期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Experimental study of a micro-scale solar organic Rankine cycle system based on compound cylindrical Fresnel lens solar concentrator 被引量:3
1
作者 MENG Jia SONG PanPan +4 位作者 WEI MingShan TIAN GuoHong ZHAO Meng ZHENG HongFei HU GuangDa 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2019年第12期2184-2194,共11页
In the present study, a micro-scale solar organic Rankine cycle power generation system was developed. The system comprises of a solar collection system based on compound cylindrical Fresnel lens concentrator and an o... In the present study, a micro-scale solar organic Rankine cycle power generation system was developed. The system comprises of a solar collection system based on compound cylindrical Fresnel lens concentrator and an organic Rankine cycle power generation system integrated with a scroll expander. YD320 and R245 fa were used as the heat transfer fluid and the working fluid, respectively. The effects of the evaporation pressure, the degree of superheat, and the mass flow rate of the working fluid were analyzed to evaluate the solar collection efficiency, the electric power output, the thermal efficiency and exergy efficiency of the system. The results illustrate that both the increasing evaporation pressure and decreasing superheat degree have positive impacts on solar collection efficiency. The electric power increases as the evaporation pressure increases, while the thermal efficiency and the exergy efficiency decrease. However, the system overall efficiency decreases slowly due to the increase of solar collection efficiency. The electric power increases with the increment of the working fluid mass flow rate. The increasing mass flow rate has no visible impact on the thermal and exergy efficiencies of organic Rankine cycle subsystem, whereas a slightly increase of the thermal and exergy efficiencies of the integrated system. The electric power decreases with the increase of the superheat degree, whereas the thermal and the exergy efficiencies of the system increase. The system works more suitably with a higher degree of superheat for the small mass flow rate condition. 展开更多
关键词 micro-scale SORC cylindrical fresnel lens concentrator solar collection efficiency overall performance
原文传递
Solar Flux Measuring and Optical Efficiency Forecasting of the Linear Fresnel Reflector Concentrator after Dust Accumulation
2
作者 ZHAO Xiaoyan YAN Suying +2 位作者 ZHANG Na ZHAO Ning GAO Hongwei 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第3期663-677,共15页
The linear Fresnel reflector concentrator(LFRC)is widely used in the field of solar energy utilization due to its simple structure,low cost,and excellent wind resistance.Nevertheless,the LFRC operates outdoors all yea... The linear Fresnel reflector concentrator(LFRC)is widely used in the field of solar energy utilization due to its simple structure,low cost,and excellent wind resistance.Nevertheless,the LFRC operates outdoors all year round,and the dust accumulation on the mirror will reduce the optical efficiency of the system,so it needs to be perfected and improved.In this paper,a focal plane energy flux experimental device was designed to test the energy flux of the system under different dust accumulation times.The results indicate that,the dust density on the mirror increased and the energy flux on the focal plane decreased with increase of dust accumulation time.After undergoing dust accumulation for 35 days,the dust density on the mirror reached 4.33 g/m^(2)and the average energy flux on the focal plane decreased to 1.78 kW/m^(2).Additionally,the variation of reflectivity caused by dust accumulation on mirror was taken as the quantitative index,and a prediction model for the impact of dust on the optical efficiency of the system was proposed.The results will provide guidance for improving the optical efficiency of the LFRC. 展开更多
关键词 dust accumulation energy flux linear fresnel reflector concentrator optical efficiency forecast
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部