AIM: To study the efficacy and the safety of laser lithotripsy without direct visual control by using a balloon catheter in patients with bile duct stones that could not be extracted by standard technique. METHODS: Th...AIM: To study the efficacy and the safety of laser lithotripsy without direct visual control by using a balloon catheter in patients with bile duct stones that could not be extracted by standard technique. METHODS: The seventeen patients (7 male and 10 female; mean age 67.8 years) with difficult common bile duct (CBD) stones were not amenable for conventional endoscopic maneuvers such as sphincterotomy and mechanical lithotripsy were included in this study. Laser wavelengths of 532 nm and 1064 nm as a double pulse were applied with pulse energy of 120 mJ. The laser fiber was advanced under fluoroscopic control through the ERCP balloon catheter. Laser lithotripsy was continued until the fragment size seemed to be less than 10 mm. Endoscopic extraction of the stones and fragments was performed with the use of the Dormia basket and balloon catheter. RESULTS: Bile duct clearance was achieved in 15 of 17 patients (88%). The mean number of treatment sessions was 1.7 ± 0.6. Endoscopic stone removal could not be achieved in 2 patients (7%). Adverse effects were noted in three patients (hemobilia, pancreatitis, and cholangitis). CONCLUSION: The Frequency Doubled Double Pulse Nd:YAG (FREDDY) laser may be an effective and safe technique in treatment of difficult bile duct stones.展开更多
In this article, we present the promise of a new method generating double electron pulses in picosecondscale pulse length and tunable interpulse spacing at several picoseconds. This has witnessed an impressive potenti...In this article, we present the promise of a new method generating double electron pulses in picosecondscale pulse length and tunable interpulse spacing at several picoseconds. This has witnessed an impressive potential of application in pump–probe techniques, two-color X-ray free electron laser, high-gradient witness bunch acceleration in a plasma, etc. Three-dimensional simulations are carried out to analyze the dynamic of the electron beam in a linear accelerator. Comparisons are made between the new method and existing ways.展开更多
In this paper, an experimental study of collinear geometry double-pulse femtosecond LIBS was performed on a Ni sample in ambient air in an effort to clarify the contributing processes responsible for the signal enhanc...In this paper, an experimental study of collinear geometry double-pulse femtosecond LIBS was performed on a Ni sample in ambient air in an effort to clarify the contributing processes responsible for the signal enhancement observed in comparison with the single-pulse case. Doublepulse LIBS spectra show a very clear enhancement when an optimum inter-pulse delay was used. The influences of the inter-pulse delay between two pulses on the LIBS signal intensity, electron temperature and density were investigated. It is most remarkable that the evolutions of signal enhancement and electron temperature versus the inter-pulse delay showed the same behavior and revealed two main regimes of interaction. These results provide additional insight into the possible emission enhancement mechanisms in the double pulse configuration.展开更多
Using a classical ensemble model, we investigate the correlation behaviour of electrons originating from nonsequential double ionization (NSDI) of argon atoms by the elliptically polarized laser pulses. Because of t...Using a classical ensemble model, we investigate the correlation behaviour of electrons originating from nonsequential double ionization (NSDI) of argon atoms by the elliptically polarized laser pulses. Because of the ellipticity, not only the first electron to return but also the later return of tunneled electrons contribute significantly to NSDI. We mainly discuss two kinds of events of NSDI originating from the first and the second return separately. For the NSDI resulting from the recollision of the first return, the correlated electron momentum spectrum along the long axis of the laser polarization plane reveals an obvious V-like shape, located at the first and third quadrant. However, for the NSDI resulting from the recollision of the second return, the momenta of two electrons are distributed in the four quadrants uniformly. By analysing the trajectories of these two kinds, we find that the recollision energy and the laser phase at recollision are different for the first and second returning trajectories, which are responsible for the difference in the correlated behavior of the final electron momentum.展开更多
The micro-impulse generated by ablating an aluminum target in double-pulse laser bursts with different interpulse delays was investigated using a torsion pendulum.The plasma plume was simultaneously visualized using h...The micro-impulse generated by ablating an aluminum target in double-pulse laser bursts with different interpulse delays was investigated using a torsion pendulum.The plasma plume was simultaneously visualized using high-speed photography to analyze the coupling mechanism of the ablation impulse.The experiment was carried out using a pulsed laser with a pulse width of 8 ns and a wavelength of 1064 nm.The experimental results show that an impulse with an interpulse delay of 60 ns is roughly 60%higher than that with no delay between the two pulses,when the energy of both laser pulses is 50 m J.Therefore,double-pulse schemes could enhance the ablation impulse under certain conditions.This is because the ablation of the first laser pulse changes the optical properties of the aluminum target surface,increasing the absorptivity.However,the ablation impulse is reduced with a time delay of 20 ns when the energy of both laser pulses is100 mJ or 150 mJ.It can be concluded that the plasma produced by ablating the aluminum with the first pulse shields the second laser pulse.To summarize,the experimental results show that different delay times in a double-pulse scheme have a significant effect on the ablation impulse.The study provides a reference for the optimization of the parameters when laser ablation propulsion with a double-pulse scheme is applied in the fields of space debris removal,laser ablation thrusters,and so on.展开更多
In this study, a stand-off and collinear double pulse laser-induced breakdown spectroscopy (DP LIBS) system was designed, and the magnesium alloy samples at a distance of 2.5 m away from the LIBS system were measure...In this study, a stand-off and collinear double pulse laser-induced breakdown spectroscopy (DP LIBS) system was designed, and the magnesium alloy samples at a distance of 2.5 m away from the LIBS system were measured. The effect of inter-pulse delay on spectra was studied, and the signal enhancement was observed compared to the single pulse LIBS (SP LIBS). The morphology of the ablated crater on the sample indicated a higher efficiency of surface pretreatment in DP LIBS. The calibration curves of Ytterbium (Y) and Zirconium (Zr) were investigated. The square of the correlation coefficient of the calibration curve of element Y reached up to 0.9998.展开更多
In double-pulse laser-induced breakdown spectroscopy(DP-LIBS), the collinear femtosecond double-pulse laser configuration is experimentally investigated with different initial sample temperatures using a Ti:sapphire l...In double-pulse laser-induced breakdown spectroscopy(DP-LIBS), the collinear femtosecond double-pulse laser configuration is experimentally investigated with different initial sample temperatures using a Ti:sapphire laser. The glass sample is ablated to produce the plasma spectroscopy. During the experiment, the detected spectral lines include two Na(I) lines(589.0 nm and 589.6 nm) and one Ca(I) line at the wavelength of 585.7 nm. The emission lines are measured at room temperature(22 ℃) and three higher initial sample temperatures(T_s?=?100 ℃, 200 ℃, and 250 ℃). The inter-pulse delay time ranges from-250 ps to 250 ps.The inter-pulse delay time and the sample temperature strongly influence the spectral intensity,and the spectral intensity can be significantly enhanced by increasing the sample temperature and selecting the optimized inter-pulse time. For the same inter-pulse time of 0 ps(single-pulse LIBS), the enhancement ratio is approximately 2.5 at T_s?=?200 ℃ compared with that obtained at T_s?=?22 ℃. For the same inter-pulse time of 150 ps, the enhancement ratio can be up to 4 at T_s?=?200 ℃ compared with that obtained at T_s?=?22 ℃. The combined enhancement effects of the different initial sample temperatures and the double-pulse configuration in femtosecond LIBS are much stronger than that of the different initial sample temperatures or the double-pulse configuration only.展开更多
In this paper, we present a study on the effect of inter-pulse delay using femtosecond double-pulse laser-induced breakdown spectroscopy in a collinear geometry. The temporal evolution of spectral intensity is perform...In this paper, we present a study on the effect of inter-pulse delay using femtosecond double-pulse laser-induced breakdown spectroscopy in a collinear geometry. The temporal evolution of spectral intensity is performed for the lines of Fe I 423.60 nm, Fe I 425.08 nm and Fe I 427.18 nm. It is found that, by selecting appropriate inter-pulse delay, the signal enhancement can be significantly increased compared with the single-pulse case. A three-fold enhancement in the current experiment is obtained. The plasma temperature and electron density are also investigated based on the theory of Boltzmann plot and Stark broadening. We attribute the main mechanism for emission enhancement to the plasma re-heating effect.展开更多
High resolution spectral analysis of lithium plasma formed by single and double laser ablation has been undertaken to understand the plume-laser interaction, especially at the early stages of the plasma plume. In orde...High resolution spectral analysis of lithium plasma formed by single and double laser ablation has been undertaken to understand the plume-laser interaction, especially at the early stages of the plasma plume. In order to identify different atomic processes in evolving plasma, time resolved spectral emission studies at different inter-pulse delays have been performed for ionic and neutral lithium lines emitting from different levels. Along with the enhancement in emission intensity, a large line broadening and spectral shift, especially in the case of excited state transition Li I 610.3 nm have been observed in the presence of the second pulse. This broadening and shift gradually decrease with increasing time delay. Another interesting feature is the appearance of a multi-component structure in the ionic line at 548.4 nm and these components change conversely into a single structure at the later stages of the plasma. The multi-component structures are correlated with the presence of different velocity (temperature) distributions in non-LTE conditions. Atomic analyses by computing photon emissivity coefficients with an ADAS code have been used to identify the above processes.展开更多
New tungsten ion source is produced by using single and double-pulse laser ablation system. Combined collinear Nd:YAG laser beams(266+1064 nm) are optimized to focus on the sample in air. Optimization of the exper...New tungsten ion source is produced by using single and double-pulse laser ablation system. Combined collinear Nd:YAG laser beams(266+1064 nm) are optimized to focus on the sample in air. Optimization of the experimental parameters is achieved to enhance the signal-to-noise ratio of the emission spectra. The velocity distribution of the emitted plasma cloud is carefully measured. The influences of the potential difference between the bias electrodes, laser wavelength and intensity on the current signal are also studied. The results show that the increase in the tungsten ion velocity under the double-pulse lasers causes the output current signal to increase by about three folds. The electron density and temperature are calculated by using the Stark-broadened line profile of tungsten line and Boltzmann plot method of the upper energy levels, respectively. The signal intensity dependence of the tungsten ion angular distribution is also analyzed. The results indicate that the double-pulse laser ablation configuration is more potent technique for producing more metal ion source deposition, thin film formation, and activated plasma-facing component material.展开更多
Using the classical ensemble model, we investigate the nonsequential double ionization(NSDI) of Ar and Mg in the two-color elliptically polarized laser pulse for different elliptical polarizations. Numerical results...Using the classical ensemble model, we investigate the nonsequential double ionization(NSDI) of Ar and Mg in the two-color elliptically polarized laser pulse for different elliptical polarizations. Numerical results show that for Ar atoms the NSDI yield increases as the ellipticity increases, which is different from the case of Mg atoms. Moreover, the correlated behavior in the correlated electron momentum along the x direction and ion momentum distributions of Ar atoms are influenced by the ellipticity. By statistical analysis of different times, we can conclude that the ellipticity may be responsible for the NSDI processes. The correlated momenta distributions along the x direction at the recollision time are demonstrated and the results show that the travelling time and ellipticity can affect the emitted directions of both electrons.展开更多
This paper reports the physical phenomenon of the temporal overlapping double femtosecond laser-induced ablation enhancement at different time delays.Detailed thermodynamic modeling demonstrates the ablation enhanceme...This paper reports the physical phenomenon of the temporal overlapping double femtosecond laser-induced ablation enhancement at different time delays.Detailed thermodynamic modeling demonstrates the ablation enhancement is highly dependent on the first pulse's laser fluence.In the case of the first pulse laser fluence being higher than material's ablation threshold,the ablation enhancement is attributed to optical absorption modification by the first pulse ablation.While the first pulse's laser fluence is lower than the material's ablation threshold,the first pulse-induced melting leads to much higher absorption of the second pulse.However,for the case of the first pulse's laser fluence even lower than melting threshold,the ablation enhancement decreases obviously with time delay.The results of the temporal overlapping double femtosecond laser ablation of poly(ε-caprolactone)are in good agreement with the theoretical predictions.展开更多
A classical ensemble method is used to investigate nonsequential double ionization(NSDI) of Ar atoms irradiated by linearly polarized few-cycle laser pulses. The correlated-electron momentum distribution(CMD) exhi...A classical ensemble method is used to investigate nonsequential double ionization(NSDI) of Ar atoms irradiated by linearly polarized few-cycle laser pulses. The correlated-electron momentum distribution(CMD) exhibits a strong dependence on the carrier-envelope phase(CEP). When the pulse duration is four cycles, the CMD shows a cross-like structure, which is consistent with experimental results. The CEP dependence is more notable when the laser pulse duration is decreased to two cycles and a special L-shaped structure appears in CMD. Recollision time of returning electrons greatly depends on CEP, which plays a significant role in accounting for the appearance of this structure.展开更多
With the classical ensemble model, we investigate nonsequential double ionization (NSDI) of xenon atoms using 780 nm, 0.25 PW/cm2 elliptically polarized few-cycle laser pulses. The momentum distribution of correlate...With the classical ensemble model, we investigate nonsequential double ionization (NSDI) of xenon atoms using 780 nm, 0.25 PW/cm2 elliptically polarized few-cycle laser pulses. The momentum distribution of correlated electron along the long axis o~ the laser polarization plane shows an obvious V-like structure locating at the third quadrant, and the momentum along the short axis of the laser polarization plane are mainly distributed in the second and fourth quadrants. Moreover, we demonstrate that the Coulomb repulsion interaction plays a decisive role to the above results. By back analyzing the class/ca/ trajectories of NSDI, we find that there are two kinds of recollision trajectories mainly contribute to NSDI, and the different microscopic dynamics for the two kinds of trajectories are clearly explored.展开更多
To monitor the components of molten magnesium alloy during the smelting process in real time and online, we designed a standoff double-pulse laser-induced breakdown spectroscopy (LIBS) analysis system that can perfo...To monitor the components of molten magnesium alloy during the smelting process in real time and online, we designed a standoff double-pulse laser-induced breakdown spectroscopy (LIBS) analysis system that can perform focusing, collecting and imaging of long-range samples. First, we tested the system on solid standard magnesium alloy samples in the laboratory to establish a basis for the online monitoring of the components of molten magnesium alloy in the future. The experimental results show that the diameters of the focus spots are approximately 1 mm at a range of 3 m, the ablation depth of the double-pulse mode is much deeper than that of the single-pulse mode, the optimum interpulse delay of the double pulse is inconsistent at different ranges, and the spectral intensity decays rapidly as the range increases. In addition, the enhancement effect of the double pulse at 1.89 m is greater than that at 2.97 m, the maximum enhancement is 7.1-fold for the Y(I)550.35-nm line at 1.89 m, and the calibration results at 1.89 m are better than those at 2.97 m. At 1.89 m, the determination coefficients (R2) of the calibration curves are approximately 99% for Y, Pr, and Zr; the relative standard deviations (RSDs) are less than 10% for Y, Pr, and Zr; the root mean square errors (RMSEs) are less than 0.037% for Pr and Zr; the limits of detection (LODs) are less than 1000 ppm for Y, Pr, and Zr; and the LODs of Y, Pr, and Zr at 2.97 m are higher than those at 1.89 m. Additionally, we tested the system on molten magnesium alloy in a magnesium alloy plant. The calibration results of the liquid magnesium alloy are not as favorable as those of the sampling solid magnesium alloys. In particular, the RSDs of the liquid magnesium alloy are approximately 20% for Pr and La. However, with future improvements in the experimental conditions, the developed system is promising for the in situ analysis of molten magnesium alloy.展开更多
Using a classical ensemble method, we have investigated sequential double ionization (SDI) of Ar atoms driven by elliptical laser pulses. The results show that the ion momentum distribution of the Ar atoms depends str...Using a classical ensemble method, we have investigated sequential double ionization (SDI) of Ar atoms driven by elliptical laser pulses. The results show that the ion momentum distribution of the Ar atoms depends strongly on the pulse duration. As the pulse duration increases, the ion momentum distribution changes from two bands to four bands and then to six bands and finally to an eight-band structure. Back analysis of double ionization trajectories shows that the variation of the band structure originates from pulse duration dependent multiple ionization bursts of the second electron. Our calculations indicate that the subcycle electron emission in the SDI could be more easily accessed by using elliptical laser pulses with a longer wavelength. Moreover, we show that there is good correspondence between the scaled radial momentum and the ionization time.展开更多
Previous research shows that few-cycle laser(FCL) pulses with low energy and without a bias field can be used to coherently detect terahertz(THz) pulses. As we know, it is very difficult to stabilize the carrier e...Previous research shows that few-cycle laser(FCL) pulses with low energy and without a bias field can be used to coherently detect terahertz(THz) pulses. As we know, it is very difficult to stabilize the carrier envelope phase(CEP) of FCL pulses, i.e., there are some random fluctuations for the CEP. Here we theoretically investigate the influence of such instability on the accuracy of THz detection. Our results show that although there is an optimum CEP for THz detection, the fluctuations of the CEP will lead to terrible thorns on the detected THz waveform. In order to solve this problem, we propose an approach using two few-cycle laser pulses with opposite CEPs, i.e., their CEPs are differed by π.展开更多
BACKGROUND: Hepatolithiasis is very common in East Asia. It is benign in nature, but has a high recurrence rate. It is likely to lead to biliary cirrhosis and increase the risk of cholangiocarcinoma. Hence, the treatm...BACKGROUND: Hepatolithiasis is very common in East Asia. It is benign in nature, but has a high recurrence rate. It is likely to lead to biliary cirrhosis and increase the risk of cholangiocarcinoma. Hence, the treatment of hepatolithiasis is difficult but vital. In this report, we present a novel approach to manage hepatolithiasis using the choledochoscopic Frequency-Doubled Double pulse Nd:YAG (FREDDY) laser lithotripsy combined with or without hepatectomy. METHODS: Between July 2009 and October 2012, 45 patients underwent choledochoscopic FREDDY laser lithotripsy combined with or without hepatectomy (laser lithotripsy group). Fortyeight patients underwent a traditional operation (traditional method group) from January 2009 to June 2009. Comparative analysis was made of demographic and clinical characteristics of the two groups. RESULTS: The final stone clearance rate of the laser lithotripsy group was 93.3%, whereas that of the traditional method group was 85.4% (P=0.22). In the laser lithotripsy group, 2 patients experienced hemobilia and 3 patients had acute cholangitis. In the traditional method group, 3 patients had intraoperative hemorrhage, 1 patient had bile leakage, 6 patients had acute cholangitis, and 1 patient died of liver failure. Moreover, the operative time in the traditional method group was significantly longer than that in the laser lithotripsy group (P=0.01). The mean hospital stay of the patients in the traditional method group was longer than that in the laser lithotripsy group (9.8 vs8.2 days, P=0.17). Recurrent intrahepatic bile duct stones were not found during the follow-up period in the two groups. CONCLUSION: Operative choledochoscopic FREDDY laser lithotripsy combined with or without hepatectomy may be an effective and safe treatment for hepatolithiasis.展开更多
We first experimentally demonstrate a laser-diode end-pumped self-Q-switched and mode-locked Nd,Cr:YAG green laser with a KTP crystal as the intra-cavity frequency doubler. The device produces an average output power...We first experimentally demonstrate a laser-diode end-pumped self-Q-switched and mode-locked Nd,Cr:YAG green laser with a KTP crystal as the intra-cavity frequency doubler. The device produces an average output power of 680 mW at 532 nm. The corresponding pulse width of the Q-switched envelope of the green laser is 170 + 20 ns. The mode-locked pulses have a repetition rate of approximately 183 MHz and the average pulse duration is estimated to be around sub-nanosecond. It is found that the intra-cavity frequency doubling greatly improves the modulation depth and stability of the mode-locked pulses within the Q-switched envelope.展开更多
基金The 2007 research fund of Wonkwang University and Wonkwang Clinical Research Institute
文摘AIM: To study the efficacy and the safety of laser lithotripsy without direct visual control by using a balloon catheter in patients with bile duct stones that could not be extracted by standard technique. METHODS: The seventeen patients (7 male and 10 female; mean age 67.8 years) with difficult common bile duct (CBD) stones were not amenable for conventional endoscopic maneuvers such as sphincterotomy and mechanical lithotripsy were included in this study. Laser wavelengths of 532 nm and 1064 nm as a double pulse were applied with pulse energy of 120 mJ. The laser fiber was advanced under fluoroscopic control through the ERCP balloon catheter. Laser lithotripsy was continued until the fragment size seemed to be less than 10 mm. Endoscopic extraction of the stones and fragments was performed with the use of the Dormia basket and balloon catheter. RESULTS: Bile duct clearance was achieved in 15 of 17 patients (88%). The mean number of treatment sessions was 1.7 ± 0.6. Endoscopic stone removal could not be achieved in 2 patients (7%). Adverse effects were noted in three patients (hemobilia, pancreatitis, and cholangitis). CONCLUSION: The Frequency Doubled Double Pulse Nd:YAG (FREDDY) laser may be an effective and safe technique in treatment of difficult bile duct stones.
基金partially supported by the Major State Basic Research Development Program of China(No.2011CB808300)the National Natural Science Foundation of China(Nos.11175240,11205234 and 11322550)
文摘In this article, we present the promise of a new method generating double electron pulses in picosecondscale pulse length and tunable interpulse spacing at several picoseconds. This has witnessed an impressive potential of application in pump–probe techniques, two-color X-ray free electron laser, high-gradient witness bunch acceleration in a plasma, etc. Three-dimensional simulations are carried out to analyze the dynamic of the electron beam in a linear accelerator. Comparisons are made between the new method and existing ways.
基金supported by National Natural Science Foundation of China(Nos.11135002,11075069,91026021 and 11075068)Fundamental Research Funds for the Central Universities of China(lzujbky-2014-13,lzujbky-2014-14,lzujbky-2014-10 and lzujbky-2014-15)
文摘In this paper, an experimental study of collinear geometry double-pulse femtosecond LIBS was performed on a Ni sample in ambient air in an effort to clarify the contributing processes responsible for the signal enhancement observed in comparison with the single-pulse case. Doublepulse LIBS spectra show a very clear enhancement when an optimum inter-pulse delay was used. The influences of the inter-pulse delay between two pulses on the LIBS signal intensity, electron temperature and density were investigated. It is most remarkable that the evolutions of signal enhancement and electron temperature versus the inter-pulse delay showed the same behavior and revealed two main regimes of interaction. These results provide additional insight into the possible emission enhancement mechanisms in the double pulse configuration.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11005088 and 11047145)the Project of Basic and Advanced Technology of Henan Province, China (Grant Nos. 102300410241 and 112300410021)the Scientific Research Foundation of Education Department of Henan Province,China (Grant No. 2011B140018)
文摘Using a classical ensemble model, we investigate the correlation behaviour of electrons originating from nonsequential double ionization (NSDI) of argon atoms by the elliptically polarized laser pulses. Because of the ellipticity, not only the first electron to return but also the later return of tunneled electrons contribute significantly to NSDI. We mainly discuss two kinds of events of NSDI originating from the first and the second return separately. For the NSDI resulting from the recollision of the first return, the correlated electron momentum spectrum along the long axis of the laser polarization plane reveals an obvious V-like shape, located at the first and third quadrant. However, for the NSDI resulting from the recollision of the second return, the momenta of two electrons are distributed in the four quadrants uniformly. By analysing the trajectories of these two kinds, we find that the recollision energy and the laser phase at recollision are different for the first and second returning trajectories, which are responsible for the difference in the correlated behavior of the final electron momentum.
基金supported by National Natural Science Foundation of China(Nos.11502301 and 11602304)。
文摘The micro-impulse generated by ablating an aluminum target in double-pulse laser bursts with different interpulse delays was investigated using a torsion pendulum.The plasma plume was simultaneously visualized using high-speed photography to analyze the coupling mechanism of the ablation impulse.The experiment was carried out using a pulsed laser with a pulse width of 8 ns and a wavelength of 1064 nm.The experimental results show that an impulse with an interpulse delay of 60 ns is roughly 60%higher than that with no delay between the two pulses,when the energy of both laser pulses is 50 m J.Therefore,double-pulse schemes could enhance the ablation impulse under certain conditions.This is because the ablation of the first laser pulse changes the optical properties of the aluminum target surface,increasing the absorptivity.However,the ablation impulse is reduced with a time delay of 20 ns when the energy of both laser pulses is100 mJ or 150 mJ.It can be concluded that the plasma produced by ablating the aluminum with the first pulse shields the second laser pulse.To summarize,the experimental results show that different delay times in a double-pulse scheme have a significant effect on the ablation impulse.The study provides a reference for the optimization of the parameters when laser ablation propulsion with a double-pulse scheme is applied in the fields of space debris removal,laser ablation thrusters,and so on.
基金supported by National Natural Science Foundation of China(No.61473279)the National High-Tech Research and Development Program of China(863 Program)(No.2012AA040608)Equipment Development Programs of the Chinese Academy of Sciences(No.YZ201247)
文摘In this study, a stand-off and collinear double pulse laser-induced breakdown spectroscopy (DP LIBS) system was designed, and the magnesium alloy samples at a distance of 2.5 m away from the LIBS system were measured. The effect of inter-pulse delay on spectra was studied, and the signal enhancement was observed compared to the single pulse LIBS (SP LIBS). The morphology of the ablated crater on the sample indicated a higher efficiency of surface pretreatment in DP LIBS. The calibration curves of Ytterbium (Y) and Zirconium (Zr) were investigated. The square of the correlation coefficient of the calibration curve of element Y reached up to 0.9998.
基金support by National Natural Science Foundation of China (Grant Nos. 11674128, 11504129, and 11674124)Jilin Province Scientific and Technological Development Program, China (Grant No. 20170101063JC)Fundamental Research Project of Chinese State Key Laboratory of Laser Interaction with Matter (Grant No. SKLLIM1605)
文摘In double-pulse laser-induced breakdown spectroscopy(DP-LIBS), the collinear femtosecond double-pulse laser configuration is experimentally investigated with different initial sample temperatures using a Ti:sapphire laser. The glass sample is ablated to produce the plasma spectroscopy. During the experiment, the detected spectral lines include two Na(I) lines(589.0 nm and 589.6 nm) and one Ca(I) line at the wavelength of 585.7 nm. The emission lines are measured at room temperature(22 ℃) and three higher initial sample temperatures(T_s?=?100 ℃, 200 ℃, and 250 ℃). The inter-pulse delay time ranges from-250 ps to 250 ps.The inter-pulse delay time and the sample temperature strongly influence the spectral intensity,and the spectral intensity can be significantly enhanced by increasing the sample temperature and selecting the optimized inter-pulse time. For the same inter-pulse time of 0 ps(single-pulse LIBS), the enhancement ratio is approximately 2.5 at T_s?=?200 ℃ compared with that obtained at T_s?=?22 ℃. For the same inter-pulse time of 150 ps, the enhancement ratio can be up to 4 at T_s?=?200 ℃ compared with that obtained at T_s?=?22 ℃. The combined enhancement effects of the different initial sample temperatures and the double-pulse configuration in femtosecond LIBS are much stronger than that of the different initial sample temperatures or the double-pulse configuration only.
基金supported by the National Basic Research Program of China(No.2013CB922200)the China Postdoctoral Science Foundation(No.2014M551169)National Natural Science Foundation of China(Nos.11674128,11474129 and 11504129)
文摘In this paper, we present a study on the effect of inter-pulse delay using femtosecond double-pulse laser-induced breakdown spectroscopy in a collinear geometry. The temporal evolution of spectral intensity is performed for the lines of Fe I 423.60 nm, Fe I 425.08 nm and Fe I 427.18 nm. It is found that, by selecting appropriate inter-pulse delay, the signal enhancement can be significantly increased compared with the single-pulse case. A three-fold enhancement in the current experiment is obtained. The plasma temperature and electron density are also investigated based on the theory of Boltzmann plot and Stark broadening. We attribute the main mechanism for emission enhancement to the plasma re-heating effect.
文摘High resolution spectral analysis of lithium plasma formed by single and double laser ablation has been undertaken to understand the plume-laser interaction, especially at the early stages of the plasma plume. In order to identify different atomic processes in evolving plasma, time resolved spectral emission studies at different inter-pulse delays have been performed for ionic and neutral lithium lines emitting from different levels. Along with the enhancement in emission intensity, a large line broadening and spectral shift, especially in the case of excited state transition Li I 610.3 nm have been observed in the presence of the second pulse. This broadening and shift gradually decrease with increasing time delay. Another interesting feature is the appearance of a multi-component structure in the ionic line at 548.4 nm and these components change conversely into a single structure at the later stages of the plasma. The multi-component structures are correlated with the presence of different velocity (temperature) distributions in non-LTE conditions. Atomic analyses by computing photon emissivity coefficients with an ADAS code have been used to identify the above processes.
文摘New tungsten ion source is produced by using single and double-pulse laser ablation system. Combined collinear Nd:YAG laser beams(266+1064 nm) are optimized to focus on the sample in air. Optimization of the experimental parameters is achieved to enhance the signal-to-noise ratio of the emission spectra. The velocity distribution of the emitted plasma cloud is carefully measured. The influences of the potential difference between the bias electrodes, laser wavelength and intensity on the current signal are also studied. The results show that the increase in the tungsten ion velocity under the double-pulse lasers causes the output current signal to increase by about three folds. The electron density and temperature are calculated by using the Stark-broadened line profile of tungsten line and Boltzmann plot method of the upper energy levels, respectively. The signal intensity dependence of the tungsten ion angular distribution is also analyzed. The results indicate that the double-pulse laser ablation configuration is more potent technique for producing more metal ion source deposition, thin film formation, and activated plasma-facing component material.
基金Project supported by the National Natural Science Foundation of China(Grant No.61575077)the Natural Science Foundation of Jilin Province,China(Grant No.20180101225JC)
文摘Using the classical ensemble model, we investigate the nonsequential double ionization(NSDI) of Ar and Mg in the two-color elliptically polarized laser pulse for different elliptical polarizations. Numerical results show that for Ar atoms the NSDI yield increases as the ellipticity increases, which is different from the case of Mg atoms. Moreover, the correlated behavior in the correlated electron momentum along the x direction and ion momentum distributions of Ar atoms are influenced by the ellipticity. By statistical analysis of different times, we can conclude that the ellipticity may be responsible for the NSDI processes. The correlated momenta distributions along the x direction at the recollision time are demonstrated and the results show that the travelling time and ellipticity can affect the emitted directions of both electrons.
基金National Research Foundation Singapore(A1883c0010)National Natural Science Foundation of China(51975017)+1 种基金China Scholarship CouncilWe wish to thank Dr. Yang Li andDr. Huagang Liu for the discussions on double-pulse laser ex periments. The support provided by China ScholarshipCouncil (CSC) during a visit of Zhenyuan Lin to theNational University of Singapore is acknowledged.
文摘This paper reports the physical phenomenon of the temporal overlapping double femtosecond laser-induced ablation enhancement at different time delays.Detailed thermodynamic modeling demonstrates the ablation enhancement is highly dependent on the first pulse's laser fluence.In the case of the first pulse laser fluence being higher than material's ablation threshold,the ablation enhancement is attributed to optical absorption modification by the first pulse ablation.While the first pulse's laser fluence is lower than the material's ablation threshold,the first pulse-induced melting leads to much higher absorption of the second pulse.However,for the case of the first pulse's laser fluence even lower than melting threshold,the ablation enhancement decreases obviously with time delay.The results of the temporal overlapping double femtosecond laser ablation of poly(ε-caprolactone)are in good agreement with the theoretical predictions.
基金supported by the National Natural Science Foundation of China(No.61275103)the Natural Science Foundation of Shanghai(No.18ZR1413600)
文摘A classical ensemble method is used to investigate nonsequential double ionization(NSDI) of Ar atoms irradiated by linearly polarized few-cycle laser pulses. The correlated-electron momentum distribution(CMD) exhibits a strong dependence on the carrier-envelope phase(CEP). When the pulse duration is four cycles, the CMD shows a cross-like structure, which is consistent with experimental results. The CEP dependence is more notable when the laser pulse duration is decreased to two cycles and a special L-shaped structure appears in CMD. Recollision time of returning electrons greatly depends on CEP, which plays a significant role in accounting for the appearance of this structure.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11005088and11047145the Basic and Advanced Technology of Henan Province of China under Grant Nos.102300410241and112300410021the Scientific Research Foundation of Education Department of Henan Province of China under Grant Nos.2011B140018and13A140774
文摘With the classical ensemble model, we investigate nonsequential double ionization (NSDI) of xenon atoms using 780 nm, 0.25 PW/cm2 elliptically polarized few-cycle laser pulses. The momentum distribution of correlated electron along the long axis o~ the laser polarization plane shows an obvious V-like structure locating at the third quadrant, and the momentum along the short axis of the laser polarization plane are mainly distributed in the second and fourth quadrants. Moreover, we demonstrate that the Coulomb repulsion interaction plays a decisive role to the above results. By back analyzing the class/ca/ trajectories of NSDI, we find that there are two kinds of recollision trajectories mainly contribute to NSDI, and the different microscopic dynamics for the two kinds of trajectories are clearly explored.
基金Acknowledgements This research work was financially supported by the National Natural Science Foundation China (Grant No. 61473279) and the National Key Research and Development Program of China (No. 2016YFF0102502).
文摘To monitor the components of molten magnesium alloy during the smelting process in real time and online, we designed a standoff double-pulse laser-induced breakdown spectroscopy (LIBS) analysis system that can perform focusing, collecting and imaging of long-range samples. First, we tested the system on solid standard magnesium alloy samples in the laboratory to establish a basis for the online monitoring of the components of molten magnesium alloy in the future. The experimental results show that the diameters of the focus spots are approximately 1 mm at a range of 3 m, the ablation depth of the double-pulse mode is much deeper than that of the single-pulse mode, the optimum interpulse delay of the double pulse is inconsistent at different ranges, and the spectral intensity decays rapidly as the range increases. In addition, the enhancement effect of the double pulse at 1.89 m is greater than that at 2.97 m, the maximum enhancement is 7.1-fold for the Y(I)550.35-nm line at 1.89 m, and the calibration results at 1.89 m are better than those at 2.97 m. At 1.89 m, the determination coefficients (R2) of the calibration curves are approximately 99% for Y, Pr, and Zr; the relative standard deviations (RSDs) are less than 10% for Y, Pr, and Zr; the root mean square errors (RMSEs) are less than 0.037% for Pr and Zr; the limits of detection (LODs) are less than 1000 ppm for Y, Pr, and Zr; and the LODs of Y, Pr, and Zr at 2.97 m are higher than those at 1.89 m. Additionally, we tested the system on molten magnesium alloy in a magnesium alloy plant. The calibration results of the liquid magnesium alloy are not as favorable as those of the sampling solid magnesium alloys. In particular, the RSDs of the liquid magnesium alloy are approximately 20% for Pr and La. However, with future improvements in the experimental conditions, the developed system is promising for the in situ analysis of molten magnesium alloy.
文摘Using a classical ensemble method, we have investigated sequential double ionization (SDI) of Ar atoms driven by elliptical laser pulses. The results show that the ion momentum distribution of the Ar atoms depends strongly on the pulse duration. As the pulse duration increases, the ion momentum distribution changes from two bands to four bands and then to six bands and finally to an eight-band structure. Back analysis of double ionization trajectories shows that the variation of the band structure originates from pulse duration dependent multiple ionization bursts of the second electron. Our calculations indicate that the subcycle electron emission in the SDI could be more easily accessed by using elliptical laser pulses with a longer wavelength. Moreover, we show that there is good correspondence between the scaled radial momentum and the ionization time.
基金supported by the National Natural Science Foundation of China(Nos. 61475054 and 11574105)the Fundamental Research Funds for the Central Universities (No. 2017KFYXJJ029)
文摘Previous research shows that few-cycle laser(FCL) pulses with low energy and without a bias field can be used to coherently detect terahertz(THz) pulses. As we know, it is very difficult to stabilize the carrier envelope phase(CEP) of FCL pulses, i.e., there are some random fluctuations for the CEP. Here we theoretically investigate the influence of such instability on the accuracy of THz detection. Our results show that although there is an optimum CEP for THz detection, the fluctuations of the CEP will lead to terrible thorns on the detected THz waveform. In order to solve this problem, we propose an approach using two few-cycle laser pulses with opposite CEPs, i.e., their CEPs are differed by π.
基金supported by grants from the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (81121002)Zhejiang Provincial Natural Science Foundation (Y2100498)
文摘BACKGROUND: Hepatolithiasis is very common in East Asia. It is benign in nature, but has a high recurrence rate. It is likely to lead to biliary cirrhosis and increase the risk of cholangiocarcinoma. Hence, the treatment of hepatolithiasis is difficult but vital. In this report, we present a novel approach to manage hepatolithiasis using the choledochoscopic Frequency-Doubled Double pulse Nd:YAG (FREDDY) laser lithotripsy combined with or without hepatectomy. METHODS: Between July 2009 and October 2012, 45 patients underwent choledochoscopic FREDDY laser lithotripsy combined with or without hepatectomy (laser lithotripsy group). Fortyeight patients underwent a traditional operation (traditional method group) from January 2009 to June 2009. Comparative analysis was made of demographic and clinical characteristics of the two groups. RESULTS: The final stone clearance rate of the laser lithotripsy group was 93.3%, whereas that of the traditional method group was 85.4% (P=0.22). In the laser lithotripsy group, 2 patients experienced hemobilia and 3 patients had acute cholangitis. In the traditional method group, 3 patients had intraoperative hemorrhage, 1 patient had bile leakage, 6 patients had acute cholangitis, and 1 patient died of liver failure. Moreover, the operative time in the traditional method group was significantly longer than that in the laser lithotripsy group (P=0.01). The mean hospital stay of the patients in the traditional method group was longer than that in the laser lithotripsy group (9.8 vs8.2 days, P=0.17). Recurrent intrahepatic bile duct stones were not found during the follow-up period in the two groups. CONCLUSION: Operative choledochoscopic FREDDY laser lithotripsy combined with or without hepatectomy may be an effective and safe treatment for hepatolithiasis.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60278024 and 60438020).
文摘We first experimentally demonstrate a laser-diode end-pumped self-Q-switched and mode-locked Nd,Cr:YAG green laser with a KTP crystal as the intra-cavity frequency doubler. The device produces an average output power of 680 mW at 532 nm. The corresponding pulse width of the Q-switched envelope of the green laser is 170 + 20 ns. The mode-locked pulses have a repetition rate of approximately 183 MHz and the average pulse duration is estimated to be around sub-nanosecond. It is found that the intra-cavity frequency doubling greatly improves the modulation depth and stability of the mode-locked pulses within the Q-switched envelope.