期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Solute atom segregation to I1 stacking fault and its bounding partial dislocations in a Mg–Bi alloy
1
作者 Cong He Yong Zhang +2 位作者 Zhiqiao Li Houwen Chen Jian-Feng Nie 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第8期3135-3141,共7页
Stacking faults(SFs)and the interaction between solute atoms and SFs in a Mg–Bi alloy are investigated using aberration-corrected scanning transmission electron microscopy.It is found that abundant I_(1)SFs are gener... Stacking faults(SFs)and the interaction between solute atoms and SFs in a Mg–Bi alloy are investigated using aberration-corrected scanning transmission electron microscopy.It is found that abundant I_(1)SFs are generated after cold rolling and are mainly distributed inside{1012}twins.After aging treatment,the formation of single-layer and three-layer Bi atom segregation in the vicinity of I_(1)fault are clearly observed.Bi segregation also occurs at the 1/6<2203>bounding Frank partial dislocation cores.The segregation behaviors in I_(1)fault and Frank dislocations are discussed and rationalized using first-principles calculations. 展开更多
关键词 Mg alloys Suzuki segregation Stacking fault frank partial dislocation
下载PDF
Precipitation on stacking faults in Mg–9.8wt%Sn alloy 被引量:3
2
作者 C.Q.Liu C.He +1 位作者 H.W.Chen J.F.Nie 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第10期230-240,共11页
In this work,we have systematically investigated precipitation ofβ’-Mg3Sn phase on intrinsic stacking faults I1 and I2 in a Mg-9.8 wt%Sn alloy using aberration-corrected scanning transmission electron microscopy.All... In this work,we have systematically investigated precipitation ofβ’-Mg3Sn phase on intrinsic stacking faults I1 and I2 in a Mg-9.8 wt%Sn alloy using aberration-corrected scanning transmission electron microscopy.All observed I1 faults are generated by the dissociation of c+a perfect dislocations and bounded by Frank partial dislocations having a Shockley component.Precipitation ofβ’on I1 involves a shear of 1/3<0110>α,similar to its formation directly from theα-Mg matrix.Theβ’phase often nucleates at one end of an I1 fault due to the interaction between shear strain fields ofβ’and the Shockley component of the Frank partial at that end,and subsequently grows towards the other end of the fault.When theβ’reaches to the other end,the Shockley partial bounding the lengthening end of theβ’reacts with the Frank partial bounding the fault,generating an a perfect dislocation that can glide away from the precipitate and the fault.The observed I2 faults are generated by the dissociation of a perfect dislocations and bounded by Shockley partials.Precipitation ofβ’on I2 does not need a shear of 1/3<01-10>α,since the pre-existing I2 fault already provides an ABCA four-layer structure ofβ’.Thickening of theβ’that has already formed on the I2 involves the successive occurrence of three crystallographically equivalent shears of 1/3<01-10>αon every second(0002)αplane of theα-Mg matrix.Although this thickening mechanism is similar to that of theβ’formed directly from theα-Mg matrix,an a perfect dislocation will be produced when theβ’is thickened to eight layers,and it can again glide away from the precipitate and the fault. 展开更多
关键词 Heterogeneous precipitation HAADF-STEM Shockley partial dislocation frank partial dislocation dislocation reaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部