Leaves are the main photosynthesis organ that directly determines crop yield and biomass.Dissecting the regulatory mechanism of leaf development is crucial for food security and ecosystem turn-over.Here,we identified ...Leaves are the main photosynthesis organ that directly determines crop yield and biomass.Dissecting the regulatory mechanism of leaf development is crucial for food security and ecosystem turn-over.Here,we identified the novel function of R2R3-MYB transcription factors CsRAXs in regulating cucumber leaf size and fruiting ability.Csrax5 single mutant exhibited enlarged leaf size and stem diameter,and Csrax1/2/5 triple mutant displayed further enlargement phenotype.Overexpression of CsRAX1 or CsRAX5 gave rise to smaller leaf and thinner stem.The fruiting ability of Csrax1/2/5 plants was significantly enhanced,while that of CsRAX5 overexpression lines was greatly weakened.Similarly,cell number and free auxin level were elevated in mutant plants while decreased in overexpression lines.Biochemical data indicated that CsRAX1/5 directly promoted the expression of auxin glucosyltransferase gene CsUGT74E2.Therefore,our data suggested that CsRAXs function as repressors for leaf size development by promoting auxin glycosylation to decrease free auxin level and cell division in cucumber.Our findings provide new gene targets for cucumber breeding with increased leaf size and crop yield.展开更多
基金supported by grants from the National Natural Science Foundation of China[32025033,31930097 and 32372699]Pinduoduo-China Agricultural University Research Fund[PC2023B01002].
文摘Leaves are the main photosynthesis organ that directly determines crop yield and biomass.Dissecting the regulatory mechanism of leaf development is crucial for food security and ecosystem turn-over.Here,we identified the novel function of R2R3-MYB transcription factors CsRAXs in regulating cucumber leaf size and fruiting ability.Csrax5 single mutant exhibited enlarged leaf size and stem diameter,and Csrax1/2/5 triple mutant displayed further enlargement phenotype.Overexpression of CsRAX1 or CsRAX5 gave rise to smaller leaf and thinner stem.The fruiting ability of Csrax1/2/5 plants was significantly enhanced,while that of CsRAX5 overexpression lines was greatly weakened.Similarly,cell number and free auxin level were elevated in mutant plants while decreased in overexpression lines.Biochemical data indicated that CsRAX1/5 directly promoted the expression of auxin glucosyltransferase gene CsUGT74E2.Therefore,our data suggested that CsRAXs function as repressors for leaf size development by promoting auxin glycosylation to decrease free auxin level and cell division in cucumber.Our findings provide new gene targets for cucumber breeding with increased leaf size and crop yield.