ranging efficiency. Buffers which enable the frame length to be selected discretely and adaptively are introduced to avoid frequent hopping of the frame-length.Frame length marker is created to automatically identify the frame-length for frame synchronization procedures in receivers. The feasibility and the validity of the proposed algorithm to improve the efficiency of ranging are verified through both theoretic analysis and simulation,and the efficiency improves up to 88% when there are five buffers. This improvement can be further enhanced by increasing the number of buffers. Proper allocation of inter-satellite buffers is required to make a balance between the ranging efficiency and the system complexity.展开更多
A scientific and reasonable formula must be had for quality products.Food formulation is that the main raw materials and various accessories to match together and form a multi-component system.Each component can play ...A scientific and reasonable formula must be had for quality products.Food formulation is that the main raw materials and various accessories to match together and form a multi-component system.Each component can play an important role in this system.Food formulation can be divided into seven steps which includes main frame design,color design perfumer design,seasoning design,quality design,preservative design and function design.The article summarized these seven steps.展开更多
A satisfactory ductile performance of moment-resisting reinforced concrete concentric braced frame structures (RC-MRCBFs) is not warranted by only following the provisions proposed in Mexico’s Federal District Code (...A satisfactory ductile performance of moment-resisting reinforced concrete concentric braced frame structures (RC-MRCBFs) is not warranted by only following the provisions proposed in Mexico’s Federal District Code (MFDC-04). The nonlinear behavior of low to medium rise ductile RC-MRCBFs using steel X-bracing susceptible to buckling is evaluated in this study. The height of the studied structures ranges from 4 to 20 stories and they were located for design in the lakebed zone of Mexico City. The design of RC-MRCBFs was carried out considering variable contribution of the two main lines of defense of the dual system (RC columns and steel braces). In order to observe the principal elements responsible for dissipating the earthquake input energy, yielding mappings for diff erent load-steps were obtained using both nonlinear static and dynamic analyses. Some design parameters currently proposed in MFDC-04 as global ductility capacities, overstrength reduction factors and story drifts corresponding to diff erent limit states were assessed as a function of both the considered shear strength and slenderness ratios for the studied RC-MRCBFs using pushover analyses. Additionally, envelopes of response maxima of dynamic parameters were obtained from the story and global hysteresis curves. Finally, a brief discussion regarding residual drifts, residual drift ratios, mappings of residual deformations in steel braces and residual rotations in RC beams and columns is presented. From the analysis of the obtained results, it is concluded that when a suitable design criterion is considered, good structural behavior of RC-MRCBFs with steel-X bracing can be obtained. It is also observed that the shear strength balance has an impact in the height-wise distribution of residual drifts, and an important “shake-down” eff ect is obtained for all cases. There is a need to improve design parameters currently proposed in MFDC to promote an adequate seismic performance of RC-MRCBFs.展开更多
The brake unit bracket of a bogie frame is an important load-carrying component, particularly under emergency start/stop conditions. Conventional infinite/safe life approaches provide an over-conservative recommendati...The brake unit bracket of a bogie frame is an important load-carrying component, particularly under emergency start/stop conditions. Conventional infinite/safe life approaches provide an over-conservative recommendation for the allowable strength and lifetime, which hinders the lightweight design of modern railway vehicles. In this study, to ensure the reliability and durability of a brake unit bracket, an attempt was made to integrate the nominal stress method and an advanced damage tolerance method. First, a complex bogie frame was modelled using solid elements instead of plate and beam elements. A hot spot stress region on the bracket was found under an eight-stage load spectrum obtained from the Wuhan–Guangzhou high-speed railway line. Based on the probability of foreign damage, a semi-elliptical surface crack was then assumed for residual life assessment. The results obtained by the cumulative damage and damage tolerance methods show that the brake unit bracket can operate for over 30 years. Moreover, even if a 2-mm depth crack exists, the brake unit bracket can be safely operated for more than 2.27 years, with the hope that the crack can be detected in subsequent maintenance procedures. Finally, an appropriate safety margin was suggested which provides a basis for the life prediction and durability assessment of brake unit brackets of high-speed railways.展开更多
基金supported by Endeavour funding from the New Zealand Ministry of Business,Innovation and Employment(MBIE)awarded to HERA for the project titled“Developing a Construction 4.0 transformation of Aotearoa New Zealand’s construction sector”coordinated by New Zealand Heavy Engineering Research Association,HERA.
文摘Circular design encompasses the use of inventive construction methodologies that possess the capability to be readily dismantled,repurposed,or recycled upon reaching the conclusion of their functional lifespan.This work specifically examines the creation of a reusable design case-study idea for seismic frame design,which is commonly employed in steel-frame constructions in New Zealand.A reusable optimized design for the full seismic frame was proposed in the research.Optimizing the dimensions of welded structures,whether in terms of weight or cost,leads to a decrease in the weight of the steel utilized.The decrease in weight is directly associated with a decrease in environ-mental impact,as the environmental impact is directly proportional to the mass of the construction.The environmental consequences associated with welding technique are contingent upon the dimensions of the weld,hence exerting an indirect influence on the overall mass of the structure.Given the presence of mass dependence in all three areas,albeit in distinct manners,this work employed a multi-objective function optimization strategy to simultaneously address these areas while also partially evaluating them separately.On this way substantial reductions can be achieved both at structural mass and environmental effects.
基金The National Key Technologies R&D Program under Grant No. 2009BAJ28B01The Technologies R&D Program of China State Construction Engineering Co., Ltd under Grant No. CSCEC-2009-Z-15
文摘Many staircases in reinforced concrete (RC) frame structures suffered severe damage during the Wenchuan earthquake. Elastic analyses for 18 RC structure models with and without staircases are conducted and compared to study the influence of the staircase on the stiffness, displacements and internal forces of the structures. To capture the yielding development and damage mechanism of frame structures, elasto-plastic analysis is carried out for one of the 18 models. Based on the features observed in the analyses, a new type of staircase design i.e., isolating them from the master structure to eliminate the effect of K-type struts, is proposed and discussed. It is concluded that the proposed method of staircase isolation is effective and feasible for engineering design, and does not significantly increase the construction cost.
文摘A procedure is proposed whereby input and hysteretic energy spectra developed for single-degree-of-freedom (SDOF) systems are applied to multi-degree-of-freedom (MDOF) steel moment resisting frames. The proposed procedure is verified using four frames, viz., frame with three-, five-, seven- and nine-stories, each of which is subjected to the fault- normal and fault-parallel components of three actual earthquakes. A very good estimate for the three- and five-story frames, and a reasonably acceptable estimate for the seven-, and nine-story frames, have been obtained. A method for distributing the hysteretic energy over the frame height is also proposed. This distribution scheme allows for the determination of the energy demand component of a proposed energy-based seismic design (EBSD) procedure for each story. To address the capacity component of EBSD, a story-wise optimization design procedure is developed by utilizing the energy dissipating capacity from plastic hinge formation/rotation for these moment frames. The proposed EBSD procedure is demonstrated in the design of a three-story one-bay steel moment frame.
文摘Tubular hydroforming has attracted increased attention in the vehicle industry recently. This paper covers a complete hydroforming process design for an instrum ent panel frame by finite element simulation using the explicit code LS-DYNA. The manufacturing process for the instrument panel frame consists of tube pre-be nding and final hydroforming. To accomplish hydroforming process design successf ully, a thorough investigation of proper combination of process parameters such as internal hydraulic pressure and axial feeding is carried out by finite element simulation to predict the tube wall thickness and shape. An optimized process parameter combination is obtained and verified by the instrument panel frame hyd roforming experiment. The experiment shows that designed process parameters can be used in real production through FEA simulation, but tubular thinned amplitu de by FEA is less than that with the experiment.
基金Supported by the National Natural Science Foundation of Chi- na ( 50975012 ) Research Fund for the Doctoral Program of Higher Education of China ( 20091102110022 ) Innovation Foundation of BUAA for PhD Graduates (YWF-12-RBYJ-015)
文摘Based on the analyses on arch and peltate venation structures, the design of reinforcing frames was improved. First, distribution rules of the arch structure were summarized. According to the load condition and the structure of the frame, a mechanical model of arch structure was devel- oped, and two solutions for the model were analyzed and compared with each other. Through the a- nalysis, application rules of arch structure for improving the design were obtained. Then, distribu- tion rules of peltate venation structure were summarized. By using the same method, application rules of peltate venation structure for improving the design were also obtained. Finally, mechanical problem of the frame was described, and rib arrangement of the frame was redesigned. A parameter optimization for the widths of ribs in bionic arrangement was also carried out to accomplish the im- proving design. Comparison between bionic and conventional reinforcing frames shows that the weight is reduced by as much as 15.3%.
文摘The general computer-aided design (CAD) software cannot meet the mould design requirement of the autoclave process for composites, because many parameters such as temperature and pressure should be considered in the mould design process, in addition to the material and geometry of the part. A framed-mould computer-aided design system (FMCAD) used in the autoclave moulding process is proposed in this paper. A function model of the software is presented, in which influence factors such as part structure, mould structure, and process parameters are considered; a design model of the software is established using object oriented (O-O) technology to integrate the stiffness calculation, temperature field calculation, and deformation field calculation of mould in the design, and in the design model, a hybrid model of mould based on calculation feature and form feature is presented to support those calculations. A prototype system is developed, in which a mould design process wizard is built to integrate the input information, calculation, analysis, data storage, display, and design results of mould design. Finally, three design examples are used to verify the prototype.
文摘Unreinforced Masonry (URM) is the most common partitioning material in framed buildings in India and many other countries. Although it is well-known that under lateral loading the behavior and modes of failure of the frame buildings change significantly due to infill-frame interaction, the general design practice is to treat infills as nonstructural elements and their stiffness, strength and interaction with the frame is often ignored, primarily because of difficulties in simulation and lack of modeling guidelines in design codes. The Indian Standard, like many other national codes, does not provide explicit insight into the anticipated performance and associated vulnerability of infilled frames. This paper presents an analytical study on the seismic performance and fragility analysis of Indian code-designed RC frame buildings with and without URM infills. Infills are modeled as diagonal struts as per ASCE 41 guidelines and various modes of failure are considered. HAZUS methodology along with nonlinear static analysis is used to compare the seismic vulnerability of bare and infilled frames. The comparative study suggests that URM infills result in a significant increase in the seismic vulnerability of RC frames and their effect needs to be properly incorporated in design codes.
文摘In this paper, a Web-based Mechanical Design and A na lysis Framework (WMDAF) is proposed. This WMADF allows designers to develop web -based computer aided programs in a systematic way during the collaborative mec hanical system design and analysis process. This system is based on an emerg ing web-based Content Management System (CMS) called eXtended Object Oriented P ortal System (XOOPS). Due to the Open Source Status of the XOOPS CMS, programs d eveloped with this framework can be further customized to satisfy the demands of the user. To introduce the use of this framework, this paper exams three differ ent types of mechanical design and analysis problems. First, a repetitive design consideration and calculation process is transferred into WMADF programs to gai n efficiency for wired collaborative team. Second, the considered product solid model is created directly through the use of XOOPS program and Microsoft Compone nt Object Model (COM) instances. To the end of the paper, an example linked with ANSYS is used to indicate the possible application of this framework.
文摘Performance-based seismic design(PBSD) aims to assess structures at different damage states. Since damage can be directly associated to displacements, seismic design with consideration of displacement seems to be logical. In this study, simple formulae to estimate the peak floor displacement patterns of eccentrically braced frames(EBFs) at different performance levels subjected to earthquake ground motions are proposed. These formulae are applicable in a PBSD and especially in direct displacement-based design(DDBD). Parametric study is conducted on a group of 30 EBFs under a set of 15 far field and near field accelerograms which they scaled to different amplitudes to adapt various performance levels. The results of thousands of nonlinear dynamic analyses of EBFs have been post-processed by nonlinear regression analysis in order to recognize the major parameters that influence the peak displacement pattern of these frames. Results show that suggested displacement patterns have relatively good agreement with those acquired by an exact nonlinear dynamic analysis.
文摘This study investigates the seismic design factors for three reinforced concrete (RC) framed buildings with 4, 16 and 32-stories in Dubai, UAE utilizing nonlinear analysis. The buildings are designed according to the response spectrum procedure defined in the 2009 International Building Code (IBC'09). Two ensembles of ground motion records with 10% and 2% probability of exceedance in 50 years (10/50 and 2/50, respectively) are used. The nonlinear dynamic resPonses to the earthquake records are computed using IDARC-2D. Key seismic design parameters are evaluated; namely, response modification factor (R), deflection amplification factor (Cd), system overstrength factor (Ωo), and response modification factor for ductility (Rd) in addition to inelastic interstory drift. The evaluated seismic design factors are found to significantly depend on the considered ground motion (10/50 versus 2/50). Consequently, resolution to the controversy of Dubai seismicity is urged. The seismic design factors for the 2/50 records show an increase over their counterparts for the 10/50 records in the range of 200%-400%, except for the D~ factor, which shows a mere 30% increase. Based on the observed trends, perioddependent R and Cd factors are recommended if consistent collapse probability (or collapse prevention performance) in moment frames with varying heights is to be expected.
基金Supported by the National High Technology Research and Development Program of China(2013AA1548)
文摘In view of the low ranging efficiency of the conventional fixed frame-length algorithm in the inter-satellite link,an adaptive frame-length algorithm is proposed. The frame length is adjusted adaptively according to the results of ranging and velocity measuring to improve ranging efficiency. Buffers which enable the frame length to be selected discretely and adaptively are introduced to avoid frequent hopping of the frame-length.Frame length marker is created to automatically identify the frame-length for frame synchronization procedures in receivers. The feasibility and the validity of the proposed algorithm to improve the efficiency of ranging are verified through both theoretic analysis and simulation,and the efficiency improves up to 88% when there are five buffers. This improvement can be further enhanced by increasing the number of buffers. Proper allocation of inter-satellite buffers is required to make a balance between the ranging efficiency and the system complexity.
文摘A scientific and reasonable formula must be had for quality products.Food formulation is that the main raw materials and various accessories to match together and form a multi-component system.Each component can play an important role in this system.Food formulation can be divided into seven steps which includes main frame design,color design perfumer design,seasoning design,quality design,preservative design and function design.The article summarized these seven steps.
基金National Science and Technology Council of Mexico (Conacyt)
文摘A satisfactory ductile performance of moment-resisting reinforced concrete concentric braced frame structures (RC-MRCBFs) is not warranted by only following the provisions proposed in Mexico’s Federal District Code (MFDC-04). The nonlinear behavior of low to medium rise ductile RC-MRCBFs using steel X-bracing susceptible to buckling is evaluated in this study. The height of the studied structures ranges from 4 to 20 stories and they were located for design in the lakebed zone of Mexico City. The design of RC-MRCBFs was carried out considering variable contribution of the two main lines of defense of the dual system (RC columns and steel braces). In order to observe the principal elements responsible for dissipating the earthquake input energy, yielding mappings for diff erent load-steps were obtained using both nonlinear static and dynamic analyses. Some design parameters currently proposed in MFDC-04 as global ductility capacities, overstrength reduction factors and story drifts corresponding to diff erent limit states were assessed as a function of both the considered shear strength and slenderness ratios for the studied RC-MRCBFs using pushover analyses. Additionally, envelopes of response maxima of dynamic parameters were obtained from the story and global hysteresis curves. Finally, a brief discussion regarding residual drifts, residual drift ratios, mappings of residual deformations in steel braces and residual rotations in RC beams and columns is presented. From the analysis of the obtained results, it is concluded that when a suitable design criterion is considered, good structural behavior of RC-MRCBFs with steel-X bracing can be obtained. It is also observed that the shear strength balance has an impact in the height-wise distribution of residual drifts, and an important “shake-down” eff ect is obtained for all cases. There is a need to improve design parameters currently proposed in MFDC to promote an adequate seismic performance of RC-MRCBFs.
基金Supported by National Natural Science Foundation of China(Grant No.11572267)Sichuan Science and Technology Program(Grant No.2017JY0216)+1 种基金Open Research Project of State Key Laboratory for Strength and Vibration of Mechanical Structures of China(Grant No.SV2016-KF-21)Open Research Project of State Key Laboratory of Traction Power of China(Grant No.2018TPL_T03)
文摘The brake unit bracket of a bogie frame is an important load-carrying component, particularly under emergency start/stop conditions. Conventional infinite/safe life approaches provide an over-conservative recommendation for the allowable strength and lifetime, which hinders the lightweight design of modern railway vehicles. In this study, to ensure the reliability and durability of a brake unit bracket, an attempt was made to integrate the nominal stress method and an advanced damage tolerance method. First, a complex bogie frame was modelled using solid elements instead of plate and beam elements. A hot spot stress region on the bracket was found under an eight-stage load spectrum obtained from the Wuhan–Guangzhou high-speed railway line. Based on the probability of foreign damage, a semi-elliptical surface crack was then assumed for residual life assessment. The results obtained by the cumulative damage and damage tolerance methods show that the brake unit bracket can operate for over 30 years. Moreover, even if a 2-mm depth crack exists, the brake unit bracket can be safely operated for more than 2.27 years, with the hope that the crack can be detected in subsequent maintenance procedures. Finally, an appropriate safety margin was suggested which provides a basis for the life prediction and durability assessment of brake unit brackets of high-speed railways.