The underwater wireless optical communication(UWOC)system has gradually become essential to underwater wireless communication technology.Unlike other existing works on UWOC systems,this paper evaluates the proposed ma...The underwater wireless optical communication(UWOC)system has gradually become essential to underwater wireless communication technology.Unlike other existing works on UWOC systems,this paper evaluates the proposed machine learningbased signal demodulation methods through the selfbuilt experimental platform.Based on such a platform,we first construct a real signal dataset with ten modulation methods.Then,we propose a deep belief network(DBN)-based demodulator for feature extraction and multi-class feature classification.We also design an adaptive boosting(Ada Boost)demodulator as an alternative scheme without feature filtering for multiple modulated signals.Finally,it is demonstrated by extensive experimental results that the Ada Boost demodulator significantly outperforms the other algorithms.It also reveals that the demodulator accuracy decreases as the modulation order increases for a fixed received optical power.A higher-order modulation may achieve a higher effective transmission rate when the signal-to-noise ratio(SNR)is higher.展开更多
To increase the storage capacity in holographic data storage(HDS),the information to be stored is encoded into a complex amplitude.Fast and accurate retrieval of amplitude and phase from the reconstructed beam is nece...To increase the storage capacity in holographic data storage(HDS),the information to be stored is encoded into a complex amplitude.Fast and accurate retrieval of amplitude and phase from the reconstructed beam is necessary during data readout in HDS.In this study,we proposed a complex amplitude demodulation method based on deep learning from a single-shot diffraction intensity image and verified it by a non-interferometric lensless experiment demodulating four-level amplitude and four-level phase.By analyzing the correlation between the diffraction intensity features and the amplitude and phase encoding data pages,the inverse problem was decomposed into two backward operators denoted by two convolutional neural networks(CNNs)to demodulate amplitude and phase respectively.The experimental system is simple,stable,and robust,and it only needs a single diffraction image to realize the direct demodulation of both amplitude and phase.To our investigation,this is the first time in HDS that multilevel complex amplitude demodulation is achieved experimentally from one diffraction intensity image without iterations.展开更多
This paper presents a new technique for measuring the bunch length of a high-energy electron beam at a bunch-by-bunch rate in storage rings.This technique uses the time–frequency-domain joint analysis of the bunch si...This paper presents a new technique for measuring the bunch length of a high-energy electron beam at a bunch-by-bunch rate in storage rings.This technique uses the time–frequency-domain joint analysis of the bunch signal to obtain bunch-by-bunch and turn-by-turn longitudinal parameters,such as bunch length and synchronous phase.The bunch signal is obtained using a button electrode with a bandwidth of several gigahertz.The data acquisition device was a high-speed digital oscilloscope with a sampling rate of more than 10 GS/s,and the single-shot sampling data buffer covered thousands of turns.The bunch-length and synchronous phase information were extracted via offline calculations using Python scripts.The calibration coefficient of the system was determined using a commercial streak camera.Moreover,this technique was tested on two different storage rings and successfully captured various longitudinal transient processes during the harmonic cavity debugging process at the Shanghai Synchrotron Radiation Facility(SSRF),and longitudinal instabilities were observed during the single-bunch accumulation process at Hefei Light Source(HLS).For Gaussian-distribution bunches,the uncertainty of the bunch phase obtained using this technique was better than 0.2 ps,and the bunch-length uncertainty was better than 1 ps.The dynamic range exceeded 10 ms.This technology is a powerful and versatile beam diagnostic tool that can be conveniently deployed in high-energy electron storage rings.展开更多
A hardwale demodulation method for 2-D edge detection is proposed. The filtering step and the differential step are implemented by using the hardware circuit. This demodulation circuit simplifies the edgefinder and re...A hardwale demodulation method for 2-D edge detection is proposed. The filtering step and the differential step are implemented by using the hardware circuit. This demodulation circuit simplifies the edgefinder and reduces the measuring cycle. The calibration method of scale setting is also presented,and bymeasuring some calibrated objects,the demodulation errors and the error correction table is obtained.展开更多
The harmonic wavelet transform(HWT) and its fast realization based on fast Fourier transform(FFT) are introduced. Its ability to maintain the same amplitude-frequency feature is revealed. A new method to construct...The harmonic wavelet transform(HWT) and its fast realization based on fast Fourier transform(FFT) are introduced. Its ability to maintain the same amplitude-frequency feature is revealed. A new method to construct the time-frequency(TF) spectrum of HWT is proposed, which makes the HWT TF spectrum able to correctly reflect the time-frequency-amplitude distribution of the signal. A new way to calculate the HWT coefficients is proposed. By zero padding the data taken out, the non-decimated coefficients of HWT are obtained. Theoretical analysis shows that the modulus of the coefficients obtained by the new calculation way and living at a certain scale are the envelope of the component in the corresponding frequency band. By taking the cross section of the new TF spectrum, the demodulation for the component at a certain frequency band can be realized. A comparison with the Hilbert demodulation combined with band-pass filtering is done, which indicates for multi-components, the method proposed here is more suitable since it realizes ideal band-pass filtering and avoids pass band selecting. In the end, it is applied to bearing and gearbox fault diagnosis, and the results reflect that it can effectively extract the fault features in the signal.展开更多
It is a challenging issue to detect bearing fault under nonstationary conditions and gear noise interferences. Meanwhile, the application of the traditional methods is limited by their deficiencies in the aspect of co...It is a challenging issue to detect bearing fault under nonstationary conditions and gear noise interferences. Meanwhile, the application of the traditional methods is limited by their deficiencies in the aspect of computational accuracy and e ciency, or dependence on the tachometer. Hence, a new fault diagnosis strategy is proposed to remove gear interferences and spectrum smearing phenomenon without the tachometer and angular resampling technique. In this method, the instantaneous dominant meshing multiple(IDMM) is firstly extracted from the time-frequency representation(TFR) of the raw signal, which can be used to calculate the phase functions(PF) and the frequency points(FP). Next, the resonance frequency band excited by the faulty bearing is obtained by the band-pass filter. Furthermore, based on the PFs, the generalized demodulation transform(GDT) is applied to the envelope of the filtered signal. Finally, the target bearing is diagnosed by matching the peaks in the spectra of demodulated signals with the theoretical FPs. The analysis results of simulated and experimental signal demonstrate that the proposed method is an e ective and reliable tool for bearing fault diagnosis without the tachometer and the angular resampling.展开更多
A program of adaptive quadrature demodulation is proposed to supply the gaps in the traditional analog detection technology of a silicon micro-machined gyroscope (SMG). This program is suitable for digital phase locke...A program of adaptive quadrature demodulation is proposed to supply the gaps in the traditional analog detection technology of a silicon micro-machined gyroscope (SMG). This program is suitable for digital phase locked loop (DPLL) drive technology that proposed in other papers. In addition the program adopts an adaptive filtering algorithm, which selects the in-phase and quadrature components that are outputs of the DPLL of the SMG's drive mode as reference signals to update the amplitude of the in-phase and quadrature components of the input signal by iteratively. An objective of the program is to minimize the mean square error of the accurate amplitudes and the estimated amplitudes of SMG's detection mode. The simulation and test results prove the feasibility of the program that lays the foundation for the further improvement of the SMG's system performance and the implementation of the SMG system's self-calibration and self-demarcation in future.展开更多
In order to grasp the downhole situation immediately, logging while drilling(LWD) technology is adopted. One of the LWD technologies, called acoustic telemetry, can be successfully applied to modern drilling. It is cr...In order to grasp the downhole situation immediately, logging while drilling(LWD) technology is adopted. One of the LWD technologies, called acoustic telemetry, can be successfully applied to modern drilling. It is critical for acoustic telemetry technology that the signal is successfully transmitted to the ground. In this paper, binary phase shift keying(BPSK) is used to modulate carrier waves for the transmission and a new BPSK demodulation scheme based on Duffing chaos is investigated. Firstly, a high-order system is given in order to enhance the signal detection capability and it is realized through building a virtual circuit using an electronic workbench(EWB). Secondly, a new BPSK demodulation scheme is proposed based on the intermittent chaos phenomena of the new Duffing system. Finally, a system variable crossing zero-point equidistance method is proposed to obtain the phase difference between the system and the BPSK signal. Then it is determined that the digital signal transmitted from the bottom of the well is ‘0’ or ‘1’. The simulation results show that the demodulation method is feasible.展开更多
A discrimination measurement method and demodulation technique for fiber Bragg grating (FBG) sensors were presented using digital filtering technique. The system can control a tunable fiber Fabry-Perot filter with saw...A discrimination measurement method and demodulation technique for fiber Bragg grating (FBG) sensors were presented using digital filtering technique. The system can control a tunable fiber Fabry-Perot filter with sawtooth wave voltage generated by digital clock to interrogate FBG sensors. Using the analogue digital converter (ADC), the reflected FBG signals were sampled with synchronous digital clock. With the aid of digital matched filtering technique, the sampled FBG signals were processed to obtain the maximum signal-to-noise ratio (SNR) and the Bragg wavelength shift from the FBG signals was recovered. The results demonstrate that this system has a scanning range of 1 520 nm-1 575 nm,and the wavelength detection accuracy is less than 2 pm with 1.5 Hz scanning frequency.展开更多
For the modified demodulation arithmetic of 3×3 coupler, the processing software built on the basis of Labview is able to demodulate asymmetric 3×3 coupler signal and do further spectrum analysis. It shows t...For the modified demodulation arithmetic of 3×3 coupler, the processing software built on the basis of Labview is able to demodulate asymmetric 3×3 coupler signal and do further spectrum analysis. It shows that the measured frequency ranges from 10 Hz to 1 000 Hz and phase range is covered by -10 rad^10 rad. The phase sensitivity is 0.5 V/rad. This system is proved to show high resolution and wide dynamic range.展开更多
This paper proposes a new amplitude and phase demodulation scheme different from the traditional method for AM-FM signals. The traditional amplitude demodulation assumes that the amplitude should be non-negative, and ...This paper proposes a new amplitude and phase demodulation scheme different from the traditional method for AM-FM signals. The traditional amplitude demodulation assumes that the amplitude should be non-negative, and the phase is obtained under the case of non-negative amplitude, which approximates the true amplitude and phase but distorts the true amplitude and phase in some cases. In this paper we assume that the amplitude is signed (zero, positive or negative), and the phase is obtained under the case of signed amplitude by optimization, as is called signed demodulation. The main merit of the signed demodulation lies in the revelation of senseful physi- cal meaning on phase and frequency. Experiments on the real-world data show the efficiency of the method.展开更多
An innovative method of cooperative frequency domain differential modulation and demodulation is presented.This method applies the prior knowledge of channel propagation to selecting the variable differential length a...An innovative method of cooperative frequency domain differential modulation and demodulation is presented.This method applies the prior knowledge of channel propagation to selecting the variable differential length and carrying out frequency domain modulation.This strategy optimizes the design of system parameters to effectively improve the anti-interference ability of the differential system in time-varied multipath channel circumstance without making the execution more complicating.The simulations and comparisons demonstrate the proposed method is effective,and the results show that it is especially suitable for the fading channel with strong propagation and fast time-variation.展开更多
The vibration signals of multi-fault rolling bearings under nonstationary conditions are characterized by intricate modulation features,making it difficult to identify the fault characteristic frequency.To remove the ...The vibration signals of multi-fault rolling bearings under nonstationary conditions are characterized by intricate modulation features,making it difficult to identify the fault characteristic frequency.To remove the time-varying behavior caused by speed fluctuation,the phase function of target component is necessary.However,the frequency components induced by different faults interfere with each other.More importantly,the complex sideband clusters around the characteristic frequency further hinder the spectrum interpretation.As such,we propose a demodulation spectrum analysis method for multi-fault bearing detection via chirplet path pursuit.First,the envelope signal is obtained by applying Hilbert transform to the raw signal.Second,the characteristic frequency is extracted via chirplet path pursuit,and the other underlying components are calculated by the characteristic coefficient.Then,the energy factors of all components are determined according to the time-varying behavior of instantaneous frequency.Next,the final demodulated signal is obtained by iteratively applying generalized demodulation with tunable E-factor and then the band pass filter is designed to separate the demodulated component.Finally,the fault pattern can be identified by matching the prominent peaks in the demodulation spectrum with the theoretical characteristic frequencies.The method is validated by simulated and experimental signals.展开更多
Aiming at the potential presence of mixing automatic identification system(AIS) signals,a new demodulation scheme was proposed for separating other interfering signals in satellite systems.The combined iterative cross...Aiming at the potential presence of mixing automatic identification system(AIS) signals,a new demodulation scheme was proposed for separating other interfering signals in satellite systems.The combined iterative cross-correlation demodulation scheme,referred to as CICCD,yielded a set of single short signals based on the prior information of AIS,after the frequency,code rate and modulation index were estimated.It demodulates the corresponding short codes according to the maximum peak of cross-correlation,which is simple and easy to implement.Numerical simulations show that the bit error rate of proposed algorithm improves by about 40% compared with existing ones,and about 3 dB beyond the standard AIS receiver.In addition,the proposed demodulation scheme shows the satisfying performance and engineering value in mixing AIS environment and can also perform well in low signal-to-noise conditions.展开更多
This paper presents a novel and cost effective method to be used in the optimization of the Gaussian Frequency Shift Keying (GFSK) at the receiver of the Bluetooth communication system. The proposed method enhances th...This paper presents a novel and cost effective method to be used in the optimization of the Gaussian Frequency Shift Keying (GFSK) at the receiver of the Bluetooth communication system. The proposed method enhances the performance of the noncoherent demodulation schemes by improving the Bit Error Rate (BER) and Frame Error Rate (FER) outcomes. Linear, Extended, and Unscented Kalman Filters are utilized in this technique. A simulation model, using Simulink, has been created to simulate the Bluetooth voice transmission system with the integrated filters. Results have shown improvements in the BER and FER, and that the Unscented Kalman Filters (UKF) have shown superior performance in comparison to the linear Kalman Filter (KF) and the Extended Kalman Filter (EKF). To the best of our knowledge, this research is the first to propose the usage of the UKF in the optimization of the Bluetooth System receivers in the presence of additive white Gaussian noise (AWGN), as well as interferences.展开更多
The modulated signals of π /4-DQPSK can be demodulated with the differenced method, and the technology has been used in the communication. The traditional demodulated method needs a lot of calculation. In this paper,...The modulated signals of π /4-DQPSK can be demodulated with the differenced method, and the technology has been used in the communication. The traditional demodulated method needs a lot of calculation. In this paper, a new method based on fast arithmetic digital demodulation of DQPSK is presented. The new method only uses the sign of the modulated signal instead of digital signal through the A/D in the traditional method. With the new method, the system has higher speed, and can save some hardware in the FPGA. An experiment of the new method with the DQPSK is given in this paper.展开更多
The component of gear vibration signal is very complex,when a localized tooth defect such as a tooth crack is pre- sent,the engagement of the cracked tooth will induce an impulsive change with comparatively low energy...The component of gear vibration signal is very complex,when a localized tooth defect such as a tooth crack is pre- sent,the engagement of the cracked tooth will induce an impulsive change with comparatively low energy to the gear mesh signal and the background noise.This paper presents a new comprehensive demodulation method which combined with amplitude envelop demodulation and phase demodulation to extract gear crack early fault.A mathematical model of gear vibration signal contain crack fault is put forward.Simulation results based on this model show that the new comprehensive demodulation method is more effective in finding fault and judging fault level then conventional single amplitude demodulation at present.展开更多
A novel scheme of differential polarization demodulation is presented and demonstrated based on a polarized asym- metrical Mach-Zehnder interferometer configuration with polarization control. To enhance the stability ...A novel scheme of differential polarization demodulation is presented and demonstrated based on a polarized asym- metrical Mach-Zehnder interferometer configuration with polarization control. To enhance the stability of the demodulator, a phase-lock device is designed, and it is composed of a symmetric 3 × 3 coupler and a feedback circuit. For further estab- lishing a differential polarization-shift keying (DPolSK) transmission system, we successfully carry out the demodulation experiments on 10-Gb/s DPolSK optical signals for the first time. Due to the all-optical structure with phase-lock, our scheme is available to realize the DPolSK optical communication in practical optical fiber systems.展开更多
Generally, the phase of the cold-atom interferometer is extracted from the atomic interference fringe, which can be obtained by scanning the chirp rate of the Raman lasers at a given interrogation time T. If mapping t...Generally, the phase of the cold-atom interferometer is extracted from the atomic interference fringe, which can be obtained by scanning the chirp rate of the Raman lasers at a given interrogation time T. If mapping the phase shift for each T with a series of measurements, the extraction time is limited by the protocol of each T measurement, and therefore increases dramatically when doing fine mapping with a small step of T. Here we present a new method for rapid extraction of the phase shift via phase demodulation. By using this method, the systematic shifts can be mapped though the whole interference area. This method enables quick diagnostics of the potential cause of the phase shift in specific time. We demonstrate experimentally that this method is effective for the evaluation of the systematic errors of the cold atomic gravimeter. The systematic phase error induced by the quadratic Zeeman effect in the free-falling region is extracted by this method. The measured results correspond well with the theoretic prediction and also agree with the results obtained by the fringe fitting method for each T.展开更多
基金supported by the major key project of Peng Cheng Laboratory under grant PCL2023AS31 and PCL2023AS1-2the National Key Research and Development Program of China(No.2019YFA0706604)the Natural Science Foundation(NSF)of China(Nos.61976169,62293483,62371451)。
文摘The underwater wireless optical communication(UWOC)system has gradually become essential to underwater wireless communication technology.Unlike other existing works on UWOC systems,this paper evaluates the proposed machine learningbased signal demodulation methods through the selfbuilt experimental platform.Based on such a platform,we first construct a real signal dataset with ten modulation methods.Then,we propose a deep belief network(DBN)-based demodulator for feature extraction and multi-class feature classification.We also design an adaptive boosting(Ada Boost)demodulator as an alternative scheme without feature filtering for multiple modulated signals.Finally,it is demonstrated by extensive experimental results that the Ada Boost demodulator significantly outperforms the other algorithms.It also reveals that the demodulator accuracy decreases as the modulation order increases for a fixed received optical power.A higher-order modulation may achieve a higher effective transmission rate when the signal-to-noise ratio(SNR)is higher.
基金We are grateful for financial supports from National Key Research and Development Program of China(2018YFA0701800)Project of Fujian Province Major Science and Technology(2020HZ01012)+1 种基金Natural Science Foundation of Fujian Province(2021J01160)National Natural Science Foundation of China(62061136005).
文摘To increase the storage capacity in holographic data storage(HDS),the information to be stored is encoded into a complex amplitude.Fast and accurate retrieval of amplitude and phase from the reconstructed beam is necessary during data readout in HDS.In this study,we proposed a complex amplitude demodulation method based on deep learning from a single-shot diffraction intensity image and verified it by a non-interferometric lensless experiment demodulating four-level amplitude and four-level phase.By analyzing the correlation between the diffraction intensity features and the amplitude and phase encoding data pages,the inverse problem was decomposed into two backward operators denoted by two convolutional neural networks(CNNs)to demodulate amplitude and phase respectively.The experimental system is simple,stable,and robust,and it only needs a single diffraction image to realize the direct demodulation of both amplitude and phase.To our investigation,this is the first time in HDS that multilevel complex amplitude demodulation is achieved experimentally from one diffraction intensity image without iterations.
基金supported by the National Key R&D Program(No.2022YFA1602201)。
文摘This paper presents a new technique for measuring the bunch length of a high-energy electron beam at a bunch-by-bunch rate in storage rings.This technique uses the time–frequency-domain joint analysis of the bunch signal to obtain bunch-by-bunch and turn-by-turn longitudinal parameters,such as bunch length and synchronous phase.The bunch signal is obtained using a button electrode with a bandwidth of several gigahertz.The data acquisition device was a high-speed digital oscilloscope with a sampling rate of more than 10 GS/s,and the single-shot sampling data buffer covered thousands of turns.The bunch-length and synchronous phase information were extracted via offline calculations using Python scripts.The calibration coefficient of the system was determined using a commercial streak camera.Moreover,this technique was tested on two different storage rings and successfully captured various longitudinal transient processes during the harmonic cavity debugging process at the Shanghai Synchrotron Radiation Facility(SSRF),and longitudinal instabilities were observed during the single-bunch accumulation process at Hefei Light Source(HLS).For Gaussian-distribution bunches,the uncertainty of the bunch phase obtained using this technique was better than 0.2 ps,and the bunch-length uncertainty was better than 1 ps.The dynamic range exceeded 10 ms.This technology is a powerful and versatile beam diagnostic tool that can be conveniently deployed in high-energy electron storage rings.
文摘A hardwale demodulation method for 2-D edge detection is proposed. The filtering step and the differential step are implemented by using the hardware circuit. This demodulation circuit simplifies the edgefinder and reduces the measuring cycle. The calibration method of scale setting is also presented,and bymeasuring some calibrated objects,the demodulation errors and the error correction table is obtained.
基金supported by National Natural Science Foundation of China (Grant No. 50575233)National Hi-tech Research and Development Program of China (Grant No. 2008AA042408)
文摘The harmonic wavelet transform(HWT) and its fast realization based on fast Fourier transform(FFT) are introduced. Its ability to maintain the same amplitude-frequency feature is revealed. A new method to construct the time-frequency(TF) spectrum of HWT is proposed, which makes the HWT TF spectrum able to correctly reflect the time-frequency-amplitude distribution of the signal. A new way to calculate the HWT coefficients is proposed. By zero padding the data taken out, the non-decimated coefficients of HWT are obtained. Theoretical analysis shows that the modulus of the coefficients obtained by the new calculation way and living at a certain scale are the envelope of the component in the corresponding frequency band. By taking the cross section of the new TF spectrum, the demodulation for the component at a certain frequency band can be realized. A comparison with the Hilbert demodulation combined with band-pass filtering is done, which indicates for multi-components, the method proposed here is more suitable since it realizes ideal band-pass filtering and avoids pass band selecting. In the end, it is applied to bearing and gearbox fault diagnosis, and the results reflect that it can effectively extract the fault features in the signal.
基金Supported by National Natural Science Foundation of China(Grant Nos.51335006 and 51605244)
文摘It is a challenging issue to detect bearing fault under nonstationary conditions and gear noise interferences. Meanwhile, the application of the traditional methods is limited by their deficiencies in the aspect of computational accuracy and e ciency, or dependence on the tachometer. Hence, a new fault diagnosis strategy is proposed to remove gear interferences and spectrum smearing phenomenon without the tachometer and angular resampling technique. In this method, the instantaneous dominant meshing multiple(IDMM) is firstly extracted from the time-frequency representation(TFR) of the raw signal, which can be used to calculate the phase functions(PF) and the frequency points(FP). Next, the resonance frequency band excited by the faulty bearing is obtained by the band-pass filter. Furthermore, based on the PFs, the generalized demodulation transform(GDT) is applied to the envelope of the filtered signal. Finally, the target bearing is diagnosed by matching the peaks in the spectra of demodulated signals with the theoretical FPs. The analysis results of simulated and experimental signal demonstrate that the proposed method is an e ective and reliable tool for bearing fault diagnosis without the tachometer and the angular resampling.
文摘A program of adaptive quadrature demodulation is proposed to supply the gaps in the traditional analog detection technology of a silicon micro-machined gyroscope (SMG). This program is suitable for digital phase locked loop (DPLL) drive technology that proposed in other papers. In addition the program adopts an adaptive filtering algorithm, which selects the in-phase and quadrature components that are outputs of the DPLL of the SMG's drive mode as reference signals to update the amplitude of the in-phase and quadrature components of the input signal by iteratively. An objective of the program is to minimize the mean square error of the accurate amplitudes and the estimated amplitudes of SMG's detection mode. The simulation and test results prove the feasibility of the program that lays the foundation for the further improvement of the SMG's system performance and the implementation of the SMG system's self-calibration and self-demarcation in future.
基金supported by the National Natural Science Foundation of China(Grant No.51177117)the National Key Science&Technology Special Projects,China(Grant No.2011ZX05021-005)
文摘In order to grasp the downhole situation immediately, logging while drilling(LWD) technology is adopted. One of the LWD technologies, called acoustic telemetry, can be successfully applied to modern drilling. It is critical for acoustic telemetry technology that the signal is successfully transmitted to the ground. In this paper, binary phase shift keying(BPSK) is used to modulate carrier waves for the transmission and a new BPSK demodulation scheme based on Duffing chaos is investigated. Firstly, a high-order system is given in order to enhance the signal detection capability and it is realized through building a virtual circuit using an electronic workbench(EWB). Secondly, a new BPSK demodulation scheme is proposed based on the intermittent chaos phenomena of the new Duffing system. Finally, a system variable crossing zero-point equidistance method is proposed to obtain the phase difference between the system and the BPSK signal. Then it is determined that the digital signal transmitted from the bottom of the well is ‘0’ or ‘1’. The simulation results show that the demodulation method is feasible.
基金Doctoral Foundation of Ministry of Education of China (No. 20040056008)
文摘A discrimination measurement method and demodulation technique for fiber Bragg grating (FBG) sensors were presented using digital filtering technique. The system can control a tunable fiber Fabry-Perot filter with sawtooth wave voltage generated by digital clock to interrogate FBG sensors. Using the analogue digital converter (ADC), the reflected FBG signals were sampled with synchronous digital clock. With the aid of digital matched filtering technique, the sampled FBG signals were processed to obtain the maximum signal-to-noise ratio (SNR) and the Bragg wavelength shift from the FBG signals was recovered. The results demonstrate that this system has a scanning range of 1 520 nm-1 575 nm,and the wavelength detection accuracy is less than 2 pm with 1.5 Hz scanning frequency.
文摘For the modified demodulation arithmetic of 3×3 coupler, the processing software built on the basis of Labview is able to demodulate asymmetric 3×3 coupler signal and do further spectrum analysis. It shows that the measured frequency ranges from 10 Hz to 1 000 Hz and phase range is covered by -10 rad^10 rad. The phase sensitivity is 0.5 V/rad. This system is proved to show high resolution and wide dynamic range.
文摘This paper proposes a new amplitude and phase demodulation scheme different from the traditional method for AM-FM signals. The traditional amplitude demodulation assumes that the amplitude should be non-negative, and the phase is obtained under the case of non-negative amplitude, which approximates the true amplitude and phase but distorts the true amplitude and phase in some cases. In this paper we assume that the amplitude is signed (zero, positive or negative), and the phase is obtained under the case of signed amplitude by optimization, as is called signed demodulation. The main merit of the signed demodulation lies in the revelation of senseful physi- cal meaning on phase and frequency. Experiments on the real-world data show the efficiency of the method.
基金supported by the National Basic Research Program of China (973 Program) (2007CB310605)
文摘An innovative method of cooperative frequency domain differential modulation and demodulation is presented.This method applies the prior knowledge of channel propagation to selecting the variable differential length and carrying out frequency domain modulation.This strategy optimizes the design of system parameters to effectively improve the anti-interference ability of the differential system in time-varied multipath channel circumstance without making the execution more complicating.The simulations and comparisons demonstrate the proposed method is effective,and the results show that it is especially suitable for the fading channel with strong propagation and fast time-variation.
基金Project(2018YJS137)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(51275030)supported by the National Natural Science Foundation of China
文摘The vibration signals of multi-fault rolling bearings under nonstationary conditions are characterized by intricate modulation features,making it difficult to identify the fault characteristic frequency.To remove the time-varying behavior caused by speed fluctuation,the phase function of target component is necessary.However,the frequency components induced by different faults interfere with each other.More importantly,the complex sideband clusters around the characteristic frequency further hinder the spectrum interpretation.As such,we propose a demodulation spectrum analysis method for multi-fault bearing detection via chirplet path pursuit.First,the envelope signal is obtained by applying Hilbert transform to the raw signal.Second,the characteristic frequency is extracted via chirplet path pursuit,and the other underlying components are calculated by the characteristic coefficient.Then,the energy factors of all components are determined according to the time-varying behavior of instantaneous frequency.Next,the final demodulated signal is obtained by iteratively applying generalized demodulation with tunable E-factor and then the band pass filter is designed to separate the demodulated component.Finally,the fault pattern can be identified by matching the prominent peaks in the demodulation spectrum with the theoretical characteristic frequencies.The method is validated by simulated and experimental signals.
基金Project(9140C860304) supported by the National Defense Key Laboratory Foundation of China
文摘Aiming at the potential presence of mixing automatic identification system(AIS) signals,a new demodulation scheme was proposed for separating other interfering signals in satellite systems.The combined iterative cross-correlation demodulation scheme,referred to as CICCD,yielded a set of single short signals based on the prior information of AIS,after the frequency,code rate and modulation index were estimated.It demodulates the corresponding short codes according to the maximum peak of cross-correlation,which is simple and easy to implement.Numerical simulations show that the bit error rate of proposed algorithm improves by about 40% compared with existing ones,and about 3 dB beyond the standard AIS receiver.In addition,the proposed demodulation scheme shows the satisfying performance and engineering value in mixing AIS environment and can also perform well in low signal-to-noise conditions.
文摘This paper presents a novel and cost effective method to be used in the optimization of the Gaussian Frequency Shift Keying (GFSK) at the receiver of the Bluetooth communication system. The proposed method enhances the performance of the noncoherent demodulation schemes by improving the Bit Error Rate (BER) and Frame Error Rate (FER) outcomes. Linear, Extended, and Unscented Kalman Filters are utilized in this technique. A simulation model, using Simulink, has been created to simulate the Bluetooth voice transmission system with the integrated filters. Results have shown improvements in the BER and FER, and that the Unscented Kalman Filters (UKF) have shown superior performance in comparison to the linear Kalman Filter (KF) and the Extended Kalman Filter (EKF). To the best of our knowledge, this research is the first to propose the usage of the UKF in the optimization of the Bluetooth System receivers in the presence of additive white Gaussian noise (AWGN), as well as interferences.
文摘The modulated signals of π /4-DQPSK can be demodulated with the differenced method, and the technology has been used in the communication. The traditional demodulated method needs a lot of calculation. In this paper, a new method based on fast arithmetic digital demodulation of DQPSK is presented. The new method only uses the sign of the modulated signal instead of digital signal through the A/D in the traditional method. With the new method, the system has higher speed, and can save some hardware in the FPGA. An experiment of the new method with the DQPSK is given in this paper.
文摘The component of gear vibration signal is very complex,when a localized tooth defect such as a tooth crack is pre- sent,the engagement of the cracked tooth will induce an impulsive change with comparatively low energy to the gear mesh signal and the background noise.This paper presents a new comprehensive demodulation method which combined with amplitude envelop demodulation and phase demodulation to extract gear crack early fault.A mathematical model of gear vibration signal contain crack fault is put forward.Simulation results based on this model show that the new comprehensive demodulation method is more effective in finding fault and judging fault level then conventional single amplitude demodulation at present.
基金supported by the National Natural Science Foundation of China(Grant Nos.11274037 and 61275075)the Program for New Century Excellent Talents in University,Ministry of Education of China(Grant No.NCET-12-0765)the Foundation for the Author of National Excellent Doctoral Dissertation,China(Grant No.201236)
文摘A novel scheme of differential polarization demodulation is presented and demonstrated based on a polarized asym- metrical Mach-Zehnder interferometer configuration with polarization control. To enhance the stability of the demodulator, a phase-lock device is designed, and it is composed of a symmetric 3 × 3 coupler and a feedback circuit. For further estab- lishing a differential polarization-shift keying (DPolSK) transmission system, we successfully carry out the demodulation experiments on 10-Gb/s DPolSK optical signals for the first time. Due to the all-optical structure with phase-lock, our scheme is available to realize the DPolSK optical communication in practical optical fiber systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.11174249 and 61475139)the Ministry of Science and Technology of China(Grant No.2011AA060504)+1 种基金the National Basic Research Program of China(Grant No.2013CB329501)the Fundamental Research Funds for the Central Universities,China(Grant No.2015FZA3002)
文摘Generally, the phase of the cold-atom interferometer is extracted from the atomic interference fringe, which can be obtained by scanning the chirp rate of the Raman lasers at a given interrogation time T. If mapping the phase shift for each T with a series of measurements, the extraction time is limited by the protocol of each T measurement, and therefore increases dramatically when doing fine mapping with a small step of T. Here we present a new method for rapid extraction of the phase shift via phase demodulation. By using this method, the systematic shifts can be mapped though the whole interference area. This method enables quick diagnostics of the potential cause of the phase shift in specific time. We demonstrate experimentally that this method is effective for the evaluation of the systematic errors of the cold atomic gravimeter. The systematic phase error induced by the quadratic Zeeman effect in the free-falling region is extracted by this method. The measured results correspond well with the theoretic prediction and also agree with the results obtained by the fringe fitting method for each T.