Frequency regulation in a generation mix having large wind power penetration is a critical issue, as wind units isolate from the grid during disturbances with advanced power electronics controllers and reduce equivale...Frequency regulation in a generation mix having large wind power penetration is a critical issue, as wind units isolate from the grid during disturbances with advanced power electronics controllers and reduce equivalent system inertia. Thus, it is important that wind turbines also contribute to system frequency control. This paper examines the dynamic contribution of doubly fed induction generator (DFIG)-based wind turbine in system frequency regulation. The modified inertial support scheme is proposed which helps the DFIG to provide the short term transient active power support to the grid during transients and arrests the fall in frequency. The frequency deviation is considered by the controller to provide the inertial control. An additional reference power output is used which helps the DFIG to release kinetic energy stored in rotating masses of the turbine. The optimal speed control parameters have been used for the DFIG to increases its participation in frequency control. The simulations carried out in a two-area interconnected power system demonstrate the contribution of the DFIG in load frequency control.展开更多
为了达到能量转换最优化和减小机械结构的疲劳负荷的要求,基于双馈感应发电机风能转换系统建立了数学模型,提出一种双频环滑模预测优化控制方法。该方法采用双频环多目标结构,低频环引入基于ARMA(autoregressive and moving average mod...为了达到能量转换最优化和减小机械结构的疲劳负荷的要求,基于双馈感应发电机风能转换系统建立了数学模型,提出一种双频环滑模预测优化控制方法。该方法采用双频环多目标结构,低频环引入基于ARMA(autoregressive and moving average model)模型预测后的风速低频分量,采用PI控制对应于最优叶尖速度以保证其工作点运行在最优控制特性曲线上;高频环引入风速的湍流分量,将预测控制与滑模控制相结合实现系统的动态优化。仿真结果表明:双频环滑模预测控制有效避免了不确定性对系统的影响,实现了部分负荷状态下的最优控制特性跟踪,减少了控制输入量的变化量,降低了机械疲劳,保证了系统的优化稳定运行。展开更多
文摘Frequency regulation in a generation mix having large wind power penetration is a critical issue, as wind units isolate from the grid during disturbances with advanced power electronics controllers and reduce equivalent system inertia. Thus, it is important that wind turbines also contribute to system frequency control. This paper examines the dynamic contribution of doubly fed induction generator (DFIG)-based wind turbine in system frequency regulation. The modified inertial support scheme is proposed which helps the DFIG to provide the short term transient active power support to the grid during transients and arrests the fall in frequency. The frequency deviation is considered by the controller to provide the inertial control. An additional reference power output is used which helps the DFIG to release kinetic energy stored in rotating masses of the turbine. The optimal speed control parameters have been used for the DFIG to increases its participation in frequency control. The simulations carried out in a two-area interconnected power system demonstrate the contribution of the DFIG in load frequency control.
文摘为了达到能量转换最优化和减小机械结构的疲劳负荷的要求,基于双馈感应发电机风能转换系统建立了数学模型,提出一种双频环滑模预测优化控制方法。该方法采用双频环多目标结构,低频环引入基于ARMA(autoregressive and moving average model)模型预测后的风速低频分量,采用PI控制对应于最优叶尖速度以保证其工作点运行在最优控制特性曲线上;高频环引入风速的湍流分量,将预测控制与滑模控制相结合实现系统的动态优化。仿真结果表明:双频环滑模预测控制有效避免了不确定性对系统的影响,实现了部分负荷状态下的最优控制特性跟踪,减少了控制输入量的变化量,降低了机械疲劳,保证了系统的优化稳定运行。