Non-uniform linear array(NULA)configurations are well renowned due to their structural ability for providing increased degrees of freedom(DOF)and wider array aperture than uniform linear arrays(ULAs).These characteris...Non-uniform linear array(NULA)configurations are well renowned due to their structural ability for providing increased degrees of freedom(DOF)and wider array aperture than uniform linear arrays(ULAs).These characteristics play a significant role in improving the direction-of-arrival(DOA)estimation accuracy.However,most of the existing NULA geometries are primarily applicable to circular sources(CSs),while they limitedly improve the DOF and continuous virtual aperture for noncircular sources(NCSs).Toward this purpose,we present a triaddisplaced ULAs(Tdis-ULAs)configuration for NCS.The TdisULAs structure generally consists of three ULAs,which are appropriately placed.The proposed antenna array approach fully exploits the non-circular characteristics of the sources.Given the same number of elements,the Tdis-ULAs design achieves more DOF and larger hole-free co-array aperture than its sparse array competitors.Advantageously,the number of uniform DOF,optimal distribution of elements among the ULAs,and precise element positions are uniquely determined by the closed-form expressions.Moreover,the proposed array also produces a filled resulting co-array.Numerical simulations are conducted to show the performance advantages of the proposed Tdis-ULAs configuration over its counterpart designs.展开更多
High degrees of freedom(DOF)for K^(+)movement in the electrolytes is desirable,because the resulting high ionic conductivity helps improve potassium-ion batteries,yet requiring support from highly free and flammable o...High degrees of freedom(DOF)for K^(+)movement in the electrolytes is desirable,because the resulting high ionic conductivity helps improve potassium-ion batteries,yet requiring support from highly free and flammable organic solvent molecules,seriously affecting battery safety.Here,we develop a K^(+)flux rectifier to trim K ion’s DOF to 1 and improve electrochemical properties.Although the ionic conductivity is compromised in the K^(+)flux rectifier,the overall electrochemical performance of PIBs was improved.An oxidation stability improvement from 4.0 to 5.9 V was realized,and the formation of dendrites and the dissolution of organic cathodes were inhibited.Consequently,the K||K cells continuously cycled over 3,700 h;K||Cu cells operated stably over 800 cycles with the Coulombic efficiency exceeding 99%;and K||graphite cells exhibited high-capacity retention over 74.7%after 1,500 cycles.Moreover,the 3,4,9,10-perylenetetracarboxylic diimide organic cathodes operated for more than 2,100 cycles and reached year-scale-cycling time.We fabricated a 2.18 Ah pouch cell with no significant capacity fading observed after 100 cycles.展开更多
Degree of freedom(DOF)is a key indicator for spatial multiplexing layers of a wireless channel.Traditionally,the channel of a multiple-input multiple-output(MIMO)half-wavelength dipole array has a DOF that equals the ...Degree of freedom(DOF)is a key indicator for spatial multiplexing layers of a wireless channel.Traditionally,the channel of a multiple-input multiple-output(MIMO)half-wavelength dipole array has a DOF that equals the antenna number.However,recent studies suggest that the DOF could be less than the antenna number when strong mutual coupling is considered.We utilize a mutual-coupling-compliant channel model to investigate the DOF of the holographic MIMO(HMIMO)channel and give a upper bound of the DOF with strong mutual coupling.Our numerical simulations demonstrate that a dense array can support more DOF per unit aperture as compared with a half-wavelength MIMO system.展开更多
A modified two-degrees-of-freedom( M-TDOF) internal model control( IMC) method is proposed for non-square systems with multiple time delays and right-half-plane( RHP) zeros. In this method,pseudo-inverse is introduced...A modified two-degrees-of-freedom( M-TDOF) internal model control( IMC) method is proposed for non-square systems with multiple time delays and right-half-plane( RHP) zeros. In this method,pseudo-inverse is introduced to design the internal model controller,and a desired closed-loop transfer function is designed to eliminate the unrealizable factors of the derived controller. In addition,set-point tracking and load-disturbance rejection of each process are separately controlled by two controllers. The simulation results show that in addition to high decoupling performance and robustness,the proposed control method also effectively improves loaddisturbance rejection and simultaneously optimizes the input tracking performance and disturbance rejection performance by selecting the parameters of controllers. Furthermore,the higher tolerance of model mismatch is achieved in this paper.展开更多
Based on support vector machines, three modeling methods, i.e., white-box modeling, grey-box modeling and black-box modeling of ship manoeuvring motion in 4 degrees of freedom are investigated. With the whole-ship mat...Based on support vector machines, three modeling methods, i.e., white-box modeling, grey-box modeling and black-box modeling of ship manoeuvring motion in 4 degrees of freedom are investigated. With the whole-ship mathematical model for ship manoeuvring motion, in which the hydrodynamic coefficients are obtained from roll planar motion mechanism test, some zigzag tests and turning circle manoeuvres are simulated. In the white-box modeling and grey-box modeling, the training data taken every 5 s from the simulated 20°/20° zigzag test are used, while in the black-box modeling, the training data taken every 5 s from the simulated 15°/15°, 20°/20° zigzag tests and 15°, 25° turning manoeuvres are used; and the trained support vector machines are used to predict the whole 20°/20° zigzag test. Comparisons between the simulated and predicted 20°/20° zigzag tests show good predictive ability of the proposed methods. Besides, all mathematical models obtained by the proposed modeling methods are used to predict the 10°/10° zigzag test and 35° turning circle manoeuvre, and the predicted results are compared with those of simulation tests to demonstrate the good generalization performance of the mathematical models. Finally, the proposed modeling methods are analyzed and compared with each other in aspects of application conditions, prediction accuracy and computation speed. The appropriate modeling method can be chosen according to the intended use of the mathematical models and the available data needed for system identification.展开更多
Quadruped robot dynamic gaits have much more advantages than static gaits on speed and efficiency, however high speed and efficiency calls for more complex mechanical structure and complicated control algorithm. It be...Quadruped robot dynamic gaits have much more advantages than static gaits on speed and efficiency, however high speed and efficiency calls for more complex mechanical structure and complicated control algorithm. It becomes even more challenging when the robot has more degrees of freedom.As a result, most of the present researches focused on simple robot, while the researches on dynamic gaits for complex robot with more degrees of freedom are relatively limited. The paper is focusing on the dynamic gaits control for complex robot with twenty degrees of freedom for the first time. Firstly, we build a relatively complete 3 D model for quadruped robot based on spring loaded inverted pendulum(SLIP) model, analyze the inverse kinematics of the model, plan the trajectory of the swing foot and analyze the hydraulic drive. Secondly, we promote the control algorithm of one-legged to the quadruped robot based on the virtual leg and plan the state variables of pace gait and bound gait. Lastly, we realize the above two kinds of dynamic gaits in ADAMS-MATLAB joint simulation platform which testify the validity of above method.展开更多
The two-rotational-degrees-of-freedom(2R) parallel mechanism(PM) with two continuous rotational axes(CRAs) has a simple kinematic model.It is therefore easy to implement trajectory planning,parameter calibration...The two-rotational-degrees-of-freedom(2R) parallel mechanism(PM) with two continuous rotational axes(CRAs) has a simple kinematic model.It is therefore easy to implement trajectory planning,parameter calibration,and motion control,which allows for a variety of application prospects.However,no systematic analysis on structural constraints of the 2R-PM with two CRAs has been performed,and there are only a few types of 2R-PM with two CRAs.Thus,a theory regarding the type synthesis of the 2R-PM with two CRAs is systematically established.First,combining the theories of reciprocal screw and space geometry,the spatial arrangement relationships of the constraint forces applied to the moving platform by the branches are explored,which give the 2R-PM two CRAs.The different distributions of the constraint forces in each branch are also studied.On the basis of the obtained structural constraints of branches,and considering the geometric relationships of constraint forces in each branch,the appropriate kinematic chains are constructed.Through the reasonable configuration of branch kinematic chains corresponding to every structural constraint,a series of new 2R-PMs with two CRAs are finally obtained.展开更多
Using two typical types of polarization controller, this paper analyses theoretically and experimentally the fact that it is necessary to adjust at least three instead of two waveplates in order to transform any state...Using two typical types of polarization controller, this paper analyses theoretically and experimentally the fact that it is necessary to adjust at least three instead of two waveplates in order to transform any state of polarization to any other output covering the entire Poincar6 sphere. The experimental results are exactly in accordance with the theory discussed in this paper. It has corrected the conventional and inaccurate point of view that two waveplates of a polarization controller are adequate to complete the transformation of state of polarization.展开更多
The behavior of vortex-induced vibration of a two-degree-of-freedom cylinder near a deformable wall in steady flow is investigated experimentally. The typical phenomenon of the two-degree-of-freedom cylinder's VIV is...The behavior of vortex-induced vibration of a two-degree-of-freedom cylinder near a deformable wall in steady flow is investigated experimentally. The typical phenomenon of the two-degree-of-freedom cylinder's VIV is discussed. The influences of initial gap between the cylinder and the wall on the dynamic responses of the cylinder are analyzed. The comparison is made about dynamic responses of the cylinder with one and two degrees of freedom. Experimental results show that the vibration of the cylinder near a deformable wall with a small value of initial gap-to-diameter ratios can generally be divided into two phases. The initial gap-to-diameter ratios have a noticeable influence on the occurrence of transverse vibration. The transverse maximum amplitude of the cylinder with two degrees of freedom is larger than that of the cylinder with one degree of freedom under the condition with the same values of other parameters. However, the vibration frequency of the cylinder for the two degrees of freedom case is smaller than that for the one degree of freedom case at the same value of Vr number展开更多
Although flexible manipulators own many potential advantages, one of their major disadvantages is the deterioration of the end-effector accuracy due to the flexibility. Therefore, how to reduce vibration is a signific...Although flexible manipulators own many potential advantages, one of their major disadvantages is the deterioration of the end-effector accuracy due to the flexibility. Therefore, how to reduce vibration is a significant problem. Inspired by the observation on the motion behaviors of animals, a new idea of decreasing motion deflection of the flexible manipulator is suggested. The concept of controllable local degrees of freedom is proposed and analyzed. By way of optimizing local motion provided by the controllable local degrees of freedom, the end-effector deflection of the flexible manipulator can be effectively decreased through dynamic coupling. The corresponding optimal method for vibration control of the flexible manipulator is put forward. The kinematic simulation is carried ant on a three-link flexible manipulator The corresponding results verify the feasibility of this method.展开更多
A novel compliant mechanism with RPR degrees of freedom(DOF)is proposed where R and P represent rotation and translation DOFs,respectively.The proposed compliant mechanism is obtained from dimension synthesizing a 2-R...A novel compliant mechanism with RPR degrees of freedom(DOF)is proposed where R and P represent rotation and translation DOFs,respectively.The proposed compliant mechanism is obtained from dimension synthesizing a 2-RPU-UPR rigid parallel mechanism with the method of optimization of motion/force transfer characteristic.R,P and U represent rotation,translation and universal pairs,respectively.Firstly,inverse kinematics and Jacobian matrix are analyzed for the dimensional synthesis.Then,output transmission indexes of branches in the parallel mechanism are given.Dimensional synthesis is completed based on the normalized design parameter.And optimization of flexure joints based on constrained energy is carried out.Afterwards,the novel compliant mechanism is obtained by direct replacing method.Mechanical model of the compliant mechanism including static stiffness and input stiffness is built based on the pseudo-rigid body modeling method and virtual work principle.Finally,FEA simulation by Ansys Workbench is carried out to verify DOF,effectiveness of the dimension synthesis,and compliant model.Optimization of motion/force transfer characteristic is first applied for the design of compliant mechanisms to suppress drift of rotation axis in the paper.展开更多
Free-fall of a sphere in fluid is investigated at a Galileo number of 204 by direct numerical simulations(DNS). We mainly focus on the effects of different degrees-of-freedom(DOFs) of the sphere motion during free-fal...Free-fall of a sphere in fluid is investigated at a Galileo number of 204 by direct numerical simulations(DNS). We mainly focus on the effects of different degrees-of-freedom(DOFs) of the sphere motion during free-fall. The characteristics of free-fall are compared with those of flow past a fixed sphere. Additional numerical tests are conducted with constraints placed on the translational or rotational DOFs of the sphere motion to analyze different DOFs of sphere motion. The transverse motion contributes significantly to the characteristics of free-fall; it results in the retardation of the vortex shedding, leading to the decrease of the Strouhal number. In addition, the transversal sphere motion exhibits the tendency to promote the sphere rotation. On the contrary, the effects of the sphere rotation and vertical oscillations during free-fall are negligible.展开更多
The composite systems can be non-uniquely decomposed into parts(subsystems).Not all decompositions(structures) of a composite system are equally physically relevant.In this paper we answer on theoretical ground wh...The composite systems can be non-uniquely decomposed into parts(subsystems).Not all decompositions(structures) of a composite system are equally physically relevant.In this paper we answer on theoretical ground why it may be so.We consider a pair of mutually un-coupled modes in the phase space representation that are subjected to the independent quantum amplitude damping channels.By investigating asymptotic dynamics of the degrees of freedom,we find that the environment is responsible for the structures non-equivalence.Only one structure is distinguished by both locality of the environmental influence on its subsystems and a classical-like description.展开更多
Following the basic principles stated by Painlevé, we first revisit the process of selecting the admissible time-independent Hamiltonians H = (p1^2 + p2^2)/2 + V(q1, q2) whose some integer power qj^nj (t)...Following the basic principles stated by Painlevé, we first revisit the process of selecting the admissible time-independent Hamiltonians H = (p1^2 + p2^2)/2 + V(q1, q2) whose some integer power qj^nj (t) of the general solution is a singlevalued function of the complez time t. In addition to the well known rational potentials V of Hénon-Heiles, this selects possible cases with a trigonometric dependence of V on qj. Then, by establishing the relevant confluences, we restrict the question of the explicit integration of the seven (three “cubic” plus four “quartic”) rational Hénon-Heiles cases to the quartic cases. Finally, we perform the explicit integration of the quartic cases, thus proving that the seven rational cases have a meromorphic general solution explicitly given by a genus two hyperelliptic function.展开更多
Using a relationship between Hubble’s “parameter”, Temperature, Energy and effective mass, from there obtain in 3 + 1 dimensions a relationship between effective mass, and the initial degrees of freedom, to the 1/4...Using a relationship between Hubble’s “parameter”, Temperature, Energy and effective mass, from there obtain in 3 + 1 dimensions a relationship between effective mass, and the initial degrees of freedom, to the 1/4<sup>th</sup> power, we will discuss candidates for entry into this, assuming for a start that initial universe conditions are similar to a black hole, i.e. a nearly singular start to inflationary expansion;this would necessitate a HUGE initial degree of freedom value as outlined in our argument.展开更多
This article proposes a dual-negative-objective coordinated control strategy for brushless doubly fed induction generator(BDFIG)based wind power generation system under unbalanced grid voltage.To alleviate the mechani...This article proposes a dual-negative-objective coordinated control strategy for brushless doubly fed induction generator(BDFIG)based wind power generation system under unbalanced grid voltage.To alleviate the mechanical stress and impaction on rotating shaft,the negative control objective(NCO)of machine side converter(MSC)is set to suppress the ripple of electromagnetic torque.While the NCO of grid side converter(GSC)is selected to suppress the oscillation of total output active power or the unbalanced degree of total output current for BDFIG generation system.In comparison with traditional single converter control scheme of the MSC or GSC,dual NCOs can be satisfied at the same time due to the enlarged freedom degree in the proposed improved coordinated control system for back-toback converters.The effectiveness of proposed control strategy is validated by simulation and experimental results on a dual-cagerotor BDFIG(DCR-BDFIG)prototype.展开更多
Currently,two rotations and one translation(2R1T)three-degree-of-freedom(DOF)parallel mechanisms(PMs)are widely applied in five-DOF hybrid machining robots.However,there is a lack of an effective method to evaluate th...Currently,two rotations and one translation(2R1T)three-degree-of-freedom(DOF)parallel mechanisms(PMs)are widely applied in five-DOF hybrid machining robots.However,there is a lack of an effective method to evaluate the configuration stiffness of mechanisms during the mechanism design stage.It is a challenge to select appropriate 2R1T PMs with excellent stiffness performance during the design stage.Considering the operational status of 2R1T PMs,the bending and torsional stiffness are considered as indices to evaluate PMs'configuration stiffness.Subsequently,a specific method is proposed to calculate these stiffness indices.Initially,the various types of structural and driving stiffness for each branch are assessed and their specific values defined.Subsequently,a rigid-flexible coupled force model for the over-constrained 2R1T PM is established,and the proposed evaluation method is used to analyze the configuration stiffness of the five 2R1T PMs in the entire workspace.Finally,the driving force and constraint force of each branch in the whole working space are calculated to further elucidate the stiffness evaluating results by using the proposed method above.The obtained results demonstrate that the bending and torsional stiffness of the 2RPU/UPR/RPR mechanism along the x and y-directions are larger than the other four mechanisms.展开更多
Several densities or probability laws of continuous random variables derive from the Euler Gamma function. These laws form the basis of sampling theory, namely hypothesis testing and estimation. Namely the gamma, beta...Several densities or probability laws of continuous random variables derive from the Euler Gamma function. These laws form the basis of sampling theory, namely hypothesis testing and estimation. Namely the gamma, beta, and Student law, through the chi-square law and the normal law are all distributions resulting from applications of Euleur functions.展开更多
Objective:In this study,we investigated the concept of empowerment in chronic wound care and propose to facilitate patient control by making use of degrees of freedom(DOF):that is,shaping of everyday wound care tasks ...Objective:In this study,we investigated the concept of empowerment in chronic wound care and propose to facilitate patient control by making use of degrees of freedom(DOF):that is,shaping of everyday wound care tasks initiated by patients and based on their wishes,mostly in terms of patients executing treatment steps,requesting or directing health care professionals to under take changes,or modifications of internal states.Methods:As a first step,we conducted a systematic literature search,followed by an inductive form of qualitative content analysis,which resulted in the identification of 5 dimensions as main elements of empowerment:education and shared decision making,adherence to self-care behaviors,responsibility and control,general call for empowerment,and DOF.However,the latter are noticeably absent in the literature.To investigate patients'freedom in shaping the wound care process,we conducted a second literature search.Results:A number of possibilities for patients to influence the wound care process could be identified,but experimental or clinical evidence about their effects is missing,their variety is limited,and they are only inadequately described.Conclusions:However,DOF should be an indispensable aspect of genuine empowerment,since they allow patients to occupy the role of the agent in the treatment process and give rise to the subjective experience of feeling empowered.Thus,in the third part,we develop a research proposal on how to investigate and include DOF in the clinical practice of wound care.Finally,limitations about implementations are discussed(e.g.,patients being reluctant to overcome their passive role,resulting in frustration for health care professionals).展开更多
Parallel arrays with coprime subarrays have shown its potential advantages for two dimensional direction of arrival(DOA)estimation.In this paper,by introducing two flexible coprime factors to enlarge the inter-element...Parallel arrays with coprime subarrays have shown its potential advantages for two dimensional direction of arrival(DOA)estimation.In this paper,by introducing two flexible coprime factors to enlarge the inter-element spacing of parallel uniform subarrays,we propose a generalized parallel coprime array(GPCA)geometry.The proposed geometry enjoys flexible array layouts by the coprime factors and enables to extend the array aperture to achieve great improvement of estimation performance.Meanwhile,we verify that GPCA always can obtain M2 degrees of freedom(DOFs)in co-array domain via 2M sensors after optimization,which outperforms sparse parallel array geometries,such as parallel coprime array(PCA)and parallel augmented coprime array(PACA),and is the same as parallel nested array(PNA)with extended aperture.The superiority of GPCA geometry has been proved by numerical simulations with sparse representation methods.展开更多
基金supported by the National Natural Science Foundation of China(62031017,61971221)the Fundamental Research Funds for the Central Universities of China(NP2020104)。
文摘Non-uniform linear array(NULA)configurations are well renowned due to their structural ability for providing increased degrees of freedom(DOF)and wider array aperture than uniform linear arrays(ULAs).These characteristics play a significant role in improving the direction-of-arrival(DOA)estimation accuracy.However,most of the existing NULA geometries are primarily applicable to circular sources(CSs),while they limitedly improve the DOF and continuous virtual aperture for noncircular sources(NCSs).Toward this purpose,we present a triaddisplaced ULAs(Tdis-ULAs)configuration for NCS.The TdisULAs structure generally consists of three ULAs,which are appropriately placed.The proposed antenna array approach fully exploits the non-circular characteristics of the sources.Given the same number of elements,the Tdis-ULAs design achieves more DOF and larger hole-free co-array aperture than its sparse array competitors.Advantageously,the number of uniform DOF,optimal distribution of elements among the ULAs,and precise element positions are uniquely determined by the closed-form expressions.Moreover,the proposed array also produces a filled resulting co-array.Numerical simulations are conducted to show the performance advantages of the proposed Tdis-ULAs configuration over its counterpart designs.
基金supported by the National Natural Science Foundation of China(Nos.U20A20247 and 51922038).A.M.R.acknowledges the seed funding provided by the R.A.Bowen Endowed Professorship funds at Clemson University.
文摘High degrees of freedom(DOF)for K^(+)movement in the electrolytes is desirable,because the resulting high ionic conductivity helps improve potassium-ion batteries,yet requiring support from highly free and flammable organic solvent molecules,seriously affecting battery safety.Here,we develop a K^(+)flux rectifier to trim K ion’s DOF to 1 and improve electrochemical properties.Although the ionic conductivity is compromised in the K^(+)flux rectifier,the overall electrochemical performance of PIBs was improved.An oxidation stability improvement from 4.0 to 5.9 V was realized,and the formation of dendrites and the dissolution of organic cathodes were inhibited.Consequently,the K||K cells continuously cycled over 3,700 h;K||Cu cells operated stably over 800 cycles with the Coulombic efficiency exceeding 99%;and K||graphite cells exhibited high-capacity retention over 74.7%after 1,500 cycles.Moreover,the 3,4,9,10-perylenetetracarboxylic diimide organic cathodes operated for more than 2,100 cycles and reached year-scale-cycling time.We fabricated a 2.18 Ah pouch cell with no significant capacity fading observed after 100 cycles.
基金supported in part by National Key Research and Develop⁃ment Program of China under Grant No.2020YFB1807600.
文摘Degree of freedom(DOF)is a key indicator for spatial multiplexing layers of a wireless channel.Traditionally,the channel of a multiple-input multiple-output(MIMO)half-wavelength dipole array has a DOF that equals the antenna number.However,recent studies suggest that the DOF could be less than the antenna number when strong mutual coupling is considered.We utilize a mutual-coupling-compliant channel model to investigate the DOF of the holographic MIMO(HMIMO)channel and give a upper bound of the DOF with strong mutual coupling.Our numerical simulations demonstrate that a dense array can support more DOF per unit aperture as compared with a half-wavelength MIMO system.
基金Sponsored by the Fundamental Research Funds for the Central Universities(Grant No.N110304008)the National Natural Science Foundation of China(Grant No.61374137)
文摘A modified two-degrees-of-freedom( M-TDOF) internal model control( IMC) method is proposed for non-square systems with multiple time delays and right-half-plane( RHP) zeros. In this method,pseudo-inverse is introduced to design the internal model controller,and a desired closed-loop transfer function is designed to eliminate the unrealizable factors of the derived controller. In addition,set-point tracking and load-disturbance rejection of each process are separately controlled by two controllers. The simulation results show that in addition to high decoupling performance and robustness,the proposed control method also effectively improves loaddisturbance rejection and simultaneously optimizes the input tracking performance and disturbance rejection performance by selecting the parameters of controllers. Furthermore,the higher tolerance of model mismatch is achieved in this paper.
基金financially supported by the National Natural Science Foundation of China(Grant No.51279106)the Special Research Fund for the Doctoral Program of Higher Education of China(Grant No.20110073110009)
文摘Based on support vector machines, three modeling methods, i.e., white-box modeling, grey-box modeling and black-box modeling of ship manoeuvring motion in 4 degrees of freedom are investigated. With the whole-ship mathematical model for ship manoeuvring motion, in which the hydrodynamic coefficients are obtained from roll planar motion mechanism test, some zigzag tests and turning circle manoeuvres are simulated. In the white-box modeling and grey-box modeling, the training data taken every 5 s from the simulated 20°/20° zigzag test are used, while in the black-box modeling, the training data taken every 5 s from the simulated 15°/15°, 20°/20° zigzag tests and 15°, 25° turning manoeuvres are used; and the trained support vector machines are used to predict the whole 20°/20° zigzag test. Comparisons between the simulated and predicted 20°/20° zigzag tests show good predictive ability of the proposed methods. Besides, all mathematical models obtained by the proposed modeling methods are used to predict the 10°/10° zigzag test and 35° turning circle manoeuvre, and the predicted results are compared with those of simulation tests to demonstrate the good generalization performance of the mathematical models. Finally, the proposed modeling methods are analyzed and compared with each other in aspects of application conditions, prediction accuracy and computation speed. The appropriate modeling method can be chosen according to the intended use of the mathematical models and the available data needed for system identification.
基金supported by the National Science Fund for Distinguished Young Scholars of China(51225503)the National Natural Science Foundation of China(61603076)the Fundamental Research Funds for the Central Universities(ZYGX2016J116)
文摘Quadruped robot dynamic gaits have much more advantages than static gaits on speed and efficiency, however high speed and efficiency calls for more complex mechanical structure and complicated control algorithm. It becomes even more challenging when the robot has more degrees of freedom.As a result, most of the present researches focused on simple robot, while the researches on dynamic gaits for complex robot with more degrees of freedom are relatively limited. The paper is focusing on the dynamic gaits control for complex robot with twenty degrees of freedom for the first time. Firstly, we build a relatively complete 3 D model for quadruped robot based on spring loaded inverted pendulum(SLIP) model, analyze the inverse kinematics of the model, plan the trajectory of the swing foot and analyze the hydraulic drive. Secondly, we promote the control algorithm of one-legged to the quadruped robot based on the virtual leg and plan the state variables of pace gait and bound gait. Lastly, we realize the above two kinds of dynamic gaits in ADAMS-MATLAB joint simulation platform which testify the validity of above method.
基金Supported by National Natural Science Foundation of China(Grant No.51405425)Hebei Provincial Natural Science Foundation of China(Grant No.E2014203255)Independent Research Program Topics of Young Teachers in Yanshan University,China(Grant No.13LGA001)
文摘The two-rotational-degrees-of-freedom(2R) parallel mechanism(PM) with two continuous rotational axes(CRAs) has a simple kinematic model.It is therefore easy to implement trajectory planning,parameter calibration,and motion control,which allows for a variety of application prospects.However,no systematic analysis on structural constraints of the 2R-PM with two CRAs has been performed,and there are only a few types of 2R-PM with two CRAs.Thus,a theory regarding the type synthesis of the 2R-PM with two CRAs is systematically established.First,combining the theories of reciprocal screw and space geometry,the spatial arrangement relationships of the constraint forces applied to the moving platform by the branches are explored,which give the 2R-PM two CRAs.The different distributions of the constraint forces in each branch are also studied.On the basis of the obtained structural constraints of branches,and considering the geometric relationships of constraint forces in each branch,the appropriate kinematic chains are constructed.Through the reasonable configuration of branch kinematic chains corresponding to every structural constraint,a series of new 2R-PMs with two CRAs are finally obtained.
基金supported by the National Natural Science Foundation of China (Grant No 60577046)the Corporative Building Project of Beijing Educational Committee of China (Grant No XK100130737) Shandong High Technology Project of China (Grant No 2006GG2201002)
文摘Using two typical types of polarization controller, this paper analyses theoretically and experimentally the fact that it is necessary to adjust at least three instead of two waveplates in order to transform any state of polarization to any other output covering the entire Poincar6 sphere. The experimental results are exactly in accordance with the theory discussed in this paper. It has corrected the conventional and inaccurate point of view that two waveplates of a polarization controller are adequate to complete the transformation of state of polarization.
基金supported by the National Natural Science Foundation of China (Grant No. 10902112)
文摘The behavior of vortex-induced vibration of a two-degree-of-freedom cylinder near a deformable wall in steady flow is investigated experimentally. The typical phenomenon of the two-degree-of-freedom cylinder's VIV is discussed. The influences of initial gap between the cylinder and the wall on the dynamic responses of the cylinder are analyzed. The comparison is made about dynamic responses of the cylinder with one and two degrees of freedom. Experimental results show that the vibration of the cylinder near a deformable wall with a small value of initial gap-to-diameter ratios can generally be divided into two phases. The initial gap-to-diameter ratios have a noticeable influence on the occurrence of transverse vibration. The transverse maximum amplitude of the cylinder with two degrees of freedom is larger than that of the cylinder with one degree of freedom under the condition with the same values of other parameters. However, the vibration frequency of the cylinder for the two degrees of freedom case is smaller than that for the one degree of freedom case at the same value of Vr number
基金Important Project of Science and Technology Research of Ministry of Education of China (No. 307005)National Hi-tech Research and Development Program of China (863 Program, No.SQ2007AA04Z231266).
文摘Although flexible manipulators own many potential advantages, one of their major disadvantages is the deterioration of the end-effector accuracy due to the flexibility. Therefore, how to reduce vibration is a significant problem. Inspired by the observation on the motion behaviors of animals, a new idea of decreasing motion deflection of the flexible manipulator is suggested. The concept of controllable local degrees of freedom is proposed and analyzed. By way of optimizing local motion provided by the controllable local degrees of freedom, the end-effector deflection of the flexible manipulator can be effectively decreased through dynamic coupling. The corresponding optimal method for vibration control of the flexible manipulator is put forward. The kinematic simulation is carried ant on a three-link flexible manipulator The corresponding results verify the feasibility of this method.
基金National Natural Science Foundation of China(Grant No.51975007).
文摘A novel compliant mechanism with RPR degrees of freedom(DOF)is proposed where R and P represent rotation and translation DOFs,respectively.The proposed compliant mechanism is obtained from dimension synthesizing a 2-RPU-UPR rigid parallel mechanism with the method of optimization of motion/force transfer characteristic.R,P and U represent rotation,translation and universal pairs,respectively.Firstly,inverse kinematics and Jacobian matrix are analyzed for the dimensional synthesis.Then,output transmission indexes of branches in the parallel mechanism are given.Dimensional synthesis is completed based on the normalized design parameter.And optimization of flexure joints based on constrained energy is carried out.Afterwards,the novel compliant mechanism is obtained by direct replacing method.Mechanical model of the compliant mechanism including static stiffness and input stiffness is built based on the pseudo-rigid body modeling method and virtual work principle.Finally,FEA simulation by Ansys Workbench is carried out to verify DOF,effectiveness of the dimension synthesis,and compliant model.Optimization of motion/force transfer characteristic is first applied for the design of compliant mechanisms to suppress drift of rotation axis in the paper.
基金financially supported by the National Key Research and Development Program of China(Grant No.2016YFC0304103)the National Natural Science Foundation of China(Grant No.51509152)
文摘Free-fall of a sphere in fluid is investigated at a Galileo number of 204 by direct numerical simulations(DNS). We mainly focus on the effects of different degrees-of-freedom(DOFs) of the sphere motion during free-fall. The characteristics of free-fall are compared with those of flow past a fixed sphere. Additional numerical tests are conducted with constraints placed on the translational or rotational DOFs of the sphere motion to analyze different DOFs of sphere motion. The transverse motion contributes significantly to the characteristics of free-fall; it results in the retardation of the vortex shedding, leading to the decrease of the Strouhal number. In addition, the transversal sphere motion exhibits the tendency to promote the sphere rotation. On the contrary, the effects of the sphere rotation and vertical oscillations during free-fall are negligible.
基金Project financially supported by the Ministry of Science Serbia (Grant No. 171028)
文摘The composite systems can be non-uniquely decomposed into parts(subsystems).Not all decompositions(structures) of a composite system are equally physically relevant.In this paper we answer on theoretical ground why it may be so.We consider a pair of mutually un-coupled modes in the phase space representation that are subjected to the independent quantum amplitude damping channels.By investigating asymptotic dynamics of the degrees of freedom,we find that the environment is responsible for the structures non-equivalence.Only one structure is distinguished by both locality of the environmental influence on its subsystems and a classical-like description.
文摘Following the basic principles stated by Painlevé, we first revisit the process of selecting the admissible time-independent Hamiltonians H = (p1^2 + p2^2)/2 + V(q1, q2) whose some integer power qj^nj (t) of the general solution is a singlevalued function of the complez time t. In addition to the well known rational potentials V of Hénon-Heiles, this selects possible cases with a trigonometric dependence of V on qj. Then, by establishing the relevant confluences, we restrict the question of the explicit integration of the seven (three “cubic” plus four “quartic”) rational Hénon-Heiles cases to the quartic cases. Finally, we perform the explicit integration of the quartic cases, thus proving that the seven rational cases have a meromorphic general solution explicitly given by a genus two hyperelliptic function.
文摘Using a relationship between Hubble’s “parameter”, Temperature, Energy and effective mass, from there obtain in 3 + 1 dimensions a relationship between effective mass, and the initial degrees of freedom, to the 1/4<sup>th</sup> power, we will discuss candidates for entry into this, assuming for a start that initial universe conditions are similar to a black hole, i.e. a nearly singular start to inflationary expansion;this would necessitate a HUGE initial degree of freedom value as outlined in our argument.
基金supported in part by National Natural Science Foundation of China under Grant 61973073supported by Jiangsu Province Higher Education Basic Science (Natural Science) Research Project under Grant 23KJB470022
文摘This article proposes a dual-negative-objective coordinated control strategy for brushless doubly fed induction generator(BDFIG)based wind power generation system under unbalanced grid voltage.To alleviate the mechanical stress and impaction on rotating shaft,the negative control objective(NCO)of machine side converter(MSC)is set to suppress the ripple of electromagnetic torque.While the NCO of grid side converter(GSC)is selected to suppress the oscillation of total output active power or the unbalanced degree of total output current for BDFIG generation system.In comparison with traditional single converter control scheme of the MSC or GSC,dual NCOs can be satisfied at the same time due to the enlarged freedom degree in the proposed improved coordinated control system for back-toback converters.The effectiveness of proposed control strategy is validated by simulation and experimental results on a dual-cagerotor BDFIG(DCR-BDFIG)prototype.
基金Supported by National Natural Science Foundation of China (Grant Nos.51875495,U2037202)Hebei Provincial Science and Technology Project (Grant No.206Z1805G)。
文摘Currently,two rotations and one translation(2R1T)three-degree-of-freedom(DOF)parallel mechanisms(PMs)are widely applied in five-DOF hybrid machining robots.However,there is a lack of an effective method to evaluate the configuration stiffness of mechanisms during the mechanism design stage.It is a challenge to select appropriate 2R1T PMs with excellent stiffness performance during the design stage.Considering the operational status of 2R1T PMs,the bending and torsional stiffness are considered as indices to evaluate PMs'configuration stiffness.Subsequently,a specific method is proposed to calculate these stiffness indices.Initially,the various types of structural and driving stiffness for each branch are assessed and their specific values defined.Subsequently,a rigid-flexible coupled force model for the over-constrained 2R1T PM is established,and the proposed evaluation method is used to analyze the configuration stiffness of the five 2R1T PMs in the entire workspace.Finally,the driving force and constraint force of each branch in the whole working space are calculated to further elucidate the stiffness evaluating results by using the proposed method above.The obtained results demonstrate that the bending and torsional stiffness of the 2RPU/UPR/RPR mechanism along the x and y-directions are larger than the other four mechanisms.
文摘Several densities or probability laws of continuous random variables derive from the Euler Gamma function. These laws form the basis of sampling theory, namely hypothesis testing and estimation. Namely the gamma, beta, and Student law, through the chi-square law and the normal law are all distributions resulting from applications of Euleur functions.
基金supported by Dr.Ausbüttel&Co.Gmb H,the University of Witten/Herdecke。
文摘Objective:In this study,we investigated the concept of empowerment in chronic wound care and propose to facilitate patient control by making use of degrees of freedom(DOF):that is,shaping of everyday wound care tasks initiated by patients and based on their wishes,mostly in terms of patients executing treatment steps,requesting or directing health care professionals to under take changes,or modifications of internal states.Methods:As a first step,we conducted a systematic literature search,followed by an inductive form of qualitative content analysis,which resulted in the identification of 5 dimensions as main elements of empowerment:education and shared decision making,adherence to self-care behaviors,responsibility and control,general call for empowerment,and DOF.However,the latter are noticeably absent in the literature.To investigate patients'freedom in shaping the wound care process,we conducted a second literature search.Results:A number of possibilities for patients to influence the wound care process could be identified,but experimental or clinical evidence about their effects is missing,their variety is limited,and they are only inadequately described.Conclusions:However,DOF should be an indispensable aspect of genuine empowerment,since they allow patients to occupy the role of the agent in the treatment process and give rise to the subjective experience of feeling empowered.Thus,in the third part,we develop a research proposal on how to investigate and include DOF in the clinical practice of wound care.Finally,limitations about implementations are discussed(e.g.,patients being reluctant to overcome their passive role,resulting in frustration for health care professionals).
文摘Parallel arrays with coprime subarrays have shown its potential advantages for two dimensional direction of arrival(DOA)estimation.In this paper,by introducing two flexible coprime factors to enlarge the inter-element spacing of parallel uniform subarrays,we propose a generalized parallel coprime array(GPCA)geometry.The proposed geometry enjoys flexible array layouts by the coprime factors and enables to extend the array aperture to achieve great improvement of estimation performance.Meanwhile,we verify that GPCA always can obtain M2 degrees of freedom(DOFs)in co-array domain via 2M sensors after optimization,which outperforms sparse parallel array geometries,such as parallel coprime array(PCA)and parallel augmented coprime array(PACA),and is the same as parallel nested array(PNA)with extended aperture.The superiority of GPCA geometry has been proved by numerical simulations with sparse representation methods.