Freezing processes of several liquids under static magnetic field(SMF) less than 50 mT were investigated. Central temperature of liquid samples held in glass test tubes immersed in a liquid bath was measured and colle...Freezing processes of several liquids under static magnetic field(SMF) less than 50 mT were investigated. Central temperature of liquid samples held in glass test tubes immersed in a liquid bath was measured and collected. Nucleation temperature and phase transition time were obtained from freezing curves. Normality tests were performed for nucleation temperature of these liquids with/without magnetic field and normality distributions were justified. Analysis of variances was carried out for nucleation temperature of these liquids with magnetic field flux density as the influencing factor. Results showed that no significant difference was found for deionized water with or without SMF. However, differences exist in 0.9% NaCl solution and 5% ethylene glycol solution with and without SMF. Nucleation temperature of 0.9% NaCl with SMF is lower than that without SMF, while its phase transition time is shorter than that without SMF. Nucleation temperature of 5% ethylene glycol with SMF is higher than that without SMF, while its phase transition time is not modified with SMF.展开更多
A consistent checkpointing algorithm with short freezing time (SFT) is presented in this paper. It supports fault-tolerance in distributed systems. The algorithm has shorter freezing time, lower overhead, and simplici...A consistent checkpointing algorithm with short freezing time (SFT) is presented in this paper. It supports fault-tolerance in distributed systems. The algorithm has shorter freezing time, lower overhead, and simplicity of recovery. To make checkpoint time shorter, a special control message (Munblock) is used to ensure that a process can respond the checkpoint event quickly at any given time. Moreover, main memory algorithm is used to improve the concurrency of checkpointing. By using SFT, the freezing time resulted by checkpointing is less than 0.03s. Furthermore, the control message number of SFT is only O(n).展开更多
Functional gradient materials provided us a new concept for artificial articular cartilage design with gradient component and gradient structure where one side of the material is high free water content thereby provid...Functional gradient materials provided us a new concept for artificial articular cartilage design with gradient component and gradient structure where one side of the material is high free water content thereby providing excellent lubrication function and the opposite side of the material is high hydroxyapatite content, thereby improving the bioactivity of the material and stimulating cell growth. The goal of the present study was to develop a multi-layered gradient HA/PVA gel biocomposites through layer-by-layer casting method combing with freeze/thaw cycle technology. The various influence factors on the compressive strength and modulus of the multi-layered gradient biocomposites were investigated. The results showed that the compressive mechanical characteristics of the biocomposites were similar to that of natural articular cartilage. Both the compressive strength and modulus of the multi-layered gradient HA/PVA gel biocomposites increased exponentially with the rise of compressive strain ratio. Both the compressive strength and average compressive modulus of the biocomposites improved with the rise of freeze/thaw cycle times and total concentration of HA particles in the biocomposites, but they showed decreasing tendency with the rise of HA concentration difference between adjacent layers.展开更多
基金Supported by the National Natural Science Foundation of China(51306104)
文摘Freezing processes of several liquids under static magnetic field(SMF) less than 50 mT were investigated. Central temperature of liquid samples held in glass test tubes immersed in a liquid bath was measured and collected. Nucleation temperature and phase transition time were obtained from freezing curves. Normality tests were performed for nucleation temperature of these liquids with/without magnetic field and normality distributions were justified. Analysis of variances was carried out for nucleation temperature of these liquids with magnetic field flux density as the influencing factor. Results showed that no significant difference was found for deionized water with or without SMF. However, differences exist in 0.9% NaCl solution and 5% ethylene glycol solution with and without SMF. Nucleation temperature of 0.9% NaCl with SMF is lower than that without SMF, while its phase transition time is shorter than that without SMF. Nucleation temperature of 5% ethylene glycol with SMF is higher than that without SMF, while its phase transition time is not modified with SMF.
基金the National Natural Science Foundation of China !69673012
文摘A consistent checkpointing algorithm with short freezing time (SFT) is presented in this paper. It supports fault-tolerance in distributed systems. The algorithm has shorter freezing time, lower overhead, and simplicity of recovery. To make checkpoint time shorter, a special control message (Munblock) is used to ensure that a process can respond the checkpoint event quickly at any given time. Moreover, main memory algorithm is used to improve the concurrency of checkpointing. By using SFT, the freezing time resulted by checkpointing is less than 0.03s. Furthermore, the control message number of SFT is only O(n).
基金the financial support from the National Natural Science Foundation of China (No.51175004)the Natural Science Research of Key Projects of Anhui Provincial Universities(No.KJ2010A099)
文摘Functional gradient materials provided us a new concept for artificial articular cartilage design with gradient component and gradient structure where one side of the material is high free water content thereby providing excellent lubrication function and the opposite side of the material is high hydroxyapatite content, thereby improving the bioactivity of the material and stimulating cell growth. The goal of the present study was to develop a multi-layered gradient HA/PVA gel biocomposites through layer-by-layer casting method combing with freeze/thaw cycle technology. The various influence factors on the compressive strength and modulus of the multi-layered gradient biocomposites were investigated. The results showed that the compressive mechanical characteristics of the biocomposites were similar to that of natural articular cartilage. Both the compressive strength and modulus of the multi-layered gradient HA/PVA gel biocomposites increased exponentially with the rise of compressive strain ratio. Both the compressive strength and average compressive modulus of the biocomposites improved with the rise of freeze/thaw cycle times and total concentration of HA particles in the biocomposites, but they showed decreasing tendency with the rise of HA concentration difference between adjacent layers.