Knowledge about the seismic elastic modulus dispersion,and associated attenuation,in fluid-saturated rocks is essential for better interpretation of seismic observations taken as part of hydrocarbon identification and...Knowledge about the seismic elastic modulus dispersion,and associated attenuation,in fluid-saturated rocks is essential for better interpretation of seismic observations taken as part of hydrocarbon identification and time-lapse seismic surveillance of both conventional and unconventional reservoir and overburden performances.A Seismic Elastic Moduli Module has been developed,based on the forced-oscillations method,to experimentally investigate the frequency dependence of Young's modulus and Poisson's ratio,as well as the inferred attenuation,of cylindrical samples under different confining pressure conditions.Calibration with three standard samples showed that the measured elastic moduli were consistent with the published data,indicating that the new apparatus can operate reliably over a wide frequency range of f∈[1-2000,10^(6)]Hz.The Young's modulus and Poisson's ratio of the shale and the tight sandstone samples were measured under axial stress oscillations to assess the frequency-and pressure-dependent effects.Under dry condition,both samples appear to be nearly frequency independent,with weak pressure dependence for the shale and significant pressure dependence for the sandstone.In particular,it was found that the tight sandstone with complex pore microstructure exhibited apparent dispersion and attenuation under brine or glycerin saturation conditions,the levels of which were strongly influenced by the increased effective pressure.In addition,the measured Young's moduli results were compared with the theoretical predictions from a scaled poroelastic model with a reasonably good agreement,revealing that the combined fluid flow mechanisms at both mesoscopic and microscopic scales possibly responsible for the measured dispersion.展开更多
We theoretically investigate the propagation characteristics of spin waves in skyrmion-based magnonic crystals. It is found that the dispersion relation can be manipulated by strains through magneto-elastic coupling. ...We theoretically investigate the propagation characteristics of spin waves in skyrmion-based magnonic crystals. It is found that the dispersion relation can be manipulated by strains through magneto-elastic coupling. Especially, the allowed bands and forbidden bands in dispersion relations shift to higher frequency with strain changing from compressive to tensile,while shifting to lower frequency with strain changing from tensile to compressive. We also confirm that the spin wave with specific frequency can pass the magnonic crystal or be blocked by tuning the strains. The result provides an advanced platform for studying the tunable skyrmion-based spin wave devices.展开更多
Orthogonal Time Frequency and Space(OTFS) modulation is expected to provide high-speed and ultra-reliable communications for emerging mobile applications, including low-orbit satellite communications. Using the Dopple...Orthogonal Time Frequency and Space(OTFS) modulation is expected to provide high-speed and ultra-reliable communications for emerging mobile applications, including low-orbit satellite communications. Using the Doppler frequency for positioning is a promising research direction on communication and navigation integration. To tackle the high Doppler frequency and low signal-to-noise ratio(SNR) in satellite communication, this paper proposes a Red and Blue Frequency Shift Discriminator(RBFSD) based on the pseudo-noise(PN) sequence.The paper derives that the cross-correlation function on the Doppler domain exhibits the characteristic of a Sinc function. Therefore, it applies modulation onto the Delay-Doppler domain using PN sequence and adjusts Doppler frequency estimation by red-shifting or blue-shifting. Simulation results show that the performance of Doppler frequency estimation is close to the Cramér-Rao Lower Bound when the SNR is greater than -15dB. The proposed algorithm is about 1/D times less complex than the existing PN pilot sequence algorithm, where D is the resolution of the fractional Doppler.展开更多
We demonstrate coherent optical frequency dissemination over a distance of 972 km by cascading two spans where the phase noise is passively compensated for.Instead of employing a phase discriminator and a phase lockin...We demonstrate coherent optical frequency dissemination over a distance of 972 km by cascading two spans where the phase noise is passively compensated for.Instead of employing a phase discriminator and a phase locking loop in the conventional active phase control scheme,the passive phase noise cancellation is realized by feeding double-trip beat-note frequency to the driver of the acoustic optical modulator at the local site.This passive scheme exhibits fine robustness and reliability,making it suitable for long-distance and noisy fiber links.An optical regeneration station is used in the link for signal amplification and cascaded transmission.The phase noise cancellation and transfer instability of the 972-km link is investigated,and transfer instability of 1.1×10^(-19)at 10^(4)s is achieved.This work provides a promising method for realizing optical frequency distribution over thousands of kilometers by using fiber links.展开更多
The identification of hydrocarbons using seismic methods is critical in the prediction of shale oil res-ervoirs.However,delineating shales of high oil saturation is challenging owing to the similarity in the elastic p...The identification of hydrocarbons using seismic methods is critical in the prediction of shale oil res-ervoirs.However,delineating shales of high oil saturation is challenging owing to the similarity in the elastic properties of oil-and water-bearing shales.The complexity of the organic matter properties associated with kerogen and hydrocarbon further complicates the characterization of shale oil reservoirs using seismic methods.Nevertheless,the inelastic shale properties associated with oil saturation can enable the utilization of velocity dispersion for hydrocarbon identification in shales.In this study,a seismic inversion scheme based on the fluid dispersion attribute was proposed for the estimation of hydrocarbon enrichment.In the proposed approach,the conventional frequency-dependent inversion scheme was extended by incorporating the PP-wave reflection coefficient presented in terms of the effective fluid bulk modulus.A rock physics model for shale oil reservoirs was constructed to describe the relationship between hydrocarbon saturation and shale inelasticity.According to the modeling results,the hydrocarbon sensitivity of the frequency-dependent effective fluid bulk modulus is superior to the traditional compressional wave velocity dispersion of shales.Quantitative analysis of the inversion re-sults based on synthetics also reveals that the proposed approach identifies the oil saturation and related hydrocarbon enrichment better than the above-mentioned conventional approach.Meanwhile,in real data applications,actual drilling results validate the superiority of the proposed fluid dispersion attribute as a useful hydrocarbon indicator in shale oil reservoirs.展开更多
Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than t...Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL.展开更多
Carbon nano additives(CNAs)are critical to achieving the unique properties of functionalized composites,however,controlling the dispersion of CNAs in material matrix is always a challenging task.In this study,a simple...Carbon nano additives(CNAs)are critical to achieving the unique properties of functionalized composites,however,controlling the dispersion of CNAs in material matrix is always a challenging task.In this study,a simple atomization approach was successfully developed to promote the dispersion efficiency of graphene nanoplatelets(GNPs)in cement composites.This atomization approach can be integrated with the direct,indirect and combined ultrasonic stirrings in a homemade automatic stirring-atomization device.Mechanical and microstructure tests were performed on hardened cement pastes blended with GNPs in different stirring and mixing approaches.Results show that the direct ultrasonic stirrings enabled more homogeneous dispersions of GNP particles with a smaller size for a longer duration.The atomized droplets with the mean size of~100μm largely mitigated GNPs’agglomerations.Monolayer GNPs were observed in the cement matrix with the strength gain by up to 54%,and the total porosity decrease by 21%in 0.3 wt%GNPs dosage.The greatly enhanced dispersion efficiency of GNPs in cement also raised the cement hydration.This work provides an effective and manpower saving technique toward dispersing CNAs in engineering materials with great industrialization prospects.展开更多
In agreement with Titchmarsh’s theorem, we prove that dispersion relations are just the Fourier-transform of the identity, g(x′)=±Sgn(x′)g(x′), which defines the property of being a truncated functions at the...In agreement with Titchmarsh’s theorem, we prove that dispersion relations are just the Fourier-transform of the identity, g(x′)=±Sgn(x′)g(x′), which defines the property of being a truncated functions at the origin. On the other hand, we prove that the wave-function of a generalized diffraction in time problem is just the Fourier-transform of a truncated function. Consequently, the existence of dispersion relations for the diffraction in time wave-function follows. We derive these explicit dispersion relations.展开更多
A real-time data processing system is designed for the carbon dioxide dispersion interferometer(CO_(2)-DI)on EAST.The system utilizes the parallel and pipelining capabilities of an fieldprogrammable gate array(FPGA)to...A real-time data processing system is designed for the carbon dioxide dispersion interferometer(CO_(2)-DI)on EAST.The system utilizes the parallel and pipelining capabilities of an fieldprogrammable gate array(FPGA)to digitize and process the intensity of signals from the detector.Finally,the real-time electron density signals are exported through a digital-to-analog converter(DAC)module in the form of analog signals.The system has been successfully applied in the CO_(2)-DI system to provide low-latency electron density input to the plasma control system on EAST.Experimental results of the latest campaign with long-pulse discharges on EAST(2022–2023)demonstrate that the system can respond effectively in the case of rapid density changes,proving its reliability and accuracy for future electron density calculation.展开更多
Background:Optimal patterns of accrual of recommended levels of physical activity(PA)for prevention of hypertension and obesity are not known.The overall aim of this study was to investigate whether different patterns...Background:Optimal patterns of accrual of recommended levels of physical activity(PA)for prevention of hypertension and obesity are not known.The overall aim of this study was to investigate whether different patterns of accumulation of PA are differentially associated with hypertension and obesity in Australian women over 21 years.Specifically,we investigated whether,for the same weekly volume of PA,the number of sessions(frequency)and vigorousness of PA(intensity)were associated with a reduction in the occurrence of hypertension and obesity in women.Methods:Data from the 1973-1978 and 1946-1951 cohorts of the Australian Longitudinal Study on Women's Health were analyzed(n=20,588;12%-16%with a Bachelor's or higher degree).Self-reported PA,hypertension,height,and weight were collected using mail surveys every 3 years from 1998/2000 to 2019/2021.Generalized Estimating Equation models with a 3-year lag model were used to investigate the association of PA volume(metabolic equivalent min/week)(none;33-499;500-999;≥1000,weekly frequency(none;1-2 times;3-4times;5-7 times;≥8 times),and the proportion of vigorous PA to total volume of PA(none;0%;1%-33%;34%-66%;67%-100%)with odds of hypertension and obesity from 2000 to 2021.Results:The cumulative incidence of hypertension was 6%in the 1973-1978 and 23%in the 1946-1951 cohort;27%of women in the 1973-1978;and 15%in the 1946-1951 cohort developed obesity over the period.Overall,a higher volume of PA was associated with reduced odds of hypertension and obesity.When the volume of PA was considered,the odds of hypertension did not vary according to the frequency or intensity of PA.However,increased proportion of vigorous PA to the total volume of PA was associated with a small additional reduction in the risk of obe sity.Conclusion:PA volume appears to be more important than the pattern of accumulation for the prevention of hypertension and obesity.Incorporating more sessions,particularly of vigorous-intensity PA,may provide extra benefits for the prevention of obesity.展开更多
Kenics static mixers(KSM)are extensively used in industrial mixing-reaction processes by virtue of high mixing efficiency,low power homogenization and easy continuous production.Resolving liquid droplet size and its d...Kenics static mixers(KSM)are extensively used in industrial mixing-reaction processes by virtue of high mixing efficiency,low power homogenization and easy continuous production.Resolving liquid droplet size and its distribution and thus revealing the dispersion characteristics are of great significance for structural optimization and process intensification in the KSM.In this work,a computational fluid dynamics-population balance model(CFD-PBM)coupled method is employed to systematically investigate the effects of operating conditions and structural parameters of KSM on droplet size and its distribution,to further reveal the liquid-liquid dispersion characteristics.Results indicate that higher Reynolds numbers or higher dispersed phase volume fractions increase energy dissipation,reducing Sauter mean diameter(SMD)of dispersed phase droplets and with a shift in droplet size distribution(DSD)towards smaller size.Smaller aspect ratios,greater blade twist and assembly angles amplify shear rate,leading to smaller droplet size and a narrower DSD in the smaller range.The degree of impact exerted by the aspect ratio is notably greater.Notably,mixing elements with different spin enhance shear and stretching efficiency.Compared to the same spin,SMD becomes 3.7-5.8 times smaller in the smaller size range with a significantly narrower distribution.Taking into account the pressure drop and efficiency in a comprehensive manner,optimized structural parameters for the mixing element encompass an aspect ratio of 1-1.5,a blade twist angle of 180°,an assembly angle of 90°,and interlaced assembly of adjacent elements with different spin.This work provides vital theoretical underpinning and future reference for enhancing KSM performance.展开更多
A trigger system is typically employed in active seismic testing to trigger and synchronize multichannel surface wave data acquisition.The effect of the trigger system on the dispersion image of surface waves is empir...A trigger system is typically employed in active seismic testing to trigger and synchronize multichannel surface wave data acquisition.The effect of the trigger system on the dispersion image of surface waves is empirically known to be negligible,however,theoretical explanation regarding the effect of the trigger system is insufficient.This study systematically examines the theory for surface wave dispersion analysis and proves that the effect of the trigger system on a dispersion image is negligible via a solid theoretical explanation.Subsequently,based on the new theoretical explanation,an alternative method that uses only the relative phase difference between sensors to extract dispersion characteristics with better conceptual clarity is proposed.Two active surface wave testing cases are considered to validate the theory and method.The results indicate that(1)an accurate trigger system is not necessary for surface wave data acquisition,and(2)it is unnecessary to assume that the impact point is the generation point of the surface waves for the experimental dispersion analysis.展开更多
Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thi...Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thickness measurement limits its widespread application. This paper proposes a method that utilizes cylindrical shear horizontal(SH) guided waves to estimate pipeline thickness without prior knowledge of shear wave velocity. The inversion formulas are derived from the dispersion of higher-order modes with the high-frequency approximation. The waveform of the example problems is simulated using the real-axis integral method. The data points on the dispersion curves are processed in the frequency domain using the wave-number method. These extracted data are then substituted into the derived formulas. The results verify that employing higher-order SH guided waves for the evaluation of thickness and shear wave velocity yields less than1% error. This method can be applied to both metallic and non-metallic pipelines, thus opening new possibilities for health monitoring of pipeline structures.展开更多
Various strategies have been proposed to harness and protect space-like quantum correlations in different models under decoherence.However,little attention has been given to temporal-like correlations,such as quantum ...Various strategies have been proposed to harness and protect space-like quantum correlations in different models under decoherence.However,little attention has been given to temporal-like correlations,such as quantum temporal steering(TS),in this context.In this work,we investigate TS in a frequency-modulated two-level system coupled to a zero-temperature reservoir in both the weak and strong coupling regimes.We analyze the impact of various frequency-modulated parameters on the behavior of TS and non-Markovian.The results demonstrate that appropriate frequency-modulated parameters can enhance the TS of the two-level system,regardless of whether the system is experiencing Markovian or non-Markovian dynamics.Furthermore,a suitable ratio between modulation strength and frequency(i.e.,all zeroes of the 0th Bessel function J_(0)(δ/?))can significantly enhance TS in the strong coupling regime.These findings indicate that efficient and effective manipulation of quantum TS can be achieved through a frequency-modulated approach.展开更多
Finite-difference(FD)method is the most extensively employed numerical modeling technique.Nevertheless,when using the FD method to simulate the seismic wave propagation,the large spatial or temporal sampling interval ...Finite-difference(FD)method is the most extensively employed numerical modeling technique.Nevertheless,when using the FD method to simulate the seismic wave propagation,the large spatial or temporal sampling interval can lead to dispersion errors and numerical instability.In the FD scheme,the key factor in determining both dispersion errors and stability is the selection of the FD weights.Thus,How to obtain appropriate FD weights to guarantee a stable numerical modeling process with minimum dispersion error is critical.The FD weights computation strategies can be classified into three types based on different computational ideologies,window function strategy,optimization strategy,and Taylor expansion strategy.In this paper,we provide a comprehensive overview of these three strategies by presenting their fundamental theories.We conduct a set of comparative analyses of their strengths and weaknesses through various analysis tests and numerical modelings.According to these comparisons,we provide two potential research directions of this field:Firstly,the development of a computational strategy for FD weights that enhances stability;Secondly,obtaining FD weights that exhibit a wide bandwidth while minimizing dispersion errors.展开更多
We read with great interest the recent article by Erenson(2023)entitled“Dispersion characteristics of clayey soils containing waste rubber particles”.The author has studied the dispersion characteristics of clayey s...We read with great interest the recent article by Erenson(2023)entitled“Dispersion characteristics of clayey soils containing waste rubber particles”.The author has studied the dispersion characteristics of clayey soils containing different percentages of waste rubber particles(WRPs)by performing several tests(viz.consistency limit,linear shrinkage limit,double hydrometer,crumb test and pinhole test)and scanning electron microscopy(SEM)analysis on five clayey(viz.Na-activated bentonite,refined ball clay,Ukrainian kaolin,Avanos kaolin and Afyon clay)samples containing 0%,5%,10%and 15%WRPs.It should be noted that Erenson(2023)has presented some interesting observations,but there are some serious issues that we want to share through this discussion and request the author of the original paper to address them to avoid their persistence in the scientific literature.展开更多
Macrosomia is defined as a term birth weight greater than or equal to 4000 grams, or greater than the 90 percentile of intrauterine growth curves. Excessive weight has harmful consequences for the newborn and is a maj...Macrosomia is defined as a term birth weight greater than or equal to 4000 grams, or greater than the 90 percentile of intrauterine growth curves. Excessive weight has harmful consequences for the newborn and is a major health concern. Objectives: To determine the frequency of neonatal macrosomia, describe risk factors and neonatal and maternal complications. Materials and methods: This was a cross-sectional study carried out between January and December 2022, involving newborns whose birth weight was greater than or equal to 4000 grams admitted to the neonatology unit of the Labe regional hospital. Results: 591 deliveries were recorded, 15 of which were macrosomic, representing a frequency of 2.54%. The average age of the women was 30.26 years. History of fetal macrosomia and diabetes was 93.33 and 71.43% respectively. The mean gestational age was 38.71 ± 0.75 SA, the mean antenatal consultation was 3 ± 0.8 and the mode of delivery was caesarean section (66.67%). Third-trimester ultrasound was performed in 53.33% of cases. Macrosomic newborns were male in 80% of cases. Neonatal complications were asphyxia (60%), hypoglycemia (20%) and hypocalcemia (13.33%). Factors associated with neonatal macrosomia were diabetes (P < 0.001), history of macrosomia (P Conclusion: this study shows that the frequency of neonatal macrosomia is 2.54% with high neonatal morbidity among newborns hospitalized in the neonatology unit of the Labé regional hospital. Screening for macrosomia risk factors during pregnancy is essential to prevent perinatal complications.展开更多
Metalenses with achromatic performance offer a new opportunity for high-quality imaging with an ultracompact configuration;however,they suffer from complex fabrication processes and low focusing efficiency.In this stu...Metalenses with achromatic performance offer a new opportunity for high-quality imaging with an ultracompact configuration;however,they suffer from complex fabrication processes and low focusing efficiency.In this study,we propose an efficient design method for achromatic microlenses on a wavelength scale using materials with low dispersion,an adequately designed convex surface,and a thickness profile distribution.By taking into account the absolute chromatic aberration,relative focal length shift(FLS),and numerical aperture(NA),microlens with a certain focal length can be realized through our realized map of geometric features.Accordingly,the designed achromatic microlenses with low-dispersion fused silica were fabricated using a focused ion beam,and precise surface profiles were obtained.The fabricated microlenses exhibited a high average focusing efficiency of 65%at visible wavelengths of 410-680 nm and excellent achromatic capability via white light imaging.Moreover,the design exhibited the advantages of being polarization-insensitive and near-diffraction-limited.These results demonstrate the effectiveness of our proposed achromatic microlens design approach,which expands the prospects of miniaturized optics such as virtual and augmented reality,ultracompact microscopes,and biological endoscopy.展开更多
As modern electromagnetic environments are more and more complex,the anti-interference performance of the synchronization acquisition is becoming vital in wireless communications.With the rapid development of the digi...As modern electromagnetic environments are more and more complex,the anti-interference performance of the synchronization acquisition is becoming vital in wireless communications.With the rapid development of the digital signal processing technologies,some synchronization acquisition algorithms for hybrid direct-sequence(DS)/frequency hopping(FH)spread spectrum communications have been proposed.However,these algorithms do not focus on the analysis and the design of the synchronization acquisition under typical interferences.In this paper,a synchronization acquisition algorithm based on the frequency hopping pulses combining(FHPC)is proposed.Specifically,the proposed algorithm is composed of two modules:an adaptive interference suppression(IS)module and an adaptive combining decision module.The adaptive IS module mitigates the effect of the interfered samples in the time-domain or the frequencydomain,and the adaptive combining decision module can utilize each frequency hopping pulse to construct an anti-interference decision metric and generate an adaptive acquisition decision threshold to complete the acquisition.Theory and simulation demonstrate that the proposed algorithm significantly enhances the antiinterference and anti-noise performances of the synchronization acquisition for hybrid DS/FH communications.展开更多
Introduction: Mechanical complications after osteosynthesis are spontaneous and harmful modifications of the joint compromising the consolidation process. The aim of this study is to report on the frequency of these c...Introduction: Mechanical complications after osteosynthesis are spontaneous and harmful modifications of the joint compromising the consolidation process. The aim of this study is to report on the frequency of these complications and their management in the Orthopaedic-Traumatology Department of CHU Ignace Deen. Patients and Methods: we conducted a retrospective descriptive and analytical cross-sectional study from January 2017 to December 2022. It focused on the records of patients hospitalized and treated in the department for a mechanical complication after osteosynthesis. Results: The frequency of mechanical complications was 1.2%, with an average age of 44.2 years and a sex ratio of 3.2 in favor of men. Non-compliance with postoperative instructions, non-compliance with surgical technique, postoperative infection and early loading were the main contributing factors. Disassembly of the screw-plate was the most common cause in 6 cases (35.5%), with a mean delay of 4.1 months. Revision osteosynthesis was carried out using screw plates in 8 cases (47.1%). Conclusion: Mechanical complications of osteosynthesis are less frequent traumatic conditions in our department. Several factors contribute to their occurrence.展开更多
基金The authors would like to acknowledge financial support from NSFC Basic Research Program on Deep Petroleum Resource Accumulation and Key Engineering Technologies(U19B6003-04-03)National Natural Science Foundation of China(41930425)+2 种基金Beijing Natural Science Foundation(8222073),R&D Department of China National Petroleum Corporation(Investigations on fundamental experiments and advanced theoretical methods in geophysical prospecting applications,2022DQ0604-01)Scientific Research and Technology Development Project of PetroChina(2021DJ1206)National Key Research and Development Program of China(2018YFA0702504).
文摘Knowledge about the seismic elastic modulus dispersion,and associated attenuation,in fluid-saturated rocks is essential for better interpretation of seismic observations taken as part of hydrocarbon identification and time-lapse seismic surveillance of both conventional and unconventional reservoir and overburden performances.A Seismic Elastic Moduli Module has been developed,based on the forced-oscillations method,to experimentally investigate the frequency dependence of Young's modulus and Poisson's ratio,as well as the inferred attenuation,of cylindrical samples under different confining pressure conditions.Calibration with three standard samples showed that the measured elastic moduli were consistent with the published data,indicating that the new apparatus can operate reliably over a wide frequency range of f∈[1-2000,10^(6)]Hz.The Young's modulus and Poisson's ratio of the shale and the tight sandstone samples were measured under axial stress oscillations to assess the frequency-and pressure-dependent effects.Under dry condition,both samples appear to be nearly frequency independent,with weak pressure dependence for the shale and significant pressure dependence for the sandstone.In particular,it was found that the tight sandstone with complex pore microstructure exhibited apparent dispersion and attenuation under brine or glycerin saturation conditions,the levels of which were strongly influenced by the increased effective pressure.In addition,the measured Young's moduli results were compared with the theoretical predictions from a scaled poroelastic model with a reasonably good agreement,revealing that the combined fluid flow mechanisms at both mesoscopic and microscopic scales possibly responsible for the measured dispersion.
文摘We theoretically investigate the propagation characteristics of spin waves in skyrmion-based magnonic crystals. It is found that the dispersion relation can be manipulated by strains through magneto-elastic coupling. Especially, the allowed bands and forbidden bands in dispersion relations shift to higher frequency with strain changing from compressive to tensile,while shifting to lower frequency with strain changing from tensile to compressive. We also confirm that the spin wave with specific frequency can pass the magnonic crystal or be blocked by tuning the strains. The result provides an advanced platform for studying the tunable skyrmion-based spin wave devices.
文摘Orthogonal Time Frequency and Space(OTFS) modulation is expected to provide high-speed and ultra-reliable communications for emerging mobile applications, including low-orbit satellite communications. Using the Doppler frequency for positioning is a promising research direction on communication and navigation integration. To tackle the high Doppler frequency and low signal-to-noise ratio(SNR) in satellite communication, this paper proposes a Red and Blue Frequency Shift Discriminator(RBFSD) based on the pseudo-noise(PN) sequence.The paper derives that the cross-correlation function on the Doppler domain exhibits the characteristic of a Sinc function. Therefore, it applies modulation onto the Delay-Doppler domain using PN sequence and adjusts Doppler frequency estimation by red-shifting or blue-shifting. Simulation results show that the performance of Doppler frequency estimation is close to the Cramér-Rao Lower Bound when the SNR is greater than -15dB. The proposed algorithm is about 1/D times less complex than the existing PN pilot sequence algorithm, where D is the resolution of the fractional Doppler.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12103059,12033007,12303077,and 12303076)the Fund from the Xi’an Science and Technology Bureau,China(Grant No.E019XK1S04)the Fund from the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.1188000XGJ).
文摘We demonstrate coherent optical frequency dissemination over a distance of 972 km by cascading two spans where the phase noise is passively compensated for.Instead of employing a phase discriminator and a phase locking loop in the conventional active phase control scheme,the passive phase noise cancellation is realized by feeding double-trip beat-note frequency to the driver of the acoustic optical modulator at the local site.This passive scheme exhibits fine robustness and reliability,making it suitable for long-distance and noisy fiber links.An optical regeneration station is used in the link for signal amplification and cascaded transmission.The phase noise cancellation and transfer instability of the 972-km link is investigated,and transfer instability of 1.1×10^(-19)at 10^(4)s is achieved.This work provides a promising method for realizing optical frequency distribution over thousands of kilometers by using fiber links.
基金supported by the National Natural Science Foundation of China(Grant numbers 42074153 and 42274160)the Open Research Fund of SINOPEC Key Laboratory of Geophysics(Grant number 33550006-20-ZC0699-0006).
文摘The identification of hydrocarbons using seismic methods is critical in the prediction of shale oil res-ervoirs.However,delineating shales of high oil saturation is challenging owing to the similarity in the elastic properties of oil-and water-bearing shales.The complexity of the organic matter properties associated with kerogen and hydrocarbon further complicates the characterization of shale oil reservoirs using seismic methods.Nevertheless,the inelastic shale properties associated with oil saturation can enable the utilization of velocity dispersion for hydrocarbon identification in shales.In this study,a seismic inversion scheme based on the fluid dispersion attribute was proposed for the estimation of hydrocarbon enrichment.In the proposed approach,the conventional frequency-dependent inversion scheme was extended by incorporating the PP-wave reflection coefficient presented in terms of the effective fluid bulk modulus.A rock physics model for shale oil reservoirs was constructed to describe the relationship between hydrocarbon saturation and shale inelasticity.According to the modeling results,the hydrocarbon sensitivity of the frequency-dependent effective fluid bulk modulus is superior to the traditional compressional wave velocity dispersion of shales.Quantitative analysis of the inversion re-sults based on synthetics also reveals that the proposed approach identifies the oil saturation and related hydrocarbon enrichment better than the above-mentioned conventional approach.Meanwhile,in real data applications,actual drilling results validate the superiority of the proposed fluid dispersion attribute as a useful hydrocarbon indicator in shale oil reservoirs.
基金supports from the National Natural Science Foundation of China(12074123,12174108)the Foundation of‘Manufacturing beyond limits’of Shanghai‘Talent Program'of Henan Academy of Sciences.
文摘Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL.
基金supported by the Fundamental Research Funds for the Central Universities(No.226-2023-00010)National Natural Science Foundation of China(No.52038004)ZJU-ZCCC Institute of Collaborative Innovation(No.ZDJG2021008).
文摘Carbon nano additives(CNAs)are critical to achieving the unique properties of functionalized composites,however,controlling the dispersion of CNAs in material matrix is always a challenging task.In this study,a simple atomization approach was successfully developed to promote the dispersion efficiency of graphene nanoplatelets(GNPs)in cement composites.This atomization approach can be integrated with the direct,indirect and combined ultrasonic stirrings in a homemade automatic stirring-atomization device.Mechanical and microstructure tests were performed on hardened cement pastes blended with GNPs in different stirring and mixing approaches.Results show that the direct ultrasonic stirrings enabled more homogeneous dispersions of GNP particles with a smaller size for a longer duration.The atomized droplets with the mean size of~100μm largely mitigated GNPs’agglomerations.Monolayer GNPs were observed in the cement matrix with the strength gain by up to 54%,and the total porosity decrease by 21%in 0.3 wt%GNPs dosage.The greatly enhanced dispersion efficiency of GNPs in cement also raised the cement hydration.This work provides an effective and manpower saving technique toward dispersing CNAs in engineering materials with great industrialization prospects.
文摘In agreement with Titchmarsh’s theorem, we prove that dispersion relations are just the Fourier-transform of the identity, g(x′)=±Sgn(x′)g(x′), which defines the property of being a truncated functions at the origin. On the other hand, we prove that the wave-function of a generalized diffraction in time problem is just the Fourier-transform of a truncated function. Consequently, the existence of dispersion relations for the diffraction in time wave-function follows. We derive these explicit dispersion relations.
基金funded and supported by the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)the HFIPS Director’s Fund(No.YZJJKX202301)+1 种基金the Anhui Provincial Major Science and Technology Project(No.2023z020004)Task JB22001 from the Anhui Provincial Department of Economic and Information Technology。
文摘A real-time data processing system is designed for the carbon dioxide dispersion interferometer(CO_(2)-DI)on EAST.The system utilizes the parallel and pipelining capabilities of an fieldprogrammable gate array(FPGA)to digitize and process the intensity of signals from the detector.Finally,the real-time electron density signals are exported through a digital-to-analog converter(DAC)module in the form of analog signals.The system has been successfully applied in the CO_(2)-DI system to provide low-latency electron density input to the plasma control system on EAST.Experimental results of the latest campaign with long-pulse discharges on EAST(2022–2023)demonstrate that the system can respond effectively in the case of rapid density changes,proving its reliability and accuracy for future electron density calculation.
基金supported by a National Health and Medical Research Council(NHMRC)Investigator Grant(APP2008702)supported by the National Council for Scientific and Technological Developments-CNPq(process number 308772/2022-9)。
文摘Background:Optimal patterns of accrual of recommended levels of physical activity(PA)for prevention of hypertension and obesity are not known.The overall aim of this study was to investigate whether different patterns of accumulation of PA are differentially associated with hypertension and obesity in Australian women over 21 years.Specifically,we investigated whether,for the same weekly volume of PA,the number of sessions(frequency)and vigorousness of PA(intensity)were associated with a reduction in the occurrence of hypertension and obesity in women.Methods:Data from the 1973-1978 and 1946-1951 cohorts of the Australian Longitudinal Study on Women's Health were analyzed(n=20,588;12%-16%with a Bachelor's or higher degree).Self-reported PA,hypertension,height,and weight were collected using mail surveys every 3 years from 1998/2000 to 2019/2021.Generalized Estimating Equation models with a 3-year lag model were used to investigate the association of PA volume(metabolic equivalent min/week)(none;33-499;500-999;≥1000,weekly frequency(none;1-2 times;3-4times;5-7 times;≥8 times),and the proportion of vigorous PA to total volume of PA(none;0%;1%-33%;34%-66%;67%-100%)with odds of hypertension and obesity from 2000 to 2021.Results:The cumulative incidence of hypertension was 6%in the 1973-1978 and 23%in the 1946-1951 cohort;27%of women in the 1973-1978;and 15%in the 1946-1951 cohort developed obesity over the period.Overall,a higher volume of PA was associated with reduced odds of hypertension and obesity.When the volume of PA was considered,the odds of hypertension did not vary according to the frequency or intensity of PA.However,increased proportion of vigorous PA to the total volume of PA was associated with a small additional reduction in the risk of obe sity.Conclusion:PA volume appears to be more important than the pattern of accumulation for the prevention of hypertension and obesity.Incorporating more sessions,particularly of vigorous-intensity PA,may provide extra benefits for the prevention of obesity.
基金supported by the National Natural Science Foundation of China(22078278)Hunan Innovative Talent Project(2022RC1111)+2 种基金Hunan Provincial Education Bureau Foundation(22A0131)Hunan Province Higher Education Key Laboratory of Green Catalysis and Industrial Reaction Process IntensificationFurong Plan Provincial Enterprise Technology Innovation and Entrepreneurship Team.
文摘Kenics static mixers(KSM)are extensively used in industrial mixing-reaction processes by virtue of high mixing efficiency,low power homogenization and easy continuous production.Resolving liquid droplet size and its distribution and thus revealing the dispersion characteristics are of great significance for structural optimization and process intensification in the KSM.In this work,a computational fluid dynamics-population balance model(CFD-PBM)coupled method is employed to systematically investigate the effects of operating conditions and structural parameters of KSM on droplet size and its distribution,to further reveal the liquid-liquid dispersion characteristics.Results indicate that higher Reynolds numbers or higher dispersed phase volume fractions increase energy dissipation,reducing Sauter mean diameter(SMD)of dispersed phase droplets and with a shift in droplet size distribution(DSD)towards smaller size.Smaller aspect ratios,greater blade twist and assembly angles amplify shear rate,leading to smaller droplet size and a narrower DSD in the smaller range.The degree of impact exerted by the aspect ratio is notably greater.Notably,mixing elements with different spin enhance shear and stretching efficiency.Compared to the same spin,SMD becomes 3.7-5.8 times smaller in the smaller size range with a significantly narrower distribution.Taking into account the pressure drop and efficiency in a comprehensive manner,optimized structural parameters for the mixing element encompass an aspect ratio of 1-1.5,a blade twist angle of 180°,an assembly angle of 90°,and interlaced assembly of adjacent elements with different spin.This work provides vital theoretical underpinning and future reference for enhancing KSM performance.
基金Natural Science Foundation of Hubei Province of China for Distinguished Young Scholars (2023AFA099)Natural Science Foundation of Hubei Province of China for Key Projects (Innovation Group) (2023AFA030)National Natural Science Foundation of China (52178471)。
文摘A trigger system is typically employed in active seismic testing to trigger and synchronize multichannel surface wave data acquisition.The effect of the trigger system on the dispersion image of surface waves is empirically known to be negligible,however,theoretical explanation regarding the effect of the trigger system is insufficient.This study systematically examines the theory for surface wave dispersion analysis and proves that the effect of the trigger system on a dispersion image is negligible via a solid theoretical explanation.Subsequently,based on the new theoretical explanation,an alternative method that uses only the relative phase difference between sensors to extract dispersion characteristics with better conceptual clarity is proposed.Two active surface wave testing cases are considered to validate the theory and method.The results indicate that(1)an accurate trigger system is not necessary for surface wave data acquisition,and(2)it is unnecessary to assume that the impact point is the generation point of the surface waves for the experimental dispersion analysis.
基金Project supported by the Natural Science Foundation of Jilin Province of China(Grant Nos.20240402081GH and 20220101012JC)the National Natural Science Foundation of China(Grant No.42074139)the State Key Laboratory of Acoustics,Chinese Academy of Sciences(Grant No.SKLA202308)。
文摘Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thickness measurement limits its widespread application. This paper proposes a method that utilizes cylindrical shear horizontal(SH) guided waves to estimate pipeline thickness without prior knowledge of shear wave velocity. The inversion formulas are derived from the dispersion of higher-order modes with the high-frequency approximation. The waveform of the example problems is simulated using the real-axis integral method. The data points on the dispersion curves are processed in the frequency domain using the wave-number method. These extracted data are then substituted into the derived formulas. The results verify that employing higher-order SH guided waves for the evaluation of thickness and shear wave velocity yields less than1% error. This method can be applied to both metallic and non-metallic pipelines, thus opening new possibilities for health monitoring of pipeline structures.
基金Project supported by the National Natural Science Foundation of China(Grant No.62375140)。
文摘Various strategies have been proposed to harness and protect space-like quantum correlations in different models under decoherence.However,little attention has been given to temporal-like correlations,such as quantum temporal steering(TS),in this context.In this work,we investigate TS in a frequency-modulated two-level system coupled to a zero-temperature reservoir in both the weak and strong coupling regimes.We analyze the impact of various frequency-modulated parameters on the behavior of TS and non-Markovian.The results demonstrate that appropriate frequency-modulated parameters can enhance the TS of the two-level system,regardless of whether the system is experiencing Markovian or non-Markovian dynamics.Furthermore,a suitable ratio between modulation strength and frequency(i.e.,all zeroes of the 0th Bessel function J_(0)(δ/?))can significantly enhance TS in the strong coupling regime.These findings indicate that efficient and effective manipulation of quantum TS can be achieved through a frequency-modulated approach.
基金supported by the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao) (No.2021QNLM020001)the Major Scientific and Technological Projects of Shandong Energy Group (No.SNKJ2022A06-R23)+2 种基金the Funds of Creative Research Groups of China (No.41821002)National Natural Science Foundation of China Outstanding Youth Science Fund Project (Overseas) (No.ZX20230152)the Major Scientific and Technological Projects of CNPC (No.ZD2019-183-003)。
文摘Finite-difference(FD)method is the most extensively employed numerical modeling technique.Nevertheless,when using the FD method to simulate the seismic wave propagation,the large spatial or temporal sampling interval can lead to dispersion errors and numerical instability.In the FD scheme,the key factor in determining both dispersion errors and stability is the selection of the FD weights.Thus,How to obtain appropriate FD weights to guarantee a stable numerical modeling process with minimum dispersion error is critical.The FD weights computation strategies can be classified into three types based on different computational ideologies,window function strategy,optimization strategy,and Taylor expansion strategy.In this paper,we provide a comprehensive overview of these three strategies by presenting their fundamental theories.We conduct a set of comparative analyses of their strengths and weaknesses through various analysis tests and numerical modelings.According to these comparisons,we provide two potential research directions of this field:Firstly,the development of a computational strategy for FD weights that enhances stability;Secondly,obtaining FD weights that exhibit a wide bandwidth while minimizing dispersion errors.
文摘We read with great interest the recent article by Erenson(2023)entitled“Dispersion characteristics of clayey soils containing waste rubber particles”.The author has studied the dispersion characteristics of clayey soils containing different percentages of waste rubber particles(WRPs)by performing several tests(viz.consistency limit,linear shrinkage limit,double hydrometer,crumb test and pinhole test)and scanning electron microscopy(SEM)analysis on five clayey(viz.Na-activated bentonite,refined ball clay,Ukrainian kaolin,Avanos kaolin and Afyon clay)samples containing 0%,5%,10%and 15%WRPs.It should be noted that Erenson(2023)has presented some interesting observations,but there are some serious issues that we want to share through this discussion and request the author of the original paper to address them to avoid their persistence in the scientific literature.
文摘Macrosomia is defined as a term birth weight greater than or equal to 4000 grams, or greater than the 90 percentile of intrauterine growth curves. Excessive weight has harmful consequences for the newborn and is a major health concern. Objectives: To determine the frequency of neonatal macrosomia, describe risk factors and neonatal and maternal complications. Materials and methods: This was a cross-sectional study carried out between January and December 2022, involving newborns whose birth weight was greater than or equal to 4000 grams admitted to the neonatology unit of the Labe regional hospital. Results: 591 deliveries were recorded, 15 of which were macrosomic, representing a frequency of 2.54%. The average age of the women was 30.26 years. History of fetal macrosomia and diabetes was 93.33 and 71.43% respectively. The mean gestational age was 38.71 ± 0.75 SA, the mean antenatal consultation was 3 ± 0.8 and the mode of delivery was caesarean section (66.67%). Third-trimester ultrasound was performed in 53.33% of cases. Macrosomic newborns were male in 80% of cases. Neonatal complications were asphyxia (60%), hypoglycemia (20%) and hypocalcemia (13.33%). Factors associated with neonatal macrosomia were diabetes (P < 0.001), history of macrosomia (P Conclusion: this study shows that the frequency of neonatal macrosomia is 2.54% with high neonatal morbidity among newborns hospitalized in the neonatology unit of the Labé regional hospital. Screening for macrosomia risk factors during pregnancy is essential to prevent perinatal complications.
基金supported by grants from the National Key Research and Development Program of China(2022YFB3806000)the National Natural Science Foundation of China(52325208 and 11974203)the Beijing Municipal Science and Technology Project(Z191100004819002).
文摘Metalenses with achromatic performance offer a new opportunity for high-quality imaging with an ultracompact configuration;however,they suffer from complex fabrication processes and low focusing efficiency.In this study,we propose an efficient design method for achromatic microlenses on a wavelength scale using materials with low dispersion,an adequately designed convex surface,and a thickness profile distribution.By taking into account the absolute chromatic aberration,relative focal length shift(FLS),and numerical aperture(NA),microlens with a certain focal length can be realized through our realized map of geometric features.Accordingly,the designed achromatic microlenses with low-dispersion fused silica were fabricated using a focused ion beam,and precise surface profiles were obtained.The fabricated microlenses exhibited a high average focusing efficiency of 65%at visible wavelengths of 410-680 nm and excellent achromatic capability via white light imaging.Moreover,the design exhibited the advantages of being polarization-insensitive and near-diffraction-limited.These results demonstrate the effectiveness of our proposed achromatic microlens design approach,which expands the prospects of miniaturized optics such as virtual and augmented reality,ultracompact microscopes,and biological endoscopy.
基金supported in part by the National Natural Science Foundation of China (NSFC) under Grants 62131005, 62071096in part by the Fundamental Research Funds for the Central Universities under Grant 2242022k60006+1 种基金in part by the National NSFC under Grant U19B2014in part by the Natural Science Foundation of Sichuan under Grant 2022NSFSC0495
文摘As modern electromagnetic environments are more and more complex,the anti-interference performance of the synchronization acquisition is becoming vital in wireless communications.With the rapid development of the digital signal processing technologies,some synchronization acquisition algorithms for hybrid direct-sequence(DS)/frequency hopping(FH)spread spectrum communications have been proposed.However,these algorithms do not focus on the analysis and the design of the synchronization acquisition under typical interferences.In this paper,a synchronization acquisition algorithm based on the frequency hopping pulses combining(FHPC)is proposed.Specifically,the proposed algorithm is composed of two modules:an adaptive interference suppression(IS)module and an adaptive combining decision module.The adaptive IS module mitigates the effect of the interfered samples in the time-domain or the frequencydomain,and the adaptive combining decision module can utilize each frequency hopping pulse to construct an anti-interference decision metric and generate an adaptive acquisition decision threshold to complete the acquisition.Theory and simulation demonstrate that the proposed algorithm significantly enhances the antiinterference and anti-noise performances of the synchronization acquisition for hybrid DS/FH communications.
文摘Introduction: Mechanical complications after osteosynthesis are spontaneous and harmful modifications of the joint compromising the consolidation process. The aim of this study is to report on the frequency of these complications and their management in the Orthopaedic-Traumatology Department of CHU Ignace Deen. Patients and Methods: we conducted a retrospective descriptive and analytical cross-sectional study from January 2017 to December 2022. It focused on the records of patients hospitalized and treated in the department for a mechanical complication after osteosynthesis. Results: The frequency of mechanical complications was 1.2%, with an average age of 44.2 years and a sex ratio of 3.2 in favor of men. Non-compliance with postoperative instructions, non-compliance with surgical technique, postoperative infection and early loading were the main contributing factors. Disassembly of the screw-plate was the most common cause in 6 cases (35.5%), with a mean delay of 4.1 months. Revision osteosynthesis was carried out using screw plates in 8 cases (47.1%). Conclusion: Mechanical complications of osteosynthesis are less frequent traumatic conditions in our department. Several factors contribute to their occurrence.