期刊文献+
共找到122篇文章
< 1 2 7 >
每页显示 20 50 100
Improved Fruit Fly Optimization Algorithm for Solving Lot-Streaming Flow-Shop Scheduling Problem 被引量:2
1
作者 张鹏 王凌 《Journal of Donghua University(English Edition)》 EI CAS 2014年第2期165-170,共6页
An improved fruit fly optimization algorithm( iFOA) is proposed for solving the lot-streaming flow-shop scheduling problem( LSFSP) with equal-size sub-lots. In the proposed iFOA,a solution is encoded as two vectors to... An improved fruit fly optimization algorithm( iFOA) is proposed for solving the lot-streaming flow-shop scheduling problem( LSFSP) with equal-size sub-lots. In the proposed iFOA,a solution is encoded as two vectors to determine the splitting of jobs and the sequence of the sub-lots simultaneously. Based on the encoding scheme,three kinds of neighborhoods are developed for generating new solutions. To well balance the exploitation and exploration,two main search procedures are designed within the evolutionary search framework of the iFOA,including the neighborhood-based search( smell-vision-based search) and the global cooperation-based search. Finally,numerical testing results are provided,and the comparisons demonstrate the effectiveness of the proposed iFOA for solving the LSFSP. 展开更多
关键词 fruit fly optimization algorithm(foa) lot-streaming flowshop scheduling job splitting neighborhood-based search cooperation-based search
下载PDF
Seasonal Least Squares Support Vector Machine with Fruit Fly Optimization Algorithm in Electricity Consumption Forecasting
2
作者 WANG Zilong XIA Chenxia 《Journal of Donghua University(English Edition)》 EI CAS 2019年第1期67-76,共10页
Electricity is the guarantee of economic development and daily life. Thus, accurate monthly electricity consumption forecasting can provide reliable guidance for power construction planning. In this paper, a hybrid mo... Electricity is the guarantee of economic development and daily life. Thus, accurate monthly electricity consumption forecasting can provide reliable guidance for power construction planning. In this paper, a hybrid model in combination of least squares support vector machine(LSSVM) model with fruit fly optimization algorithm(FOA) and the seasonal index adjustment is constructed to predict monthly electricity consumption. The monthly electricity consumption demonstrates a nonlinear characteristic and seasonal tendency. The LSSVM has a good fit for nonlinear data, so it has been widely applied to handling nonlinear time series prediction. However, there is no unified selection method for key parameters and no unified method to deal with the effect of seasonal tendency. Therefore, the FOA was hybridized with the LSSVM and the seasonal index adjustment to solve this problem. In order to evaluate the forecasting performance of hybrid model, two samples of monthly electricity consumption of China and the United States were employed, besides several different models were applied to forecast the two empirical time series. The results of the two samples all show that, for seasonal data, the adjusted model with seasonal indexes has better forecasting performance. The forecasting performance is better than the models without seasonal indexes. The fruit fly optimized LSSVM model outperforms other alternative models. In other words, the proposed hybrid model is a feasible method for the electricity consumption forecasting. 展开更多
关键词 forecasting fruit fly optimization algorithm(foa) least SQUARES support vector machine(LSSVM) SEASONAL index
下载PDF
An Adaptive Fruit Fly Optimization Algorithm for Optimization Problems
3
作者 L. Q. Zhang J. Xiong J. K. Liu 《Journal of Applied Mathematics and Physics》 2023年第11期3641-3650,共10页
In this paper, we present a new fruit fly optimization algorithm with the adaptive step for solving unconstrained optimization problems, which is able to avoid the slow convergence and the tendency to fall into local ... In this paper, we present a new fruit fly optimization algorithm with the adaptive step for solving unconstrained optimization problems, which is able to avoid the slow convergence and the tendency to fall into local optimum of the standard fruit fly optimization algorithm. By using the information of the iteration number and the maximum iteration number, the proposed algorithm uses the floor function to ensure that the fruit fly swarms adopt the large step search during the olfactory search stage which improves the search speed;in the visual search stage, the small step is used to effectively avoid local optimum. Finally, using commonly used benchmark testing functions, the proposed algorithm is compared with the standard fruit fly optimization algorithm with some fixed steps. The simulation experiment results show that the proposed algorithm can quickly approach the optimal solution in the olfactory search stage and accurately search in the visual search stage, demonstrating more effective performance. 展开更多
关键词 Swarm Intelligent optimization algorithm fruit fly optimization algorithm Adaptive Step Local Optimum Convergence Speed
下载PDF
Binary Fruit Fly Swarm Algorithms for the Set Covering Problem 被引量:1
4
作者 Broderick Crawford Ricardo Soto +7 位作者 Hanns de la Fuente Mella Claudio Elortegui Wenceslao Palma Claudio Torres-Rojas Claudia Vasconcellos-Gaete Marcelo Becerra Javier Pena Sanjay Misra 《Computers, Materials & Continua》 SCIE EI 2022年第6期4295-4318,共24页
Currently,the industry is experiencing an exponential increase in dealing with binary-based combinatorial problems.In this sense,metaheuristics have been a common trend in the field in order to design approaches to so... Currently,the industry is experiencing an exponential increase in dealing with binary-based combinatorial problems.In this sense,metaheuristics have been a common trend in the field in order to design approaches to solve them successfully.Thus,a well-known strategy consists in the use of algorithms based on discrete swarms transformed to perform in binary environments.Following the No Free Lunch theorem,we are interested in testing the performance of the Fruit Fly Algorithm,this is a bio-inspired metaheuristic for deducing global optimization in continuous spaces,based on the foraging behavior of the fruit fly,which usually has much better sensory perception of smell and vision than any other species.On the other hand,the Set Coverage Problem is a well-known NP-hard problem with many practical applications,including production line balancing,utility installation,and crew scheduling in railroad and mass transit companies.In this paper,we propose different binarization methods for the Fruit Fly Algorithm,using Sshaped and V-shaped transfer functions and various discretization methods to make the algorithm work in a binary search space.We are motivated with this approach,because in this way we can deliver to future researchers interested in this area,a way to be able to work with continuous metaheuristics in binary domains.This new approach was tested on benchmark instances of the Set Coverage Problem and the computational results show that the proposed algorithm is robust enough to produce good results with low computational cost. 展开更多
关键词 Set covering problem fruit fly swarm algorithm metaheuristics binarization methods combinatorial optimization problem
下载PDF
基于FOA优化PID参数的永磁同步电机转速控制
5
作者 王萍 《微特电机》 2024年第8期58-62,67,共6页
为提高永磁同步电机转速控制的效果,提出一种基于果蝇优化算法(Fruit Fly Optimization Algorithm,FOA)优化比例积分微分控制(proportional-integral-derivative control)的方法。其中,以PMSM调速系统为背景,构建调速系统的PID方法,然... 为提高永磁同步电机转速控制的效果,提出一种基于果蝇优化算法(Fruit Fly Optimization Algorithm,FOA)优化比例积分微分控制(proportional-integral-derivative control)的方法。其中,以PMSM调速系统为背景,构建调速系统的PID方法,然后构建FOA优化PID参数的PID控制器,以实现永磁同步电机转速系统的自适应控制。仿真结果表明,FOA-PID方法具有响应速度快、超调小、抗干扰能力和速度调节能力强的特点,在固定负载改变转速条件下,仅需0.02 s即可达到稳定状态,有效改善了永磁同步电机转速控制系统的控制性能;相较于标准PID和RBF-PID方法,FOA-PID方法在正向起动转速情况下的超调量为1.36%,分别低5.73%和1.12%;在负向起动转速情况下,FOA-PID方法的最大超调量为0.56%,分别低15.13%和8.22%。由此得出,本FOA-PID方法可行,具有一定的优越性。 展开更多
关键词 永磁同步电机 转速控制 PID控制 果蝇优化算法 超调量
下载PDF
基于FOA-BP-AdaBoost的大坝变形预测模型及应用
6
作者 王凯 李鸳承 +3 位作者 范亚军 何广焕 蒙金龙 赵磊 《红水河》 2024年第2期1-5,共5页
为提升大坝变形监测预测精度,解决变形量受多因素影响等问题,笔者提出了基于果蝇优化算法(FOA)、BP神经网络的AdaBoost强预测组合模型(FOA-BP-AdaBoost),并与BP神经网络模型、FOA-BP神经网络模型应用于工程实例中的预测精度进行多方位... 为提升大坝变形监测预测精度,解决变形量受多因素影响等问题,笔者提出了基于果蝇优化算法(FOA)、BP神经网络的AdaBoost强预测组合模型(FOA-BP-AdaBoost),并与BP神经网络模型、FOA-BP神经网络模型应用于工程实例中的预测精度进行多方位量化对比。结果表明:强预测模型集齐了果蝇算法全局优化、BP神经网络局部寻优和AdaBoost“优中选优”的特点,最大程度优化了预测效果;实例应用证实了FOA-BP-AdaBoost模型在大坝变形预测领域的准确性和有效性。该模型已成功应用于工程实例,可为类似工程提供参考。 展开更多
关键词 大坝 变形监测 foa-BP-AdaBoost模型 强预测模型 果蝇优化算法 BP神经网络
下载PDF
基于K-近邻与FOA改进聚类的数据异常分析模型及用电行为分析
7
作者 周伟 牛誉蓉 《成都工业学院学报》 2024年第5期11-16,共6页
对隐藏在大数据中的信息进行深层挖掘时,由于存在数据来源、统计口径、人员输入、行为异常等方面的问题,可能出现异常数据。针对此类问题,首先利用离散小波变换进行多尺度分解,然后采用K-近邻思想对局部区域的密度、距离重新定义,来提... 对隐藏在大数据中的信息进行深层挖掘时,由于存在数据来源、统计口径、人员输入、行为异常等方面的问题,可能出现异常数据。针对此类问题,首先利用离散小波变换进行多尺度分解,然后采用K-近邻思想对局部区域的密度、距离重新定义,来提高对异常值的识别精度;最后结合改进的果蝇优化算法,对密度峰值聚类算法中的截断距离进行优化,提出基于K-近邻与改进果蝇优化的密度峰值聚类异常分析模型。从异常值检测角度进行仿真实验分析,根据用户数据多时间尺度特征,对不同时间尺度的复合数据进行聚类,对用电行为进行分析;选择多种标准测试函数,对基于知识学习的改进果蝇优化算法性能进行对比研究。结果显示,基于K-近邻的算法能够将变压器中不同于正常运行模式的少数异常曲线及单个用户的异常用电模式检测出来,其有效性得到了验证。在基于知识学习的改进果蝇优化算法中,随着果蝇个体数量增加其寻优能力也得到提高。 展开更多
关键词 异常值检测 果蝇优化算法 K-近邻算法 峰值聚类算法 用电行为
下载PDF
基于改进的FOA-SVM导水裂隙带高度预测研究 被引量:31
8
作者 张宏伟 朱志洁 +1 位作者 霍丙杰 宋卫华 《中国安全科学学报》 CAS CSCD 北大核心 2013年第10期9-14,共6页
为准确预测导水裂隙带高度,提出一种新的预测方法。在对部分矿井的导水裂隙带发育情况统计分析的基础上,应用支持向量机(SVM)建立导水裂隙带高度预计模型。采用改进的果蝇优化算法(FOA)优化参数,避免SVM的参数选取对预测准确性的影响。... 为准确预测导水裂隙带高度,提出一种新的预测方法。在对部分矿井的导水裂隙带发育情况统计分析的基础上,应用支持向量机(SVM)建立导水裂隙带高度预计模型。采用改进的果蝇优化算法(FOA)优化参数,避免SVM的参数选取对预测准确性的影响。选取统计样本,检验该模型的预测性能。并将该模型的预测结果与未改进的3种方法(FOA优化的SVM、遗传算法(GA)优化的SVM和粒子群算法(PSO)优化的SVM模型)分别进行比较。结果表明:改进的FOA-SVM模型有较高的预测精度和较强的泛化能力,能够相对准确、高效地预测导水裂隙带高度。 展开更多
关键词 导水裂隙带 支持向量机(SVM) 果蝇优化算法(foa) 回归 仿真预测
下载PDF
基于FOA-SVM模型的输油管道内腐蚀速率预测 被引量:16
9
作者 吴庆伟 王金龙 张平 《腐蚀与防护》 北大核心 2017年第9期732-736,共5页
针对管道内腐蚀速率相关问题,采集某输油管道内腐蚀的实测数据,应用多元统计分析算法,在支持向量机(SVM)的基础上建立管道内腐蚀速率预测模型。采用果蝇优化算法(FOA)对预测模型进行优化训练,建立FOASVM预测模型,利用实测数据样本对模... 针对管道内腐蚀速率相关问题,采集某输油管道内腐蚀的实测数据,应用多元统计分析算法,在支持向量机(SVM)的基础上建立管道内腐蚀速率预测模型。采用果蝇优化算法(FOA)对预测模型进行优化训练,建立FOASVM预测模型,利用实测数据样本对模型的预测结果进行检验。结果表明:综合方差和均差分别为1.397×10-3和0.037 4,FOA-SVM预测模型相比灰色组合模型预测值和最小二乘支持向量机(LS-SVM)模型预计结果稳定性好、精度高,但是FOA-SVM预测模型训练时间较长,今后在提高模型预测效率上需要进一步研究。 展开更多
关键词 管道内腐蚀速率 支持向量机SVM 果蝇算法foa 多元统计分析
下载PDF
基于FOA的叠前反演方法 被引量:4
10
作者 窦玉坛 史松群 刘化清 《石油地球物理勘探》 EI CSCD 北大核心 2013年第6期948-953,1016+851,共6页
本文提出一种基于果蝇优化算法的非线性叠前反演方法,利用Schaffer函数F6进行算法性能测试,并对不同加噪百分比的模型数据利用果蝇优化算法(FOA)进行EI反演,提取相应的弹性参数,反演能够收敛到全局最优解。将此法应用于鄂尔多斯SLG地区... 本文提出一种基于果蝇优化算法的非线性叠前反演方法,利用Schaffer函数F6进行算法性能测试,并对不同加噪百分比的模型数据利用果蝇优化算法(FOA)进行EI反演,提取相应的弹性参数,反演能够收敛到全局最优解。将此法应用于鄂尔多斯SLG地区实际二维数据,能够快速得到较稳定可靠的弹性反演参数,表明文中方法能够用于指示气层的横向变化。 展开更多
关键词 foa非线性 叠前反演 ZOEPPRITZ方程 全局优化
下载PDF
基于改进深度稀疏自编码器及FOA-ELM的电力负荷预测 被引量:25
11
作者 张淑清 要俊波 +2 位作者 张立国 姜安琦 穆勇 《仪器仪表学报》 EI CAS CSCD 北大核心 2020年第4期49-57,共9页
智能电网的发展使得电网获取的数据逐渐增多,为了从多维大数据中获取有用信息并对短期内电力负荷进行准确的预测,提出了一种基于改进的深度稀疏自编码器(IDSAE)降维及果蝇优化算法(FOA)优化极限学习机(ELM)的短期电力负荷预测方法。将L... 智能电网的发展使得电网获取的数据逐渐增多,为了从多维大数据中获取有用信息并对短期内电力负荷进行准确的预测,提出了一种基于改进的深度稀疏自编码器(IDSAE)降维及果蝇优化算法(FOA)优化极限学习机(ELM)的短期电力负荷预测方法。将L1正则化加入到深度稀疏自编码器(DSAE)中能够诱导出更好的稀疏性,用IDSAE对影响电力负荷预测精度的高维数据进行特征降维,消除了指标间的多重共线性,实现高维数据向低维空间的压缩编码。采用FOA优化算法优化ELM的权值和阈值,得到最优值,能够克服因极限学习机随机选择权值和阈值导致预测精度低的缺点。首先将气象因素通过IDSAE降维,得到稀疏后的综合气象因素特征指标,协同电力负荷数据作为FOA优化的ELM预测模型的输入向量进行电力负荷预测。通过与DSAE-FOAELM、DSAE-ELM和IDSAE-ELM等模型的对比实验,证明了提出的预测模型能有效提高预测精度,经计算得出预测精度提升大约8%。 展开更多
关键词 短期电力负荷预测 深度稀疏自编码器(DSAE) 降维 果蝇优化算法 极限学习机
下载PDF
基于因果时序网络的FOA-GRNN电网故障诊断方法 被引量:6
12
作者 薛毓强 李宗辉 《电力系统及其自动化学报》 CSCD 北大核心 2014年第11期72-77,共6页
针对电网故障诊断过程常受到警报信息畸变以及保护设备误动或拒动等不确定因素的影响而导致误诊断的问题,提出了基于时序网络的果蝇优化算法-广义回归神经网络电网故障诊断方法。利用系统保护与设备之间存在的时序逻辑关系,对获得的电... 针对电网故障诊断过程常受到警报信息畸变以及保护设备误动或拒动等不确定因素的影响而导致误诊断的问题,提出了基于时序网络的果蝇优化算法-广义回归神经网络电网故障诊断方法。利用系统保护与设备之间存在的时序逻辑关系,对获得的电网故障警报信息甄别后再进行故障诊断。算例分析及测试结果说明,所提方法能够准确地实现电网的故障诊断,并适应电网拓扑结构的变化。 展开更多
关键词 电力系统 因果网络 神经网络 果蝇优化算法 广义回归神经网络
下载PDF
FOA-LM算法及其在语音信号稀疏分解中的应用 被引量:2
13
作者 肖正安 罗海峰 《计算机工程与应用》 CSCD 北大核心 2015年第12期219-222,245,共5页
信号的稀疏表示在信号处理的许多方面有着重要的应用,但稀疏分解计算量十分巨大,难以产业化应用。粒子群优化(PSO)及果蝇优化(FOA)等智能算法具备前期收敛速度快,全局搜索能力强的优点,应用到语音信号的稀疏分解中,虽然大大提高了语音... 信号的稀疏表示在信号处理的许多方面有着重要的应用,但稀疏分解计算量十分巨大,难以产业化应用。粒子群优化(PSO)及果蝇优化(FOA)等智能算法具备前期收敛速度快,全局搜索能力强的优点,应用到语音信号的稀疏分解中,虽然大大提高了语音信号稀疏分解的速度,但是该类算法后期的收敛速度较低,稀疏分解速度仍然偏低。拉凡格氏(LM)算法具有收敛速度快,精度高的特点,但是LM算法依赖初值,这使它的应用受到了限制。结合智能算法FOA及LM算法的优点,采用FOA算法求出Gabor原子参数初值,利用这些初值进行LM迭代搜索最优原子。仿真结果表明,基于FOA优化算法和LM算法相结合的方法,具有收敛速度快,精度高的特点,有较高的实用价值。 展开更多
关键词 拉凡格氏算法 果蝇优化算法 粒子群优化算法 稀疏分解
下载PDF
语音信号稀疏分解的FOA实现 被引量:7
14
作者 肖正安 《计算机工程与应用》 CSCD 2013年第10期232-234,共3页
信号的稀疏表示在信号处理的许多方面有着重要的应用,但稀疏分解计算量十分巨大,难以产业化应用。利用果蝇优化算法实现快速寻找匹配追踪(MP)过程每一步的最优原子,大大提高了语音信号稀疏分解的速度,算法的有效性为实验结果所证实。
关键词 语音信号 稀疏分解 匹配追踪 果蝇优化算法
下载PDF
基于CEEMD-PSR-FOA-LSSVM的短期风电功率预测 被引量:3
15
作者 田丽 凤志民 刘世林 《可再生能源》 CAS 北大核心 2016年第11期1632-1638,共7页
为提高短期风电功率预测精度,针对风电功率波动性大、非周期性和非线性强的特点,提出基于互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)-相空间重构(phase space reconstruction,PSR)-果蝇优化算法... 为提高短期风电功率预测精度,针对风电功率波动性大、非周期性和非线性强的特点,提出基于互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)-相空间重构(phase space reconstruction,PSR)-果蝇优化算法(fruit fly optimization algorithm,FOA)-最小二乘支持向量机(least squares support vector machine,LSSVM)的组合预测方法。首先,运用CEEMD算法把风电功率序列分解为若干个分量,并用PSR算法来确定LSSVM建模过程中各个分量的输入和输出;然后,采用FOA算法优化LSSVM建模中的参数,并用训练好的LSSVM对各个分量进行单独预测;最后,用某风电场的实测数据对该组合预测方法进行验证。结果表明,与单独的LSSVM方法和FOA-LSSVM方法预测结果相比,建立的组合模型预测方法精度更高,对风电功率的短期预测更为有效和适用。 展开更多
关键词 短期风电功率预测 互补集合经验模态分解 相空间重构 果蝇优化算法 最小二乘支持向量机
下载PDF
基于FOA算法在配电网重构中的应用 被引量:4
16
作者 凌飞鸿 薛毓强 林铭瀚 《电气开关》 2016年第2期87-90,96,共5页
为解决配电网重构中普遍存在的计算量大,参数多的问题,提出了一种的基于果蝇优化算法的二进制编码策略的配电网重构方法,避免产生大量的不可行解,并以有功网络损耗最小为目标函数,使得寻优效率和计算效率大大提高。应用该算法对IEEE33... 为解决配电网重构中普遍存在的计算量大,参数多的问题,提出了一种的基于果蝇优化算法的二进制编码策略的配电网重构方法,避免产生大量的不可行解,并以有功网络损耗最小为目标函数,使得寻优效率和计算效率大大提高。应用该算法对IEEE33节点网络进行仿真计算,充分说明二进制的FOA算法在寻优成功概率上、计算效率方面都有较大的提高,为配电网重构提供了一种新的思路。 展开更多
关键词 配电网重构 果蝇算法(foa) 编码策略
下载PDF
基于FOA-LSSVM混合优化模型钛铁间基体效应的校正研究
17
作者 李磊 庹先国 +2 位作者 刘明哲 李哲 王俊 《核技术》 CAS CSCD 北大核心 2013年第12期12-18,共7页
提出用果蝇算法(FOA)优化最小二乘支持向量机(LSSVM)的混合模型校正能量色散X荧光(EDXRF)分析中铁和钛的基体效应。使用国产CIT-3000SMEDXRF分析仪、电制冷半导体探测器测得五类矿样共80组光谱数据,每类矿样16组光谱数据。运用FOA优化LS... 提出用果蝇算法(FOA)优化最小二乘支持向量机(LSSVM)的混合模型校正能量色散X荧光(EDXRF)分析中铁和钛的基体效应。使用国产CIT-3000SMEDXRF分析仪、电制冷半导体探测器测得五类矿样共80组光谱数据,每类矿样16组光谱数据。运用FOA优化LSSVM的参数并建立最优模型预测30个样本的钛铁含量,对比化学分析值,FOA-LSSVM预测的钛、铁元素含量与化学分析值的相对误差在1%以内的共26个样本,占总量的86.67%;其余4个样本的钛铁含量预测值与化学分析值一致,占总量的13.33%。另外,运用粒子群算法(PSO)、遗传算法(GA)优化的LSSVM和MATLAB默认的LSSVM模型预测钛铁含量,将其与FOA-LSSVM模型预测的结果进行了对比。综合研究表明,FOA-LSSVM能够实现钛铁元素间基体效应的校正,是一种优选方法。 展开更多
关键词 果蝇算法 基体效应 能量色散X射线荧光 最小二乘支持向量机
下载PDF
基于改进FOA-SVM的矿井火灾图像识别 被引量:12
18
作者 苗续芝 陈伟 +2 位作者 毕方明 房卫东 张武雄 《计算机工程》 CAS CSCD 北大核心 2019年第4期267-274,共8页
为解决矿井下传统火灾识别方法准确率较低的问题,提出一种基于改进果蝇优化算法(FOA)-支持向量机(SVM)的火灾图像识别算法。利用YCrCb颜色空间对捕获的图像进行分割,根据早期的火灾图像特征从图像序列中提取多个火灾特征值。用基于分群... 为解决矿井下传统火灾识别方法准确率较低的问题,提出一种基于改进果蝇优化算法(FOA)-支持向量机(SVM)的火灾图像识别算法。利用YCrCb颜色空间对捕获的图像进行分割,根据早期的火灾图像特征从图像序列中提取多个火灾特征值。用基于分群体融合的改进FOA算法搜索SVM最优核参数和惩罚因子,将提取的火灾图像特征值作为SVM的输入对样本数据进行分类。实验结果表明,采用该方法对矿井火灾进行识别时准确率达97.2%,其分类效果显著优于FOA方法、粒子群优化算法等。 展开更多
关键词 矿井火灾 火灾特征 图像处理 支持向量机 果蝇优化算法
下载PDF
内腐蚀海底管道剩余强度的FOA-GRNN模型 被引量:11
19
作者 毕傲睿 骆正山 +1 位作者 宋莹莹 张新生 《中国安全科学学报》 CAS CSCD 北大核心 2020年第6期78-83,共6页
为探究内腐蚀海底管道剩余强度,保证管道安全运营,基于管道壁厚、直径,腐蚀深度、长度、宽度和极限抗拉强度等影响因素,提出果蝇优化算法(FOA)优化广义回归神经网络(GRNN)的剩余强度计算方法,应用GRNN构建剩余强度预测模型;采用FOA优化... 为探究内腐蚀海底管道剩余强度,保证管道安全运营,基于管道壁厚、直径,腐蚀深度、长度、宽度和极限抗拉强度等影响因素,提出果蝇优化算法(FOA)优化广义回归神经网络(GRNN)的剩余强度计算方法,应用GRNN构建剩余强度预测模型;采用FOA优化模型,人为设置光滑因子的负面影响;通过有限元模拟生成影响因素和剩余强度数据库,并采用FOA-GRNN模型训练和预测;以巴西国家石油研究中心的极限强度爆破试验数据为例,分析验证预测模型。结果表明:FOAGRNN模型对有限元模拟数据的剩余强度预测平均相对误差(ARE)为16.53%,对试验数据预测ARE为7.81%,预测结果合理、准确。 展开更多
关键词 内腐蚀海底管道 剩余强度 果蝇优化算法(foa) 广义回归神经网络(GRNN) 有限元
下载PDF
基于FOA-RBF网络的城市道路短时交通流预测 被引量:6
20
作者 陈明猜 於东军 戚湧 《南京邮电大学学报(自然科学版)》 北大核心 2018年第2期103-110,共8页
为了提高城市道路短时交通流预测的时效性、准确性,提出一种基于果蝇优化算法(Fruit Fly Optimization Algorithm,FOA)的径向基(Radial Basis Function,RBF)网络预测方法,简称FOA-RBF网络。以交通数据的混沌特性为依据,对短时交通流时... 为了提高城市道路短时交通流预测的时效性、准确性,提出一种基于果蝇优化算法(Fruit Fly Optimization Algorithm,FOA)的径向基(Radial Basis Function,RBF)网络预测方法,简称FOA-RBF网络。以交通数据的混沌特性为依据,对短时交通流时间序列进行相空间重构,在相空间中构造混沌模型,凭借FOA算法对参数空间的探索能力,优化RBF网络的超参数,以此建立FOA-RBF网络。在城市道路数据上对FOA-RBF网络的有效性进行验证,实验结果表明,FOA-RBF网络在精度上有较大提升,并在处理大数据方面表现出较好的性能。 展开更多
关键词 短时交通流预测 相空间重构 果蝇优化算法 径向基网络 foa-RBF网络
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部