This paper presents a modified frequency scaling algorithm for frequency modulated continuous wave synthetic aperture radar (FMCW SAR) data processing. The relative motion between radar and target in FMCW SAR during...This paper presents a modified frequency scaling algorithm for frequency modulated continuous wave synthetic aperture radar (FMCW SAR) data processing. The relative motion between radar and target in FMCW SAR during reception and between transmission and reception will introduce serious dilation in the received signal. The dilation can cause serious distortions in the reconstructed images using conventional signal processing methods. The received signal is derived and the received signal in range-Doppler domain is given. The relation between the phase resulting from antenna motion and the azimuth frequency is analyzed. The modified frequency scaling algorithm is proposed to process the received signal with serious dilation. The algorithm can effectively eliminate the impact of the dilation. The algorithm performances are shown by the simulation results.展开更多
We study the energy scaling of terahertz (THz) emission through difference frequency generation of near-infrared pulses, and demonstrate that Gigawatt few-cycle THz transients at the central frequency of 30 THz are pr...We study the energy scaling of terahertz (THz) emission through difference frequency generation of near-infrared pulses, and demonstrate that Gigawatt few-cycle THz transients at the central frequency of 30 THz are produced from GaSe crystal pumped by two pulses at 1.65 and 1.95 micrometers, with the high quantum yield of 28%. Our analysis indicates that the high yield of DFG originates from the largely reduced group velocity mismatch as the long-wavelength pumping pulses are employed.展开更多
Energy efficiency has become one of the top design criteria for current computing systems. The Dynamic Voltage and Frequency Scaling (DVFS) has been widely adopted by laptop computers, servers, and mobile devices to...Energy efficiency has become one of the top design criteria for current computing systems. The Dynamic Voltage and Frequency Scaling (DVFS) has been widely adopted by laptop computers, servers, and mobile devices to conserve energy, while the GPU DVFS is still at a certain early age. This paper aims at exploring the impact of GPU DVFS on the application performance and power consumption, and furthermore, on energy conservation. We survey the state-of-the-art GPU DVFS characterizations, and then summarize recent research works on GPU power and performance models. We also conduct real GPU DVFS experiments on NVIDIA Fermi and Maxwell GPUs. According to our experimental results, GPU DVFS has significant potential for energy saving. The effect of scaling core voltage/frequency and memory voltage/frequency depends on not only the GPLI architectures, but also the characteristic of GPU applications.展开更多
Recently,Multicore systems use Dynamic Voltage/Frequency Scaling(DV/FS)technology to allow the cores to operate with various voltage and/or frequencies than other cores to save power and enhance the performance.In thi...Recently,Multicore systems use Dynamic Voltage/Frequency Scaling(DV/FS)technology to allow the cores to operate with various voltage and/or frequencies than other cores to save power and enhance the performance.In this paper,an effective and reliable hybridmodel to reduce the energy and makespan in multicore systems is proposed.The proposed hybrid model enhances and integrates the greedy approach with dynamic programming to achieve optimal Voltage/Frequency(Vmin/F)levels.Then,the allocation process is applied based on the availableworkloads.The hybrid model consists of three stages.The first stage gets the optimum safe voltage while the second stage sets the level of energy efficiency,and finally,the third is the allocation stage.Experimental results on various benchmarks show that the proposed model can generate optimal solutions to save energy while minimizing the makespan penalty.Comparisons with other competitive algorithms show that the proposed model provides on average 48%improvements in energy-saving and achieves an 18%reduction in computation time while ensuring a high degree of system reliability.展开更多
To improve the power consumption of parallel applications at the runtime, modern processors provide frequency scaling and power limiting capabilities. In this work, a runtime strategy is proposed to maximize energy sa...To improve the power consumption of parallel applications at the runtime, modern processors provide frequency scaling and power limiting capabilities. In this work, a runtime strategy is proposed to maximize energy savings under a given performance degradation. Machine learning techniques were utilized to develop performance models which would provide accurate performance prediction with change in operating core-uncore frequency. Experiments, performed on a node (28 cores) of a modern computing platform showed significant energy savings of as much as 26% with performance degradation of as low as 5% under the proposed strategy compared with the execution in the unlimited power case.展开更多
As low power consumption is the main design issue involved in a network on chip (NoC), researchers are concentrating more on both algorithms and architectural approaches. The conventional Dynamic Frequency Scalin...As low power consumption is the main design issue involved in a network on chip (NoC), researchers are concentrating more on both algorithms and architectural approaches. The conventional Dynamic Frequency Scaling (DFS) and history based Frequency Scaling (HDFS) algorithms are utilized to process the energy constrained data traffic. However, these conventional algorithms achieve higher energy efficiencies, and they result in performance degradation due to the auxiliary latency between clock domains. In this paper, we present a variable power optimization interface for NoC using a Finite State Machine (FSM) approach to attain better performance improvement. The parameters are estimated using 45 nm TSMCCMOS technology. In comparison with DFS system, the evaluation results show that FSM-DFS link achieves 81.55% dynamic power savings on the links in the on-chip network, and 37.5% leakage power savings of the link. Also, this proposed work is evaluated for various performance parameters and compared with conventional work. The simulation results are superior to conventional work.展开更多
To apply a quasi-cyclic low density parity check(QC-LDPC)to different scenarios,a data-stream driven pipelined macro instruction set and a reconfigurable processor architecture are proposed for the typical QC-LDPC alg...To apply a quasi-cyclic low density parity check(QC-LDPC)to different scenarios,a data-stream driven pipelined macro instruction set and a reconfigurable processor architecture are proposed for the typical QC-LDPC algorithm.The data-level parallelism is improved by instructions to dynamically configure the multi-core computing units.Simultaneously,an intelligent adjustment strategy based on a programmable wake-up controller(WuC)is designed so that the computing mode,operating voltage,and frequency of the QC-LDPC algorithm can be adjusted.This adjustment can improve the computing efficiency of the processor.The QC-LDPC processors are verified on the Xilinx ZCU102 field programmable gate array(FPGA)board and the computing efficiency is measured.The experimental results indicate that the QC-LDPC processor can support two encoding lengths of three typical QC-LDPC algorithms and 20 adaptive operating modes of operating voltage and frequency.The maximum efficiency can reach up to 12.18 Gbit/(s·W),which is more flexible than existing state-of-the-art processors for QC-LDPC.展开更多
Existing methods of physiological signal analysis based on nonlinear dynamic theories only examine the complexity difference of the signals under a single sampling frequency.We developed a technique to measure the mul...Existing methods of physiological signal analysis based on nonlinear dynamic theories only examine the complexity difference of the signals under a single sampling frequency.We developed a technique to measure the multifractal characteristic parameter intimately associated with physiological activities through a frequency scale factor.This parameter is highly sensitive to physiological and pathological status.Mice received various drugs to imitate different physiological and pathological conditions,and the distributions of mass exponent spectrum curvature with scale factors from the electrocardiogram (ECG) signals of healthy and drug injected mice were determined.Next,we determined the characteristic frequency scope in which the signal was of the highest complexity and most sensitive to impaired cardiac function,and examined the relationships between heart rate,heartbeat dynamic complexity,and sensitive frequency scope of the ECG signal.We found that all animals exhibited a scale factor range in which the absolute magnitudes of ECG mass exponent spectrum curvature achieve the maximum,and this range (or frequency scope) is not changed with calculated data points or maximal coarse-grained scale factor.Further,the heart rate of mice was not necessarily associated with the nonlinear complexity of cardiac dynamics,but closely related to the most sensitive ECG frequency scope determined by characterization of this complex dynamic features for certain heartbeat conditions.Finally,we found that the health status of the hearts of mice was directly related to the heartbeat dynamic complexity,both of which were positively correlated within the scale factor around the extremum region of the multifractal parameter.With increasing heart rate,the sensitive frequency scope increased to a relatively high location.In conclusion,these data provide important theoretical and practical data for the early diagnosis of cardiac disorders.展开更多
A new approach for unparallel trajectory bistatic spotlight SAR imaging is proposed. The approach utilizes the concept of instantaneous Doppler wavenumber and introduces two variants, the sum-range and subtraction-ran...A new approach for unparallel trajectory bistatic spotlight SAR imaging is proposed. The approach utilizes the concept of instantaneous Doppler wavenumber and introduces two variants, the sum-range and subtraction-range, to develop the 2D frequency analytical formula. Based on the assumption of plane wavefront, the transmitting and receiving Doppler are separated and formulated via series reversion. And frequency scaling is applied to focus image. The algorithm is with high computational efficiency, and provides well focus for limited scene imaging. Simulation result confirms the validity of the approach.展开更多
Achieving faster performance without increasing power and energy consumption for computing systems is an outstanding challenge.This paper develops a novel resource allocation scheme for memory-bound applications runni...Achieving faster performance without increasing power and energy consumption for computing systems is an outstanding challenge.This paper develops a novel resource allocation scheme for memory-bound applications running on High-Performance Computing(HPC)clusters,aiming to improve application performance without breaching peak power constraints and total energy consumption.Our scheme estimates how the number of processor cores and CPU frequency setting affects the application performance.It then uses the estimate to provide additional compute nodes to memory-bound applications if it is profitable to do so.We implement and apply our algorithm to 12 representative benchmarks from the NAS parallel benchmark and HPC Challenge(HPCC)benchmark suites and evaluate it on a representative HPC cluster.Experimental results show that our approach can effectively mitigate memory contention to improve application performance,and it achieves this without significantly increasing the peak power and overall energy consumption.Our approach obtains on average 12.69%performance improvement over the default resource allocation strategy,but uses 7.06%less total power,which translates into 17.77%energy savings.展开更多
Due to the increasing power consumption in modern computing systems, energy management has become an important research area in the last decade. Recently, multicore has emerged to be an energy efficient architecture t...Due to the increasing power consumption in modern computing systems, energy management has become an important research area in the last decade. Recently, multicore has emerged to be an energy efficient architecture that exploits parallelisms in modern applications. However, as the number of cores on a single chip continues to increase, it has been a grand challenge on how to effectively manage the energy efficiency of multicore-based systems. In this paper, based on the voltage island and dynamic voltage and frequency scaling (DVFS) techniques, we investigate the energy efficiency of block-partitioned multieore processors, where cores are grouped into blocks with the cores on one block sharing a DVFS- enabled power supply. Depending on the number of cores on each block, we study both symmetric and asymmetric block configurations. We develop a system-level power model (which can support various power management techniques) and derive both block- and system-wide energy-efficient frequencies for systems with block-partitioned multieore processors. Based on the power model, we prove that, for embarrassingly parallel applications, having all cores on a single block can achieve the same energy savings as that of the individual block configuration (where each core forms a single block and has its own power supply). However, for applications with limited degrees of parallelism, we show the superiority of the buddy-asymmetric block configuration, where the number of required blocks (and power supplies) is logarithmically related to the number of cores on the chip, in that it can achieve the same amount of energy savings as that of the individual block configuration. The energy efficiency of different block configurations is further evaluated through extensive simulations with both synthetic as well as a real life application.展开更多
Decreasing the power supply voltage in dynamic voltage frequency scaling to save power con- sumption may introduce extra delays in CMOS circuits, which may cause errors. This paper presents the probabilistic delay fau...Decreasing the power supply voltage in dynamic voltage frequency scaling to save power con- sumption may introduce extra delays in CMOS circuits, which may cause errors. This paper presents the probabilistic delay fault model (PDFM), which describes the probability of an error occurring as a function of the power supply voltage and the clock period in synchronous CMOS circuits. In a wide range of applica- tions (graphic, video, digital filtering, etc.), errors occurring with low probability and not remaining for a long time are acceptable. For combinational circuits which have long critical paths with low probability of excita- tion, a performance increase is achieved with a certain rate of errors determined by the PDFM compared with the traditional design which considers the worst case. The PDFM applied to array multipliers and ripple carry adders shows the agreement of the predicted probabilities with simulated delay histograms to support the practicality of using the PDFM to select power supply voltage and clock period in dynamic voltage fre- quency scaling circuits with tolerable error rates.展开更多
Two-dimensional(2D)non-layered materials,along with their unique surface properties,offer intriguing prospects for sensing applications.Introducing mechanical degrees of freedom is expected to enrich the sensing perfo...Two-dimensional(2D)non-layered materials,along with their unique surface properties,offer intriguing prospects for sensing applications.Introducing mechanical degrees of freedom is expected to enrich the sensing performances of 2D non-layered devices,such as high frequency,high tunability,and large dynamic range,which could lead to new types of high performance nanosensors.Here,we demonstrate 2D non-layered nanomechanical resonant sensors based onβ-In_(2)S_(3),where the devices exhibit robust nanomechanical vibrations up to the very high frequency(VHF)band.We show that such device can operate as pressure sensor with broad range(from 103 Torr to atmospheric pressure),high linearity(with a nonlinearity factor as low as 0.0071),and fast response(with an intrinsic response time less than 1μs).We further unveil the frequency scaling law in theseβ-In_(2)S_(3) nanomechanical sensors and successfully extract both the Young's modulus and pretension for the crystal.Our work paves the way towards future wafer-scale design and integrated sensors based on 2D non-layered materials.展开更多
文摘This paper presents a modified frequency scaling algorithm for frequency modulated continuous wave synthetic aperture radar (FMCW SAR) data processing. The relative motion between radar and target in FMCW SAR during reception and between transmission and reception will introduce serious dilation in the received signal. The dilation can cause serious distortions in the reconstructed images using conventional signal processing methods. The received signal is derived and the received signal in range-Doppler domain is given. The relation between the phase resulting from antenna motion and the azimuth frequency is analyzed. The modified frequency scaling algorithm is proposed to process the received signal with serious dilation. The algorithm can effectively eliminate the impact of the dilation. The algorithm performances are shown by the simulation results.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11274326,61221064,61405222,11134010 and 11127901the Shanghai Sailing Program under Grant No 14YF1406200
文摘We study the energy scaling of terahertz (THz) emission through difference frequency generation of near-infrared pulses, and demonstrate that Gigawatt few-cycle THz transients at the central frequency of 30 THz are produced from GaSe crystal pumped by two pulses at 1.65 and 1.95 micrometers, with the high quantum yield of 28%. Our analysis indicates that the high yield of DFG originates from the largely reduced group velocity mismatch as the long-wavelength pumping pulses are employed.
文摘Energy efficiency has become one of the top design criteria for current computing systems. The Dynamic Voltage and Frequency Scaling (DVFS) has been widely adopted by laptop computers, servers, and mobile devices to conserve energy, while the GPU DVFS is still at a certain early age. This paper aims at exploring the impact of GPU DVFS on the application performance and power consumption, and furthermore, on energy conservation. We survey the state-of-the-art GPU DVFS characterizations, and then summarize recent research works on GPU power and performance models. We also conduct real GPU DVFS experiments on NVIDIA Fermi and Maxwell GPUs. According to our experimental results, GPU DVFS has significant potential for energy saving. The effect of scaling core voltage/frequency and memory voltage/frequency depends on not only the GPLI architectures, but also the characteristic of GPU applications.
文摘Recently,Multicore systems use Dynamic Voltage/Frequency Scaling(DV/FS)technology to allow the cores to operate with various voltage and/or frequencies than other cores to save power and enhance the performance.In this paper,an effective and reliable hybridmodel to reduce the energy and makespan in multicore systems is proposed.The proposed hybrid model enhances and integrates the greedy approach with dynamic programming to achieve optimal Voltage/Frequency(Vmin/F)levels.Then,the allocation process is applied based on the availableworkloads.The hybrid model consists of three stages.The first stage gets the optimum safe voltage while the second stage sets the level of energy efficiency,and finally,the third is the allocation stage.Experimental results on various benchmarks show that the proposed model can generate optimal solutions to save energy while minimizing the makespan penalty.Comparisons with other competitive algorithms show that the proposed model provides on average 48%improvements in energy-saving and achieves an 18%reduction in computation time while ensuring a high degree of system reliability.
文摘To improve the power consumption of parallel applications at the runtime, modern processors provide frequency scaling and power limiting capabilities. In this work, a runtime strategy is proposed to maximize energy savings under a given performance degradation. Machine learning techniques were utilized to develop performance models which would provide accurate performance prediction with change in operating core-uncore frequency. Experiments, performed on a node (28 cores) of a modern computing platform showed significant energy savings of as much as 26% with performance degradation of as low as 5% under the proposed strategy compared with the execution in the unlimited power case.
文摘As low power consumption is the main design issue involved in a network on chip (NoC), researchers are concentrating more on both algorithms and architectural approaches. The conventional Dynamic Frequency Scaling (DFS) and history based Frequency Scaling (HDFS) algorithms are utilized to process the energy constrained data traffic. However, these conventional algorithms achieve higher energy efficiencies, and they result in performance degradation due to the auxiliary latency between clock domains. In this paper, we present a variable power optimization interface for NoC using a Finite State Machine (FSM) approach to attain better performance improvement. The parameters are estimated using 45 nm TSMCCMOS technology. In comparison with DFS system, the evaluation results show that FSM-DFS link achieves 81.55% dynamic power savings on the links in the on-chip network, and 37.5% leakage power savings of the link. Also, this proposed work is evaluated for various performance parameters and compared with conventional work. The simulation results are superior to conventional work.
基金the National Key Research and Development Program of China(2019YFB1803600)the Key Scientific Research Program of Shaanxi Provincial Department of Education(22JY059)the China Civil Aviation Airworthiness Center Open Foundation(SH2021111903)。
文摘To apply a quasi-cyclic low density parity check(QC-LDPC)to different scenarios,a data-stream driven pipelined macro instruction set and a reconfigurable processor architecture are proposed for the typical QC-LDPC algorithm.The data-level parallelism is improved by instructions to dynamically configure the multi-core computing units.Simultaneously,an intelligent adjustment strategy based on a programmable wake-up controller(WuC)is designed so that the computing mode,operating voltage,and frequency of the QC-LDPC algorithm can be adjusted.This adjustment can improve the computing efficiency of the processor.The QC-LDPC processors are verified on the Xilinx ZCU102 field programmable gate array(FPGA)board and the computing efficiency is measured.The experimental results indicate that the QC-LDPC processor can support two encoding lengths of three typical QC-LDPC algorithms and 20 adaptive operating modes of operating voltage and frequency.The maximum efficiency can reach up to 12.18 Gbit/(s·W),which is more flexible than existing state-of-the-art processors for QC-LDPC.
基金supported by the National Natural Science Foundation of China (Grant No. 61003169)the Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20090095120013)the Technology Funding Project of China University of Mining and Technology (Grant No. 2008C004)
文摘Existing methods of physiological signal analysis based on nonlinear dynamic theories only examine the complexity difference of the signals under a single sampling frequency.We developed a technique to measure the multifractal characteristic parameter intimately associated with physiological activities through a frequency scale factor.This parameter is highly sensitive to physiological and pathological status.Mice received various drugs to imitate different physiological and pathological conditions,and the distributions of mass exponent spectrum curvature with scale factors from the electrocardiogram (ECG) signals of healthy and drug injected mice were determined.Next,we determined the characteristic frequency scope in which the signal was of the highest complexity and most sensitive to impaired cardiac function,and examined the relationships between heart rate,heartbeat dynamic complexity,and sensitive frequency scope of the ECG signal.We found that all animals exhibited a scale factor range in which the absolute magnitudes of ECG mass exponent spectrum curvature achieve the maximum,and this range (or frequency scope) is not changed with calculated data points or maximal coarse-grained scale factor.Further,the heart rate of mice was not necessarily associated with the nonlinear complexity of cardiac dynamics,but closely related to the most sensitive ECG frequency scope determined by characterization of this complex dynamic features for certain heartbeat conditions.Finally,we found that the health status of the hearts of mice was directly related to the heartbeat dynamic complexity,both of which were positively correlated within the scale factor around the extremum region of the multifractal parameter.With increasing heart rate,the sensitive frequency scope increased to a relatively high location.In conclusion,these data provide important theoretical and practical data for the early diagnosis of cardiac disorders.
基金Supported by the National Natural Science Foundation of China (Grant No. 60502044)Program for New Century Excellent Talents inUniversity (Grant No. NCET-06-0861)
文摘A new approach for unparallel trajectory bistatic spotlight SAR imaging is proposed. The approach utilizes the concept of instantaneous Doppler wavenumber and introduces two variants, the sum-range and subtraction-range, to develop the 2D frequency analytical formula. Based on the assumption of plane wavefront, the transmitting and receiving Doppler are separated and formulated via series reversion. And frequency scaling is applied to focus image. The algorithm is with high computational efficiency, and provides well focus for limited scene imaging. Simulation result confirms the validity of the approach.
基金supported in part by the Advanced Research Project of China(No.31511010203)the Research Program of NUDT(No.ZK18-03-10)。
文摘Achieving faster performance without increasing power and energy consumption for computing systems is an outstanding challenge.This paper develops a novel resource allocation scheme for memory-bound applications running on High-Performance Computing(HPC)clusters,aiming to improve application performance without breaching peak power constraints and total energy consumption.Our scheme estimates how the number of processor cores and CPU frequency setting affects the application performance.It then uses the estimate to provide additional compute nodes to memory-bound applications if it is profitable to do so.We implement and apply our algorithm to 12 representative benchmarks from the NAS parallel benchmark and HPC Challenge(HPCC)benchmark suites and evaluate it on a representative HPC cluster.Experimental results show that our approach can effectively mitigate memory contention to improve application performance,and it achieves this without significantly increasing the peak power and overall energy consumption.Our approach obtains on average 12.69%performance improvement over the default resource allocation strategy,but uses 7.06%less total power,which translates into 17.77%energy savings.
基金supported in part by NSF Awards of USA under Grant Nos. CNS-0855247,CNS-1016974,and NSF CAREER Award of USA under Grant No. CNS-0953005
文摘Due to the increasing power consumption in modern computing systems, energy management has become an important research area in the last decade. Recently, multicore has emerged to be an energy efficient architecture that exploits parallelisms in modern applications. However, as the number of cores on a single chip continues to increase, it has been a grand challenge on how to effectively manage the energy efficiency of multicore-based systems. In this paper, based on the voltage island and dynamic voltage and frequency scaling (DVFS) techniques, we investigate the energy efficiency of block-partitioned multieore processors, where cores are grouped into blocks with the cores on one block sharing a DVFS- enabled power supply. Depending on the number of cores on each block, we study both symmetric and asymmetric block configurations. We develop a system-level power model (which can support various power management techniques) and derive both block- and system-wide energy-efficient frequencies for systems with block-partitioned multieore processors. Based on the power model, we prove that, for embarrassingly parallel applications, having all cores on a single block can achieve the same energy savings as that of the individual block configuration (where each core forms a single block and has its own power supply). However, for applications with limited degrees of parallelism, we show the superiority of the buddy-asymmetric block configuration, where the number of required blocks (and power supplies) is logarithmically related to the number of cores on the chip, in that it can achieve the same amount of energy savings as that of the individual block configuration. The energy efficiency of different block configurations is further evaluated through extensive simulations with both synthetic as well as a real life application.
基金Supported in part by the National Natural Science Foundation of China (No. 60236020)the MCyT and FEDER Projects TEC2010
文摘Decreasing the power supply voltage in dynamic voltage frequency scaling to save power con- sumption may introduce extra delays in CMOS circuits, which may cause errors. This paper presents the probabilistic delay fault model (PDFM), which describes the probability of an error occurring as a function of the power supply voltage and the clock period in synchronous CMOS circuits. In a wide range of applica- tions (graphic, video, digital filtering, etc.), errors occurring with low probability and not remaining for a long time are acceptable. For combinational circuits which have long critical paths with low probability of excita- tion, a performance increase is achieved with a certain rate of errors determined by the PDFM compared with the traditional design which considers the worst case. The PDFM applied to array multipliers and ripple carry adders shows the agreement of the predicted probabilities with simulated delay histograms to support the practicality of using the PDFM to select power supply voltage and clock period in dynamic voltage fre- quency scaling circuits with tolerable error rates.
基金National Natural Science Foundation of China,Grant/Award Numbers:T2325007,62250073,U21A20459,62004026,61774029,62104029,12104086,U23A20570,51902346Sichuan Science and Technology Program,Grant/Award Numbers:24NSFSC5852,24NSFSC5853Science and Technology Innovation Program of Hunan Province,Grant/Award Number:2021RC3021。
文摘Two-dimensional(2D)non-layered materials,along with their unique surface properties,offer intriguing prospects for sensing applications.Introducing mechanical degrees of freedom is expected to enrich the sensing performances of 2D non-layered devices,such as high frequency,high tunability,and large dynamic range,which could lead to new types of high performance nanosensors.Here,we demonstrate 2D non-layered nanomechanical resonant sensors based onβ-In_(2)S_(3),where the devices exhibit robust nanomechanical vibrations up to the very high frequency(VHF)band.We show that such device can operate as pressure sensor with broad range(from 103 Torr to atmospheric pressure),high linearity(with a nonlinearity factor as low as 0.0071),and fast response(with an intrinsic response time less than 1μs).We further unveil the frequency scaling law in theseβ-In_(2)S_(3) nanomechanical sensors and successfully extract both the Young's modulus and pretension for the crystal.Our work paves the way towards future wafer-scale design and integrated sensors based on 2D non-layered materials.