The injection of large volumes of natural gas into geological formations,as is required for underground gas storage,leads to alterations in the effective stress exerted on adjacent faults.This increases the potential ...The injection of large volumes of natural gas into geological formations,as is required for underground gas storage,leads to alterations in the effective stress exerted on adjacent faults.This increases the potential for their reactivation and subsequent earthquake triggering.Most measurements of the frictional properties of rock fractures have been conducted under normal and shear stresses.However,faults in gas storage facilities exist within a true three-dimensional(3D)stress state.A double-direct shear experiment on rock fractures under both lateral and normal stresses was conducted using a true triaxial loading system.It was observed that the friction coefficient increases with increasing lateral stress,but decreases with increasing normal stress.The impact of lateral and normal stresses on the response is primarily mediated through their influence on the initial friction coefficient.This allows for an empirical modification of the rate-state friction model that considers the influence of lateral and normal stresses.The impact of lateral and normal stresses on observed friction coefficients is related to the propensity for the production of wear products on the fracture surfaces.Lateral stresses enhance the shear strength of rock(e.g.Mogi criterion).This reduces asperity breakage and the generation of wear products,and consequently augments the friction coefficient of the surface.Conversely,increased normal stresses inhibit dilatancy on the fracture surface,increasing the breakage of asperities and the concomitant production of wear products that promote rolling deformation.This ultimately reduces the friction coefficient.展开更多
The friction judder characteristics during clutch engagement have a significant influence on the NVH of a driveline.In this research,the judder characteristics of automobile clutch friction materials and experimental ...The friction judder characteristics during clutch engagement have a significant influence on the NVH of a driveline.In this research,the judder characteristics of automobile clutch friction materials and experimental verification are studied.First,considering the stick-slip phenomenon in the clutch engagement process,a detailed 9-degrees-of-freedom(DOF)model including the body,each cylinder of the engine,clutch and friction lining,torsional damper,transmission and other driveline parts is established,and the calculation formula of friction torque in the clutch engagement process is determined.Second,the influence of the friction gradient characteristics on the amplification or attenuation of the automobile friction judder is analyzed,and the corresponding stability analysis and the numerical simulation of different friction gradient values are carried out with MATLAB/Simulink software.Finally,judder bench test equipment and a corresponding damping test program are developed,and the relationship between the friction coefficient gradient characteristics and the system damping is analyzed.After a large number of tests,the evaluation basis of the test is determined.The research results show that the friction lining with negative gradient characteristics of the friction coefficient will have a judder signal.When the friction gradient value is less than-0.005 s/m,the judder signal of the measured clutch cannot be completely attenuated,and the judder phenomenon occurs.When the friction gradient is greater than-0.005 s/m,the judder signal can be significantly suppressed and the system connection tends to be stable.展开更多
An innovative physical simulation apparatus, including high speed camera, red thermal imaging system, and mechanical quantity sensor, was used to investigate the friction heat generation and atom diffusion behavior du...An innovative physical simulation apparatus, including high speed camera, red thermal imaging system, and mechanical quantity sensor, was used to investigate the friction heat generation and atom diffusion behavior during Mg-Ti friction welding process. The results show that the friction coefficient mainly experiences two steady stages. The first steady stage corresponds to the Coulomb friction with material abrasion. The second steady stage corresponds to the stick friction with fully plastic flow. Moreover, the increasing rates of axial displacement, temperature and friction coefficient are obviously enhanced with the increase of rotation speed and axial pressure. It can also be found that the there exists rapid diffusion phenomenon in the Mg-Ti friction welding system. The large deformation activated diffusion coefficient is about 105 higher than that activated by thermal.展开更多
Friction is a critical issue in plastic forming which influences forming force, metal flow, forming quality and service life of die. Since friction is a highly nonlinear physical phenomenon which is interactively affe...Friction is a critical issue in plastic forming which influences forming force, metal flow, forming quality and service life of die. Since friction is a highly nonlinear physical phenomenon which is interactively affected by so many factors, great efforts have been made to study the friction mechanism and controlling. The research progress of friction issues in plastic forming was summarized and discussed from four aspects: testing, characterizing, modeling and optimization/controlling. Considering urgent demands for green, efficient and precise forming of high-performance, lightweight and complex components in high-tech industries such as aerospace and automotive, the trends and challenges of friction study in plastic forming were proposed.展开更多
According to the road adaptive requirements for the vehicle longitudinal safety assistant system an estimation method of the road longitudinal friction coefficient is proposed.The method can simultaneously be applied ...According to the road adaptive requirements for the vehicle longitudinal safety assistant system an estimation method of the road longitudinal friction coefficient is proposed.The method can simultaneously be applied to both the high and the low slip ratio conditions. Based on the simplified magic formula tire model the road longitudinal friction coefficient is preliminarily estimated by the recursive least squares method.The estimated friction coefficient and the tires model parameters are considered as extended states. The extended Kalman filter algorithm is employed to filter out the noise and adaptively adjust the tire model parameters. Then the final road longitudinal friction coefficient is accurately and robustly estimated. The Carsim simulation results show that the proposed method is better than the conventional algorithm. The road longitudinal friction coefficient can be quickly and accurately estimated under both the high and the low slip ratio conditions.The error is less than 0.1 and the response time is less than 2 s which meets the requirements of the vehicle longitudinal safety assistant system.展开更多
Al-5%Si-AI2O3 composites were prepared by powder metallurgy and in-situ reactive synthesis technology. Friction and wear properties of Al-5%Si-Al2O3 composites were studied using an M-2000 wear tester. The effects of ...Al-5%Si-AI2O3 composites were prepared by powder metallurgy and in-situ reactive synthesis technology. Friction and wear properties of Al-5%Si-Al2O3 composites were studied using an M-2000 wear tester. The effects of load, sliding speed and long time continuous friction on friction and wear properties of Al-5%Si-Al2O3 composites were investigated, respectively. Wear surface and wear mechanism of Al-5%Si-Al2O3 composites were studied by Quanta 200 FE-SEM. Results showed that with load increasing, wear loss and coefficient of friction increased. With sliding speed going up, the surface temperature of sample made the rate of the producing of oxidation layer increase, while wear loss and coefficient of friction decreased. With the sliding distance increasing, coefficient of friction increased because the adhesive wear mechanism occurred in the initial stage, then formation and destruction of the oxide layer on the surface of the sample tended to a dynamic equilibrium, the surface state of the sample was relatively stable and so did the coefficient of friction. The experiment shows that the main wear mechanism of Al-5%Si-Al2O3 composites includes abrasive wear, adhesive wear and oxidation wear.展开更多
In this study,we examine the effects of various shapes of nanoparticles in a steady flow of hybrid nanofluids between two stretchable rotating disks.The steady flow of hybrid nanofluids with transformer oil as the bas...In this study,we examine the effects of various shapes of nanoparticles in a steady flow of hybrid nanofluids between two stretchable rotating disks.The steady flow of hybrid nanofluids with transformer oil as the base fluid and Fe_(3)O_(4)+TiO_(2)as the hybrid nanofluid is considered.Several shapes of Fe_(3)O_(4)+TiO_(2)hybrid nanofluids,including sphere,brick,blade,cylinder,and platelet,are studied.Every shape exists in the same volume of a nanoparticle.The leading equations(partial differential equations(PDEs))are transformed to the nonlinear ordinary differential equations(ODEs)with the help of similarity transformations.The system of equations takes the form of ODEs depending on the boundary conditions,whose solutions are computed numerically by the bvp4c MATLAB solver.The outputs are compared with the previous findings,and an intriguing pattern is discovered,such that the tangential velocity is increased for the rotation parameter,while it is decreased by the stretching values because of the lower disk.For the reaction rate parameter,the concentration boundary layer becomes shorter,and the activation energy component increases the rate at which mass transfers come to the higher disk but have the opposite effect on the bottom disk.The ranges of various parameters taken into account are Pr=6.2,Re=2,M=1.0,φ_(1)=φ_(2)=0.03,K=0.5,S=-0.1,Br=0.3,Sc=2.0,α_(1)=0.2,γ=0.1,E_(n)=2.0,and q=1.0,and the rotation factor K is within the range of 0 to 1.展开更多
The effect of friction coefficient on the deep drawing of aluminum alloy AA6111 at elevated temperatures was analyzed based on the three conditions using the finite element analysis and the experimental approach.Resul...The effect of friction coefficient on the deep drawing of aluminum alloy AA6111 at elevated temperatures was analyzed based on the three conditions using the finite element analysis and the experimental approach.Results indicate that the friction coefficient and lubrication position significantly influence the minimum thickness,the thickness deviation and the failure mode of the formed parts.During the hot forming process,the failure modes are draw mode,stretch mode and equi-biaxial stretch mode induced by different lubrication conditions.In terms of formability,the optimal value of friction coefficient determined in this work is 0.15.At the same time,the good agreement is performed between the experimental and simulated results.Fracture often occurs at the center of cup bottom or near the cup corner in a ductile mode or ductile-brittle mixed mode,respectively.展开更多
Friction coefficients in spread formulas were studied under low width-to-thickness ratio. The effects of all the factors on friction were considered as different roughness of surfaces. After lead rolling experiments i...Friction coefficients in spread formulas were studied under low width-to-thickness ratio. The effects of all the factors on friction were considered as different roughness of surfaces. After lead rolling experiments in 5 different roughness grades, friction coefficients were obtained. With changing width-to-thickness ratio, reduction rate and ratio of diameter of roller to thickness, all the nominal friction coefficients which can be used in these formulas were calculated. Then, a fitting expression was proposed, comparing with the results measured in 232 times tests, the errors of the nominal friction coefficients calculated by the expression are mostly less than 12%. After a certain times self-learning, the errors are no more than 2%. With the varying nominal friction coefficients, the spread will be predicted more accurately. When the nominal friction coefficient is used to predict the spread under the real working condition, the results calculated are also in agreement with the measured ones, and the errors are less than 2%. This credible reference and solution about how to set the friction coefficient in spread formulas would also be used in practical industrial production.展开更多
Vehicle state and tire-road adhesion are of great use and importance to vehicle active safety control systems. However, it is always not easy to obtain the information with high accuracy and low expense. Recently, man...Vehicle state and tire-road adhesion are of great use and importance to vehicle active safety control systems. However, it is always not easy to obtain the information with high accuracy and low expense. Recently, many estimation methods have been put forward to solve such problems, in which Kalman filter becomes one of the most popular techniques. Nevertheless, the use of complicated model always leads to poor real-time estimation while the role of road friction coefficient is often ignored. For the purpose of enhancing the real time performance of the algorithm and pursuing precise estimation of vehicle states, a model-based estimator is proposed to conduct combined estimation of vehicle states and road friction coefficients. The estimator is designed based on a three-DOF vehicle model coupled with the Highway Safety Research Institute(HSRI) tire model; the dual extended Kalman filter (DEKF) technique is employed, which can be regarded as two extended Kalman filters operating and communicating simultaneously. Effectiveness of the estimation is firstly examined by comparing the outputs of the estimator with the responses of the vehicle model in CarSim under three typical road adhesion conditions(high-friction, low-friction, and joint-friction). On this basis, driving simulator experiments are carried out to further investigate the practical application of the estimator. Numerical results from CarSim and driving simulator both demonstrate that the estimator designed is capable of estimating the vehicle states and road friction coefficient with reasonable accuracy. The DEKF-based estimator proposed provides the essential information for the vehicle active control system with low expense and decent precision, and offers the possibility of real car application in future.展开更多
Corner contact in gear pair causes vibration and noise,which has attracted many attentions.However,teeth errors and deformation make it difficulty to determine the point situated at corner contact and study the mechan...Corner contact in gear pair causes vibration and noise,which has attracted many attentions.However,teeth errors and deformation make it difficulty to determine the point situated at corner contact and study the mechanism of teeth impact friction in the current researches.Based on the mechanism of corner contact,the process of corner contact is divided into two stages of impact and scratch,and the calculation model including gear equivalent error-combined deformation is established along the line of action.According to the distributive law,gear equivalent error is synthesized by base pitch error,normal backlash and tooth profile modification on the line of action.The combined tooth compliance of the first point lying in corner contact before the normal path is inversed along the line of action,on basis of the theory of engagement and the curve of tooth synthetic complianceload-history.Combined secondarily the equivalent error with the combined deflection,the position standard of the point situated at corner contact is probed.Then the impact positions and forces,from the beginning to the end during corner contact before the normal path,are calculated accurately.Due to the above results,the lash model during corner contact is founded,and the impact force and frictional coefficient are quantified.A numerical example is performed and the averaged impact friction coefficient based on the presented calculation method is validated.This research obtains the results which could be referenced to understand the complex mechanism of teeth impact friction and quantitative calculation of the friction force and coefficient,and to gear exact design for tribology.展开更多
The accurate estimation of road friction coeffi- cient in the active safety control system has become increasingly prominent. Most previous studies on road friction estimation have only used vehicle longitudinal or la...The accurate estimation of road friction coeffi- cient in the active safety control system has become increasingly prominent. Most previous studies on road friction estimation have only used vehicle longitudinal or lateral dynamics and often ignored the load transfer, which tends to cause inaccurate of the actual road friction coef- ficient. A novel method considering load transfer of front and rear axles is proposed to estimate road friction coef- ficient based on braking dynamic model of two-wheeled vehicle. Sliding mode control technique is used to build the ideal braking torque controller, which control target is to control the actual wheel slip ratio of front and rear wheels tracking the ideal wheel slip ratio. In order to eliminate the chattering problem of the sliding mode controller, integral switching surface is used to design the sliding mode sur- face. A second order linear extended state observer is designed to observe road friction coefficient based on wheel speed and braking torque of front and rear wheels. The proposed road friction coefficient estimation schemes are evaluated by simulation in ADAMS/Car. The results show that the estimated values can well agree with the actual values in different road conditions. The observer can estimate road friction coefficient exactly in real-time andresist external disturbance. The proposed research provides a novel method to estimate road friction coefficient with strong robustness and more accurate.展开更多
The identification of maximum road friction coefficient and optimal slip ratio is crucial to vehicle dynamics and control.However,it is always not easy to identify the maximum road friction coefficient with high robus...The identification of maximum road friction coefficient and optimal slip ratio is crucial to vehicle dynamics and control.However,it is always not easy to identify the maximum road friction coefficient with high robustness and good adaptability to various vehicle operating conditions.The existing investigations on robust identification of maximum road friction coefficient are unsatisfactory.In this paper,an identification approach based on road type recognition is proposed for the robust identification of maximum road friction coefficient and optimal slip ratio.The instantaneous road friction coefficient is estimated through the recursive least square with a forgetting factor method based on the single wheel model,and the estimated road friction coefficient and slip ratio are grouped in a set of samples in a small time interval before the current time,which are updated with time progressing.The current road type is recognized by comparing the samples of the estimated road friction coefficient with the standard road friction coefficient of each typical road,and the minimum statistical error is used as the recognition principle to improve identification robustness.Once the road type is recognized,the maximum road friction coefficient and optimal slip ratio are determined.The numerical simulation tests are conducted on two typical road friction conditions(single-friction and joint-friction)by using CarSim software.The test results show that there is little identification error between the identified maximum road friction coefficient and the pre-set value in CarSim.The proposed identification method has good robustness performance to external disturbances and good adaptability to various vehicle operating conditions and road variations,and the identification results can be used for the adjustment of vehicle active safety control strategies.展开更多
Road friction coefficient is a key factor for the stability control of the vehicle dynamics in the critical conditions. Obviously the vehicle dynamics stability control systems, including the anti-lock brake system(...Road friction coefficient is a key factor for the stability control of the vehicle dynamics in the critical conditions. Obviously the vehicle dynamics stability control systems, including the anti-lock brake system(ABS), the traction control system(TCS), and the active yaw control(AYC) system, need the accurate tire and road friction information. However, the simplified method based on the linear tire and vehicle model could not obtain the accurate road friction coefficient for the complicated maneuver of the vehicle. Because the active braking control mode of AYC is different from that of ABS, the road friction coefficient cannot be estimated only with the dynamics states of the tire. With the related dynamics states measured by the sensors of AYC, a comprehensive strategy of the road friction estimation for the active yaw control is brought forward with the sensor fusion technique. Firstly, the variations of the dynamics characteristics of vehicle and tire, and the stability control mode in the steering process are considered, and then the proper road friction estimation methods are brought forward according to the vehicle maneuver process. In the steering maneuver without braking, the comprehensive road friction from the four wheels may be estimated based on the multi-sensor signal fusion method. The estimated values of the road friction reflect the road friction characteristic. When the active brake involved, the road friction coefficient of the braked wheel may be estimated based on the brake pressure and tire forces, the estimated values reflect the road friction between the braked wheel and the road. So the optimal control of the wheel slip rate may be obtained according to the road friction coefficient. The methods proposed in the paper are integrated into the real time controller of AYC, which is matched onto the test vehicle. The ground tests validate the accuracy of the proposed method under the complicated maneuver conditions.展开更多
To analyze the influence of surface texture on friction properties of Crl2MoV', ordinary grinder and spinning technology were adopted to obtain the grooved surface morphology of samples, and then the impact of spindl...To analyze the influence of surface texture on friction properties of Crl2MoV', ordinary grinder and spinning technology were adopted to obtain the grooved surface morphology of samples, and then the impact of spindle speed and feed in z-direction on surface morphology in the process of spinning was studied. In addition, the corresponding friction coefficient of sample was obtained through friction and wear tests. The results show that the peak clipping and the valley filling were conducted on the grinding surface, which could improve the surface roughness effectively and make the grinding trench-type wear scar more uniform. Both the area ratio of groove and groove spacing increased initially and then decreased with the increase of the spindle speed or the feed in z-direction. As a kind of micro-process, the groove could influence the friction coefficient of sample surface, whose distribution was beneficial to the reduction of friction coefficient. Compared with the surface obtained through ordinary grinding, grooved surface morphology through spinning technology was more conductive to reduce the friction coefficient, which could be reduced by 25%. When the friction coefficient of sample was reduced to the minimum, the texture of groove corresponded had an optimal area ratio and an optimal groove spacing, 37.5% and 27.5 μm, respectively.展开更多
The study of frictional properties of human skin is important for medical research, skin care products and textile exploi- tation. In order to investigate the influence of normal load and sliding speed on the friction...The study of frictional properties of human skin is important for medical research, skin care products and textile exploi- tation. In order to investigate the influence of normal load and sliding speed on the frictional properties of skin and its possible mechanism, tests were carded out on a multi-specimen friction tester. When the normal load increases from 0.1 N to 0.9 N, normal displacement and the friction coefficient of skin increase. The friction coefficient is dependent on the load, indicating that both adhesion and deformation contribute to the friction behaviour. The deformation friction was interpreted using the plough model of friction. When sliding speed increases from 0.5 mm·s^-1 to 4 mm·s^-1, the friction coefficient increases and "stick-slip" phenomena increase, indicating that hysteretic friction contributes to the friction. The hysteretic friction was in- terpreted using schematic of energy translation during the rigid spherical probe sliding on the soft skin surface, which provides an explanation for the influence of the sliding speed on the frictional characteristics of the skin.展开更多
The friction coefficient between tube and die in guide zone of tube hydroforming was obtained. In hydroforming, the tube is expanded by an internal pressure against the tool wall. By pushing the tube through tool, a f...The friction coefficient between tube and die in guide zone of tube hydroforming was obtained. In hydroforming, the tube is expanded by an internal pressure against the tool wall. By pushing the tube through tool, a friction force at the contact surface between the tube and the tool occurs. In guiding zone, the friction coefficients between tube and die can be estimated from the measured axial feeding forces. In expansion zone, the friction coefficients between tube and die can be evaluated from the measured geometries of expanded tubes and FE analysis.展开更多
Carbon nanotubes (CNTs) were coated by tungsten layer using metal organic chemical vapor deposition process with tungsten hexacarbonyl as a precursor. The W-coated CNTs (W-CNTs) were dispersed into Cu powders by m...Carbon nanotubes (CNTs) were coated by tungsten layer using metal organic chemical vapor deposition process with tungsten hexacarbonyl as a precursor. The W-coated CNTs (W-CNTs) were dispersed into Cu powders by magnetic stirring process and then the mixed powders were consolidated by spark plasma sintering to fabricate W-CNTs/Cu composites. The CNTs/Cu composites were fabricated using the similafprocesses. The friction coefficient and mass wear loss of W-CNTs/Cu and CNTs/Cu composites were studied. The results showed that the W-CNT content, interfacial bonding situation, and applied load could influence the friction coefficient and wear loss of W-CNTs/Cu com- posites. When the W-CNT content was 1.0 wt.%, the W-CNTs/Cu composites got the minimum friction coefficient and wear loss, which were decreased by 72.1% and 47.6%, respectively, compared with pure Cu specimen. The friction coefficient and wear loss of W-CNTs/Cu composites were lower than those of CNTs/Cu composites, which was due to that the interracial bonding at (W-CNTs)-Cu interface was better than that at CNTs-Cu interface. The friction coefficient of composites did not vary obviously with increasing applied load, while the wear loss of composites increased significantly with the increase of applied load.展开更多
In order to obtain the exact friction coefficient between lining and wire rope, the tension of wire rope is studied as a factor which affects this coefficient. A mechanical model of a wire rope subjected to axial load...In order to obtain the exact friction coefficient between lining and wire rope, the tension of wire rope is studied as a factor which affects this coefficient. A mechanical model of a wire rope subjected to axial load was established to determine the torque of the wire rope. The contact motion between lining and wire rope was regarded as a screw rotation and the axial force of the lining resulting from the torque of the wire rope was analyzed. Theoretical formulas relating tension of the wire rope and the friction coefficient was obtained. Experiments between lining and wire rope with low sliding speed were carried out with friction tester made by us. Experimental results show that increment of the friction coefficient is proportional to that of the tension of the wire rope with a low sliding speed. The experimental results agree with the theoretical calculation; the errors are less than 6%, which oroves the validity of the theoretical model.展开更多
Because of the complexities of tire-road interaction,the wheels of a multi-wheel distributed electricdrive vehicle can easily slip under certain working conditions.As wheel slip affects the dynamic per-formance and st...Because of the complexities of tire-road interaction,the wheels of a multi-wheel distributed electricdrive vehicle can easily slip under certain working conditions.As wheel slip affects the dynamic per-formance and stability of the vehicle,it is crucial to control it and coordinate the driving force.With this aim,this paper presents a driving force coordination control strategy with road identification for eight-wheeled electric vehicles equipped with an in-wheel motor for each wheel.In the proposed control strategy,the road identification module estimates tire-road forces using an unscented Kalman filter al-gorithm and recognizes the road adhesion coefficient by employing the recursive least-square method According to road identification,the optimal sip ratio under the current driving condition is obtainedand a controller based on sliding mode control with a conditional integrator uses this value for accel-eration slip regulation.The anti-slip controller obtains the adjusting torque,which is integrated with the driver-command-based feedforward control torque to implement driving force coordination control.The results of hardware-in-loop simulation show that this control strategy can accurately estimate tire-roadrces as well as the friction coefficient,and thus,can effectively fulfill the purpose of driving force coordinated control under different driving conditions.展开更多
基金supported by National Nature Science Foundation of China (Grant No.42177157)the Science and Technology Program of Liaoning Province (Grant No.2023JH1/10400003)the Applied Basic Research Programof Liaoning Province (Grant No.2023JH2/101300153).
文摘The injection of large volumes of natural gas into geological formations,as is required for underground gas storage,leads to alterations in the effective stress exerted on adjacent faults.This increases the potential for their reactivation and subsequent earthquake triggering.Most measurements of the frictional properties of rock fractures have been conducted under normal and shear stresses.However,faults in gas storage facilities exist within a true three-dimensional(3D)stress state.A double-direct shear experiment on rock fractures under both lateral and normal stresses was conducted using a true triaxial loading system.It was observed that the friction coefficient increases with increasing lateral stress,but decreases with increasing normal stress.The impact of lateral and normal stresses on the response is primarily mediated through their influence on the initial friction coefficient.This allows for an empirical modification of the rate-state friction model that considers the influence of lateral and normal stresses.The impact of lateral and normal stresses on observed friction coefficients is related to the propensity for the production of wear products on the fracture surfaces.Lateral stresses enhance the shear strength of rock(e.g.Mogi criterion).This reduces asperity breakage and the generation of wear products,and consequently augments the friction coefficient of the surface.Conversely,increased normal stresses inhibit dilatancy on the fracture surface,increasing the breakage of asperities and the concomitant production of wear products that promote rolling deformation.This ultimately reduces the friction coefficient.
基金Supported by National Natural Science Foundation of China (Grant No.51775249)。
文摘The friction judder characteristics during clutch engagement have a significant influence on the NVH of a driveline.In this research,the judder characteristics of automobile clutch friction materials and experimental verification are studied.First,considering the stick-slip phenomenon in the clutch engagement process,a detailed 9-degrees-of-freedom(DOF)model including the body,each cylinder of the engine,clutch and friction lining,torsional damper,transmission and other driveline parts is established,and the calculation formula of friction torque in the clutch engagement process is determined.Second,the influence of the friction gradient characteristics on the amplification or attenuation of the automobile friction judder is analyzed,and the corresponding stability analysis and the numerical simulation of different friction gradient values are carried out with MATLAB/Simulink software.Finally,judder bench test equipment and a corresponding damping test program are developed,and the relationship between the friction coefficient gradient characteristics and the system damping is analyzed.After a large number of tests,the evaluation basis of the test is determined.The research results show that the friction lining with negative gradient characteristics of the friction coefficient will have a judder signal.When the friction gradient value is less than-0.005 s/m,the judder signal of the measured clutch cannot be completely attenuated,and the judder phenomenon occurs.When the friction gradient is greater than-0.005 s/m,the judder signal can be significantly suppressed and the system connection tends to be stable.
基金Projects (51101126, 51071123) supported by the National Natural Science Foundation of ChinaProjects (20110491684, 2012T50817) supported by the China Postdoctoral Science FoundationProject (20110942K) supported by the Open Fund of State Key Laboratory of Powder Metallurgy of Central South University, China
文摘An innovative physical simulation apparatus, including high speed camera, red thermal imaging system, and mechanical quantity sensor, was used to investigate the friction heat generation and atom diffusion behavior during Mg-Ti friction welding process. The results show that the friction coefficient mainly experiences two steady stages. The first steady stage corresponds to the Coulomb friction with material abrasion. The second steady stage corresponds to the stick friction with fully plastic flow. Moreover, the increasing rates of axial displacement, temperature and friction coefficient are obviously enhanced with the increase of rotation speed and axial pressure. It can also be found that the there exists rapid diffusion phenomenon in the Mg-Ti friction welding system. The large deformation activated diffusion coefficient is about 105 higher than that activated by thermal.
基金Projects(50905144,51275415)supported by the National Natural Science Foundation of ChinaProject(B08040)supported by the Program for New Century Excellent Talents in University,China
文摘Friction is a critical issue in plastic forming which influences forming force, metal flow, forming quality and service life of die. Since friction is a highly nonlinear physical phenomenon which is interactively affected by so many factors, great efforts have been made to study the friction mechanism and controlling. The research progress of friction issues in plastic forming was summarized and discussed from four aspects: testing, characterizing, modeling and optimization/controlling. Considering urgent demands for green, efficient and precise forming of high-performance, lightweight and complex components in high-tech industries such as aerospace and automotive, the trends and challenges of friction study in plastic forming were proposed.
基金The National Natural Science Foundation of China(No.61273236)the Natural Science Foundation of Jiangsu Province(No.BK2010239)the Ph.D. Programs Foundation of Ministry of Education of China(No.200802861061)
文摘According to the road adaptive requirements for the vehicle longitudinal safety assistant system an estimation method of the road longitudinal friction coefficient is proposed.The method can simultaneously be applied to both the high and the low slip ratio conditions. Based on the simplified magic formula tire model the road longitudinal friction coefficient is preliminarily estimated by the recursive least squares method.The estimated friction coefficient and the tires model parameters are considered as extended states. The extended Kalman filter algorithm is employed to filter out the noise and adaptively adjust the tire model parameters. Then the final road longitudinal friction coefficient is accurately and robustly estimated. The Carsim simulation results show that the proposed method is better than the conventional algorithm. The road longitudinal friction coefficient can be quickly and accurately estimated under both the high and the low slip ratio conditions.The error is less than 0.1 and the response time is less than 2 s which meets the requirements of the vehicle longitudinal safety assistant system.
基金Project(51201143)supported by the National Natural Science Foundation of ChinaProject(SWJTU12BR004)supported by the Fundamental Research Funds for the Central Universities,China
文摘Al-5%Si-AI2O3 composites were prepared by powder metallurgy and in-situ reactive synthesis technology. Friction and wear properties of Al-5%Si-Al2O3 composites were studied using an M-2000 wear tester. The effects of load, sliding speed and long time continuous friction on friction and wear properties of Al-5%Si-Al2O3 composites were investigated, respectively. Wear surface and wear mechanism of Al-5%Si-Al2O3 composites were studied by Quanta 200 FE-SEM. Results showed that with load increasing, wear loss and coefficient of friction increased. With sliding speed going up, the surface temperature of sample made the rate of the producing of oxidation layer increase, while wear loss and coefficient of friction decreased. With the sliding distance increasing, coefficient of friction increased because the adhesive wear mechanism occurred in the initial stage, then formation and destruction of the oxide layer on the surface of the sample tended to a dynamic equilibrium, the surface state of the sample was relatively stable and so did the coefficient of friction. The experiment shows that the main wear mechanism of Al-5%Si-Al2O3 composites includes abrasive wear, adhesive wear and oxidation wear.
文摘In this study,we examine the effects of various shapes of nanoparticles in a steady flow of hybrid nanofluids between two stretchable rotating disks.The steady flow of hybrid nanofluids with transformer oil as the base fluid and Fe_(3)O_(4)+TiO_(2)as the hybrid nanofluid is considered.Several shapes of Fe_(3)O_(4)+TiO_(2)hybrid nanofluids,including sphere,brick,blade,cylinder,and platelet,are studied.Every shape exists in the same volume of a nanoparticle.The leading equations(partial differential equations(PDEs))are transformed to the nonlinear ordinary differential equations(ODEs)with the help of similarity transformations.The system of equations takes the form of ODEs depending on the boundary conditions,whose solutions are computed numerically by the bvp4c MATLAB solver.The outputs are compared with the previous findings,and an intriguing pattern is discovered,such that the tangential velocity is increased for the rotation parameter,while it is decreased by the stretching values because of the lower disk.For the reaction rate parameter,the concentration boundary layer becomes shorter,and the activation energy component increases the rate at which mass transfers come to the higher disk but have the opposite effect on the bottom disk.The ranges of various parameters taken into account are Pr=6.2,Re=2,M=1.0,φ_(1)=φ_(2)=0.03,K=0.5,S=-0.1,Br=0.3,Sc=2.0,α_(1)=0.2,γ=0.1,E_(n)=2.0,and q=1.0,and the rotation factor K is within the range of 0 to 1.
基金Project(2009ZX04014-074)supported by the National Science and Technology Major Project of ChinaProject(P2014-15)supported by the State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology,ChinaProject(20120006110017)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘The effect of friction coefficient on the deep drawing of aluminum alloy AA6111 at elevated temperatures was analyzed based on the three conditions using the finite element analysis and the experimental approach.Results indicate that the friction coefficient and lubrication position significantly influence the minimum thickness,the thickness deviation and the failure mode of the formed parts.During the hot forming process,the failure modes are draw mode,stretch mode and equi-biaxial stretch mode induced by different lubrication conditions.In terms of formability,the optimal value of friction coefficient determined in this work is 0.15.At the same time,the good agreement is performed between the experimental and simulated results.Fracture often occurs at the center of cup bottom or near the cup corner in a ductile mode or ductile-brittle mixed mode,respectively.
基金Projects(51074052,50734002)supported by the National Natural Science Foundation of China
文摘Friction coefficients in spread formulas were studied under low width-to-thickness ratio. The effects of all the factors on friction were considered as different roughness of surfaces. After lead rolling experiments in 5 different roughness grades, friction coefficients were obtained. With changing width-to-thickness ratio, reduction rate and ratio of diameter of roller to thickness, all the nominal friction coefficients which can be used in these formulas were calculated. Then, a fitting expression was proposed, comparing with the results measured in 232 times tests, the errors of the nominal friction coefficients calculated by the expression are mostly less than 12%. After a certain times self-learning, the errors are no more than 2%. With the varying nominal friction coefficients, the spread will be predicted more accurately. When the nominal friction coefficient is used to predict the spread under the real working condition, the results calculated are also in agreement with the measured ones, and the errors are less than 2%. This credible reference and solution about how to set the friction coefficient in spread formulas would also be used in practical industrial production.
基金supported by National Natural Science Foundation of China(Grant Nos. 51075176, 51105165)
文摘Vehicle state and tire-road adhesion are of great use and importance to vehicle active safety control systems. However, it is always not easy to obtain the information with high accuracy and low expense. Recently, many estimation methods have been put forward to solve such problems, in which Kalman filter becomes one of the most popular techniques. Nevertheless, the use of complicated model always leads to poor real-time estimation while the role of road friction coefficient is often ignored. For the purpose of enhancing the real time performance of the algorithm and pursuing precise estimation of vehicle states, a model-based estimator is proposed to conduct combined estimation of vehicle states and road friction coefficients. The estimator is designed based on a three-DOF vehicle model coupled with the Highway Safety Research Institute(HSRI) tire model; the dual extended Kalman filter (DEKF) technique is employed, which can be regarded as two extended Kalman filters operating and communicating simultaneously. Effectiveness of the estimation is firstly examined by comparing the outputs of the estimator with the responses of the vehicle model in CarSim under three typical road adhesion conditions(high-friction, low-friction, and joint-friction). On this basis, driving simulator experiments are carried out to further investigate the practical application of the estimator. Numerical results from CarSim and driving simulator both demonstrate that the estimator designed is capable of estimating the vehicle states and road friction coefficient with reasonable accuracy. The DEKF-based estimator proposed provides the essential information for the vehicle active control system with low expense and decent precision, and offers the possibility of real car application in future.
基金Supported by National Science Foundation of China(Grant No.51275160)National Science Foundation of China(Grant No.51305462)National Key Basic Research Program of China(973 Program,Grant No.2010CB832700)
文摘Corner contact in gear pair causes vibration and noise,which has attracted many attentions.However,teeth errors and deformation make it difficulty to determine the point situated at corner contact and study the mechanism of teeth impact friction in the current researches.Based on the mechanism of corner contact,the process of corner contact is divided into two stages of impact and scratch,and the calculation model including gear equivalent error-combined deformation is established along the line of action.According to the distributive law,gear equivalent error is synthesized by base pitch error,normal backlash and tooth profile modification on the line of action.The combined tooth compliance of the first point lying in corner contact before the normal path is inversed along the line of action,on basis of the theory of engagement and the curve of tooth synthetic complianceload-history.Combined secondarily the equivalent error with the combined deflection,the position standard of the point situated at corner contact is probed.Then the impact positions and forces,from the beginning to the end during corner contact before the normal path,are calculated accurately.Due to the above results,the lash model during corner contact is founded,and the impact force and frictional coefficient are quantified.A numerical example is performed and the averaged impact friction coefficient based on the presented calculation method is validated.This research obtains the results which could be referenced to understand the complex mechanism of teeth impact friction and quantitative calculation of the friction force and coefficient,and to gear exact design for tribology.
基金Supported by Fundamental Research Funds for the Central Universities(Grant No.NS2015015)
文摘The accurate estimation of road friction coeffi- cient in the active safety control system has become increasingly prominent. Most previous studies on road friction estimation have only used vehicle longitudinal or lateral dynamics and often ignored the load transfer, which tends to cause inaccurate of the actual road friction coef- ficient. A novel method considering load transfer of front and rear axles is proposed to estimate road friction coef- ficient based on braking dynamic model of two-wheeled vehicle. Sliding mode control technique is used to build the ideal braking torque controller, which control target is to control the actual wheel slip ratio of front and rear wheels tracking the ideal wheel slip ratio. In order to eliminate the chattering problem of the sliding mode controller, integral switching surface is used to design the sliding mode sur- face. A second order linear extended state observer is designed to observe road friction coefficient based on wheel speed and braking torque of front and rear wheels. The proposed road friction coefficient estimation schemes are evaluated by simulation in ADAMS/Car. The results show that the estimated values can well agree with the actual values in different road conditions. The observer can estimate road friction coefficient exactly in real-time andresist external disturbance. The proposed research provides a novel method to estimate road friction coefficient with strong robustness and more accurate.
基金Supported by National Hi-tech Research and Development Program of China(863 Program,Grant No.2006AA110101)
文摘The identification of maximum road friction coefficient and optimal slip ratio is crucial to vehicle dynamics and control.However,it is always not easy to identify the maximum road friction coefficient with high robustness and good adaptability to various vehicle operating conditions.The existing investigations on robust identification of maximum road friction coefficient are unsatisfactory.In this paper,an identification approach based on road type recognition is proposed for the robust identification of maximum road friction coefficient and optimal slip ratio.The instantaneous road friction coefficient is estimated through the recursive least square with a forgetting factor method based on the single wheel model,and the estimated road friction coefficient and slip ratio are grouped in a set of samples in a small time interval before the current time,which are updated with time progressing.The current road type is recognized by comparing the samples of the estimated road friction coefficient with the standard road friction coefficient of each typical road,and the minimum statistical error is used as the recognition principle to improve identification robustness.Once the road type is recognized,the maximum road friction coefficient and optimal slip ratio are determined.The numerical simulation tests are conducted on two typical road friction conditions(single-friction and joint-friction)by using CarSim software.The test results show that there is little identification error between the identified maximum road friction coefficient and the pre-set value in CarSim.The proposed identification method has good robustness performance to external disturbances and good adaptability to various vehicle operating conditions and road variations,and the identification results can be used for the adjustment of vehicle active safety control strategies.
基金supported by National Natural Science Foundation of China (Grant No. 50575120)Ministry of Science and Technology of China (Grant No. 20071850519)
文摘Road friction coefficient is a key factor for the stability control of the vehicle dynamics in the critical conditions. Obviously the vehicle dynamics stability control systems, including the anti-lock brake system(ABS), the traction control system(TCS), and the active yaw control(AYC) system, need the accurate tire and road friction information. However, the simplified method based on the linear tire and vehicle model could not obtain the accurate road friction coefficient for the complicated maneuver of the vehicle. Because the active braking control mode of AYC is different from that of ABS, the road friction coefficient cannot be estimated only with the dynamics states of the tire. With the related dynamics states measured by the sensors of AYC, a comprehensive strategy of the road friction estimation for the active yaw control is brought forward with the sensor fusion technique. Firstly, the variations of the dynamics characteristics of vehicle and tire, and the stability control mode in the steering process are considered, and then the proper road friction estimation methods are brought forward according to the vehicle maneuver process. In the steering maneuver without braking, the comprehensive road friction from the four wheels may be estimated based on the multi-sensor signal fusion method. The estimated values of the road friction reflect the road friction characteristic. When the active brake involved, the road friction coefficient of the braked wheel may be estimated based on the brake pressure and tire forces, the estimated values reflect the road friction between the braked wheel and the road. So the optimal control of the wheel slip rate may be obtained according to the road friction coefficient. The methods proposed in the paper are integrated into the real time controller of AYC, which is matched onto the test vehicle. The ground tests validate the accuracy of the proposed method under the complicated maneuver conditions.
基金Project(51275543)supported by the National Natural Science Foundation,ChinaProject(KJ1603804)supported by the Research Projects of Chongqing Commission of Science and Technology,China
文摘To analyze the influence of surface texture on friction properties of Crl2MoV', ordinary grinder and spinning technology were adopted to obtain the grooved surface morphology of samples, and then the impact of spindle speed and feed in z-direction on surface morphology in the process of spinning was studied. In addition, the corresponding friction coefficient of sample was obtained through friction and wear tests. The results show that the peak clipping and the valley filling were conducted on the grinding surface, which could improve the surface roughness effectively and make the grinding trench-type wear scar more uniform. Both the area ratio of groove and groove spacing increased initially and then decreased with the increase of the spindle speed or the feed in z-direction. As a kind of micro-process, the groove could influence the friction coefficient of sample surface, whose distribution was beneficial to the reduction of friction coefficient. Compared with the surface obtained through ordinary grinding, grooved surface morphology through spinning technology was more conductive to reduce the friction coefficient, which could be reduced by 25%. When the friction coefficient of sample was reduced to the minimum, the texture of groove corresponded had an optimal area ratio and an optimal groove spacing, 37.5% and 27.5 μm, respectively.
基金This work was supported by the National Natural Science Foundation of China(grant No.50475164 and 50535050)by the Science Foundation of China University of Mining and Technology(grant No.2005B034).
文摘The study of frictional properties of human skin is important for medical research, skin care products and textile exploi- tation. In order to investigate the influence of normal load and sliding speed on the frictional properties of skin and its possible mechanism, tests were carded out on a multi-specimen friction tester. When the normal load increases from 0.1 N to 0.9 N, normal displacement and the friction coefficient of skin increase. The friction coefficient is dependent on the load, indicating that both adhesion and deformation contribute to the friction behaviour. The deformation friction was interpreted using the plough model of friction. When sliding speed increases from 0.5 mm·s^-1 to 4 mm·s^-1, the friction coefficient increases and "stick-slip" phenomena increase, indicating that hysteretic friction contributes to the friction. The hysteretic friction was in- terpreted using schematic of energy translation during the rigid spherical probe sliding on the soft skin surface, which provides an explanation for the influence of the sliding speed on the frictional characteristics of the skin.
基金supported by grants-in-aid for the National Core Research Center Program from MEST/KOSEF
文摘The friction coefficient between tube and die in guide zone of tube hydroforming was obtained. In hydroforming, the tube is expanded by an internal pressure against the tool wall. By pushing the tube through tool, a friction force at the contact surface between the tube and the tool occurs. In guiding zone, the friction coefficients between tube and die can be estimated from the measured axial feeding forces. In expansion zone, the friction coefficients between tube and die can be evaluated from the measured geometries of expanded tubes and FE analysis.
基金financially supported by the National Natural Science Foundation of China (No.50971020)National HighTech Research and Development Program of China (No.2009AA03Z116)
文摘Carbon nanotubes (CNTs) were coated by tungsten layer using metal organic chemical vapor deposition process with tungsten hexacarbonyl as a precursor. The W-coated CNTs (W-CNTs) were dispersed into Cu powders by magnetic stirring process and then the mixed powders were consolidated by spark plasma sintering to fabricate W-CNTs/Cu composites. The CNTs/Cu composites were fabricated using the similafprocesses. The friction coefficient and mass wear loss of W-CNTs/Cu and CNTs/Cu composites were studied. The results showed that the W-CNT content, interfacial bonding situation, and applied load could influence the friction coefficient and wear loss of W-CNTs/Cu com- posites. When the W-CNT content was 1.0 wt.%, the W-CNTs/Cu composites got the minimum friction coefficient and wear loss, which were decreased by 72.1% and 47.6%, respectively, compared with pure Cu specimen. The friction coefficient and wear loss of W-CNTs/Cu composites were lower than those of CNTs/Cu composites, which was due to that the interracial bonding at (W-CNTs)-Cu interface was better than that at CNTs-Cu interface. The friction coefficient of composites did not vary obviously with increasing applied load, while the wear loss of composites increased significantly with the increase of applied load.
基金Projects 20060290505 supported by the Research Fund for the Doctoral Program of Higher EducationNCET-04-0488 by the New Century Excellent Talent Technological Project of Ministry of Education of China.
文摘In order to obtain the exact friction coefficient between lining and wire rope, the tension of wire rope is studied as a factor which affects this coefficient. A mechanical model of a wire rope subjected to axial load was established to determine the torque of the wire rope. The contact motion between lining and wire rope was regarded as a screw rotation and the axial force of the lining resulting from the torque of the wire rope was analyzed. Theoretical formulas relating tension of the wire rope and the friction coefficient was obtained. Experiments between lining and wire rope with low sliding speed were carried out with friction tester made by us. Experimental results show that increment of the friction coefficient is proportional to that of the tension of the wire rope with a low sliding speed. The experimental results agree with the theoretical calculation; the errors are less than 6%, which oroves the validity of the theoretical model.
基金This work was supported by the Weapons and Equipment Pre-Research Project of China(No.301051102).
文摘Because of the complexities of tire-road interaction,the wheels of a multi-wheel distributed electricdrive vehicle can easily slip under certain working conditions.As wheel slip affects the dynamic per-formance and stability of the vehicle,it is crucial to control it and coordinate the driving force.With this aim,this paper presents a driving force coordination control strategy with road identification for eight-wheeled electric vehicles equipped with an in-wheel motor for each wheel.In the proposed control strategy,the road identification module estimates tire-road forces using an unscented Kalman filter al-gorithm and recognizes the road adhesion coefficient by employing the recursive least-square method According to road identification,the optimal sip ratio under the current driving condition is obtainedand a controller based on sliding mode control with a conditional integrator uses this value for accel-eration slip regulation.The anti-slip controller obtains the adjusting torque,which is integrated with the driver-command-based feedforward control torque to implement driving force coordination control.The results of hardware-in-loop simulation show that this control strategy can accurately estimate tire-roadrces as well as the friction coefficient,and thus,can effectively fulfill the purpose of driving force coordinated control under different driving conditions.