期刊文献+
共找到2,443篇文章
< 1 2 123 >
每页显示 20 50 100
Implementation of the Integrated Green’s Function Method for 3D Poisson’s Equation in a Large Aspect Ratio Computational Domain
1
作者 Ji Qiang Chad Mitchell +1 位作者 Remi Lehe Arianna Formenti 《Journal of Software Engineering and Applications》 2024年第9期740-749,共10页
The solution of Poisson’s Equation plays an important role in many areas, including modeling high-intensity and high-brightness beams in particle accelerators. For the computational domain with a large aspect ratio, ... The solution of Poisson’s Equation plays an important role in many areas, including modeling high-intensity and high-brightness beams in particle accelerators. For the computational domain with a large aspect ratio, the integrated Green’s function method has been adopted to solve the 3D Poisson equation subject to open boundary conditions. In this paper, we report on the efficient implementation of this method, which can save more than a factor of 50 computing time compared with the direct brute force implementation and its improvement under certain extreme conditions. 展开更多
关键词 Green’s function Poisson equation Particle Accelerator
下载PDF
Euler’s First-Order Explicit Method–Peridynamic Differential Operator for Solving Population Balance Equations of the Crystallization Process
2
作者 Chunlei Ruan Cengceng Dong +2 位作者 Kunfeng Liang Zhijun Liu Xinru Bao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期3033-3049,共17页
Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridyna... Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridynamic differential operator(EE–PDDO)was obtained for solving the one-dimensional population balance equation in crystallization.Four different conditions during crystallization were studied:size-independent growth,sizedependent growth in a batch process,nucleation and size-independent growth,and nucleation and size-dependent growth in a continuous process.The high accuracy of the EE–PDDO method was confirmed by comparing it with the numerical results obtained using the second-order upwind and HR-van methods.The method is characterized by non-oscillation and high accuracy,especially in the discontinuous and sharp crystal size distribution.The stability of the EE–PDDO method,choice of weight function in the PDDO method,and optimal time step are also discussed. 展开更多
关键词 Population balance equation CRYsTALLIZATION peridynamic differential operator Euler’s first-order explicit method
下载PDF
Energy Stable Nodal DG Methods for Maxwell’s Equations of Mixed-Order Form in Nonlinear Optical Media
3
作者 Maohui Lyu Vrushali A.Bokil +1 位作者 Yingda Cheng Fengyan Li 《Communications on Applied Mathematics and Computation》 EI 2024年第1期30-63,共34页
In this work,we develop energy stable numerical methods to simulate electromagnetic waves propagating in optical media where the media responses include the linear Lorentz dispersion,the instantaneous nonlinear cubic ... In this work,we develop energy stable numerical methods to simulate electromagnetic waves propagating in optical media where the media responses include the linear Lorentz dispersion,the instantaneous nonlinear cubic Kerr response,and the nonlinear delayed Raman molecular vibrational response.Unlike the first-order PDE-ODE governing equations considered previously in Bokil et al.(J Comput Phys 350:420–452,2017)and Lyu et al.(J Sci Comput 89:1–42,2021),a model of mixed-order form is adopted here that consists of the first-order PDE part for Maxwell’s equations coupled with the second-order ODE part(i.e.,the auxiliary differential equations)modeling the linear and nonlinear dispersion in the material.The main contribution is a new numerical strategy to treat the Kerr and Raman nonlinearities to achieve provable energy stability property within a second-order temporal discretization.A nodal discontinuous Galerkin(DG)method is further applied in space for efficiently handling nonlinear terms at the algebraic level,while preserving the energy stability and achieving high-order accuracy.Indeed with d_(E)as the number of the components of the electric field,only a d_(E)×d_(E)nonlinear algebraic system needs to be solved at each interpolation node,and more importantly,all these small nonlinear systems are completely decoupled over one time step,rendering very high parallel efficiency.We evaluate the proposed schemes by comparing them with the methods in Bokil et al.(2017)and Lyu et al.(2021)(implemented in nodal form)regarding the accuracy,computational efficiency,and energy stability,by a parallel scalability study,and also through the simulations of the soliton-like wave propagation in one dimension,as well as the spatial-soliton propagation and two-beam interactions modeled by the two-dimensional transverse electric(TE)mode of the equations. 展开更多
关键词 Maxwell’s equations Kerr and Raman Discontinuous Galerkin method Energy stability
下载PDF
Derivation of a Revised Tsiolkovsky Rocket Equation That Predicts Combustion Oscillations
4
作者 Zaki Harari 《Advances in Aerospace Science and Technology》 2024年第1期10-27,共18页
Our study identifies a subtle deviation from Newton’s third law in the derivation of the ideal rocket equation, also known as the Tsiolkovsky Rocket Equation (TRE). TRE can be derived using a 1D elastic collision mod... Our study identifies a subtle deviation from Newton’s third law in the derivation of the ideal rocket equation, also known as the Tsiolkovsky Rocket Equation (TRE). TRE can be derived using a 1D elastic collision model of the momentum exchange between the differential propellant mass element (dm) and the rocket final mass (m1), in which dm initially travels forward to collide with m1 and rebounds to exit through the exhaust nozzle with a velocity that is known as the effective exhaust velocity ve. We observe that such a model does not explain how dm was able to acquire its initial forward velocity without the support of a reactive mass traveling in the opposite direction. We show instead that the initial kinetic energy of dm is generated from dm itself by a process of self-combustion and expansion. In our ideal rocket with a single particle dm confined inside a hollow tube with one closed end, we show that the process of self-combustion and expansion of dm will result in a pair of differential particles each with a mass dm/2, and each traveling away from one another along the tube axis, from the center of combustion. These two identical particles represent the active and reactive sub-components of dm, co-generated in compliance with Newton’s third law of equal action and reaction. Building on this model, we derive a linear momentum ODE of the system, the solution of which yields what we call the Revised Tsiolkovsky Rocket Equation (RTRE). We show that RTRE has a mathematical form that is similar to TRE, with the exception of the effective exhaust velocity (ve) term. The ve term in TRE is replaced in RTRE by the average of two distinct exhaust velocities that we refer to as fast-jet, vx<sub>1</sub>, and slow-jet, vx<sub>2</sub>. These two velocities correspond, respectively, to the velocities of the detonation pressure wave that is vectored directly towards the exhaust nozzle, and the retonation wave that is initially vectored in the direction of rocket propagation, but subsequently becomes reflected from the thrust surface of the combustion chamber to exit through the exhaust nozzle with a time lag behind the detonation wave. The detonation-retonation phenomenon is supported by experimental evidence in the published literature. Finally, we use a convolution model to simulate the composite exhaust pressure wave, highlighting the frequency spectrum of the pressure perturbations that are generated by the mutual interference between the fast-jet and slow-jet components. Our analysis offers insights into the origin of combustion oscillations in rocket engines, with possible extensions beyond rocket engineering into other fields of combustion engineering. 展开更多
关键词 Tsiolkovsky Rocket equation Ideal Rocket equation Rocket Propulsion Newton’s Third Law Combustion Oscillations Combustion Instability
下载PDF
High-Order Spatial FDTD Solver of Maxwell’s Equations for Terahertz Radiation Production
5
作者 Abdelrahman Mahdy 《Journal of Applied Mathematics and Physics》 2024年第4期1028-1042,共15页
We applied a spatial high-order finite-difference-time-domain (HO-FDTD) scheme to solve 2D Maxwell’s equations in order to develop a fluid model employed to study the production of terahertz radiation by the filament... We applied a spatial high-order finite-difference-time-domain (HO-FDTD) scheme to solve 2D Maxwell’s equations in order to develop a fluid model employed to study the production of terahertz radiation by the filamentation of two femtosecond lasers in air plasma. We examined the performance of the applied scheme, in this context, we implemented the developed model to study selected phenomena in terahertz radiation production, such as the excitation energy and conversion efficiency of the produced THz radiation, in addition to the influence of the pulse chirping on properties of the produced radiation. The obtained numerical results have clarified that the applied HO-FDTD scheme is precisely accurate to solve Maxwell’s equations and sufficiently valid to study the production of terahertz radiation by the filamentation of two femtosecond lasers in air plasma. 展开更多
关键词 The Finite-Difference-Time-Domain Terahertz Radiation Production Filamentation of Femtosecond Laser Maxwell’s equations solution
下载PDF
Analysis of the Electromagnetic Characteristics and the Mechanism Underlying Bio-Medical Function of Longitudinal Electromagnetic (LEM) Waves
6
作者 Jianzhong Jiang Yufeng Wang 《Journal of Power and Energy Engineering》 2024年第10期31-49,共19页
Based on theoretical system of current Maxwell’s equations, the Maxwell’s equations for LEM waves concealed in full current law and Faraday’s law of electromagnetic induction (Faraday’s law) are proposed. Then, ta... Based on theoretical system of current Maxwell’s equations, the Maxwell’s equations for LEM waves concealed in full current law and Faraday’s law of electromagnetic induction (Faraday’s law) are proposed. Then, taking them as the fundamental equations, the wave equation and energy equation of LEM waves are established, and a new electromagnetic wave propagation mode based on the mutual induction of scalar electromagnetic fields/vortex magneto-electric fields, which was overlooked in current Maxwell’s equations, are put forward. Moreover, through theoretical derivation based on vacuum LEM waves, the Maxwell’s equations of the gravitational field generated by vacuum LEM waves, the wave equations of the electromagnetic scalar potential/magnetic vector potential and the constraint equation governing the wave phase-velocities between LEM/TEM waves are discovered. Finally, on the basis of these theoretical research results, the electromagnetic properties of vacuum LEM waves are analyzed in detail, encompassing the speed of light, harmless penetrability to the human body, absorption and stable storage by water, the possibility of generating artificial gravitational fields, and the capability of extracting free energy. This reveals the medical functional mechanism of LEM waves and establishes a solid theoretical basis for the application of LEM waves in the fields of medicine and energy. 展开更多
关键词 QED (Quantum Electrodynamics) Longitudinal Electromagnetic Wave Maxwell’s equations Electromagnetic Induction Artificial Gravitational Field Unified Field Theory
下载PDF
A Set of Almost Automorphic Functions and Applications
7
作者 William Dimbour Vincent Valmorin 《Applied Mathematics》 2024年第1期9-21,共13页
For a set S of real numbers, we introduce the concept of S-almost automorphic functions valued in a Banach space. It generalizes in particular the space of Z-almost automorphic functions. Considering the space of S-al... For a set S of real numbers, we introduce the concept of S-almost automorphic functions valued in a Banach space. It generalizes in particular the space of Z-almost automorphic functions. Considering the space of S-almost automorphic functions, we give sufficient conditions of the existence and uniqueness of almost automorphic solutions of a differential equation with a piecewise constant argument of generalized type. This is done using the Banach fixed point theorem. 展开更多
关键词 Almost Automorphic functions s-Almost Automorphic functions Differential equation with Piecewise Constant Argument of Generalized Type
下载PDF
On the Approximation of Fractal-Fractional Differential Equations Using Numerical Inverse Laplace Transform Methods
8
作者 Kamran Siraj Ahmad +2 位作者 Kamal Shah Thabet Abdeljawad Bahaaeldin Abdalla 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期2743-2765,共23页
Laplace transform is one of the powerful tools for solving differential equations in engineering and other science subjects.Using the Laplace transform for solving differential equations,however,sometimes leads to sol... Laplace transform is one of the powerful tools for solving differential equations in engineering and other science subjects.Using the Laplace transform for solving differential equations,however,sometimes leads to solutions in the Laplace domain that are not readily invertible to the real domain by analyticalmeans.Thus,we need numerical inversionmethods to convert the obtained solution fromLaplace domain to a real domain.In this paper,we propose a numerical scheme based on Laplace transform and numerical inverse Laplace transform for the approximate solution of fractal-fractional differential equations with orderα,β.Our proposed numerical scheme is based on three main steps.First,we convert the given fractal-fractional differential equation to fractional-differential equation in Riemann-Liouville sense,and then into Caputo sense.Secondly,we transformthe fractional differential equation in Caputo sense to an equivalent equation in Laplace space.Then the solution of the transformed equation is obtained in Laplace domain.Finally,the solution is converted into the real domain using numerical inversion of Laplace transform.Three inversion methods are evaluated in this paper,and their convergence is also discussed.Three test problems are used to validate the inversion methods.We demonstrate our results with the help of tables and figures.The obtained results show that Euler’s and Talbot’s methods performed better than Stehfest’s method. 展开更多
关键词 Fractal-fractional differential equation power law kernel exponential decay kernel Mittag-Leffler kernel Laplace transform Euler’s method Talbot’s method stehfest’s method
下载PDF
Tiêu Equation Experimentation of Understanding by Energy Transfer Quantum Mechanics
9
作者 Huu S. Tieu Martin F. Loeffler 《Natural Science》 CAS 2023年第3期91-102,共12页
Background: The Tiêu equation has a ground roots approach to the process of Quantum Biology and goes deeper through the incorporation of Quantum Mechanics. The process can be measured in plant, animal, and human ... Background: The Tiêu equation has a ground roots approach to the process of Quantum Biology and goes deeper through the incorporation of Quantum Mechanics. The process can be measured in plant, animal, and human usage through a variety of experimental or testing forms. Animal studies were conducted for which, in the first day of the study all the animals consistently gained dramatic weight, even as a toxic substance was introduced as described in the introduction of the paper to harm animal subjects which induced weight loss through toxicity. Tests can be made by incorporating blood report results. Human patients were also observed to show improvement to their health as administration of the substance was introduced to the biological mechanism and plants were initially exposed to the substance to observe results. This is consistent with the Tiêu equation which provides that wave function is created as the introduction of the substance to the biological mechanism which supports Quantum Mechanics. The Tiêu equation demonstrates that Quantum Mechanics moves a particle by temperature producing energy thru the blood-brain barrier for example. Methods: The methods for the Tiêu equation incorporate animal studies to include the substance administered through laboratory standards using Good Laboratory Practices under Title 40 C.F.R. § 158. Human patients were treated with the substance by medical professionals who are experts in their field and have knowledge to the response of patients. Plant applications were acquired for observation and guidance of ongoing experiments of animals’ representative for the biologics mechanism. Results: The animal studies along with patient blood testing results have been an impressive line that has followed the Tiêu equation to consistently show improvement in the introduction of the innovation to biologic mechanisms. The mechanism responds to the substance by producing energy to the mechanism with efficient effect. For plant observations, plant organisms responded, and were seen as showing improvement thru visual observation. 展开更多
关键词 Tiêu equation Experimentation of Understanding by Energy Transfer Quantum Mechanics Golden sunrise Nutraceutical Huu s. TIȆu schrödinger equation Quantum Mechanics Life Is Quantum Biology
下载PDF
Solution of Laguerre’s Differential Equations via Modified Adomian Decomposition Method
10
作者 Mariam Al-Mazmumy Aishah A. Alsulami 《Journal of Applied Mathematics and Physics》 2023年第1期85-100,共16页
This paper presents a technique for obtaining an exact solution for the well-known Laguerre’s differential equations that arise in the modeling of several phenomena in quantum mechanics and engineering. We utilize an... This paper presents a technique for obtaining an exact solution for the well-known Laguerre’s differential equations that arise in the modeling of several phenomena in quantum mechanics and engineering. We utilize an efficient procedure based on the modified Adomian decomposition method to obtain closed-form solutions of the Laguerre’s and the associated Laguerre’s differential equations. The proposed technique makes sense as the attitudes of the acquired solutions towards the neighboring singular points are correctly taken care of. 展开更多
关键词 Modification Method singular Ordinary Differential equations Laguerre’s equation Associated Laguerre’s equation
下载PDF
Adomian Modification Methods for the Solution of Chebyshev’s Differential Equations
11
作者 Mariam Al Mazmumy Aishah Alsulami +1 位作者 Huda Bakodah Nawal Alzaid 《Applied Mathematics》 2023年第8期512-530,共19页
The current study examines the important class of Chebyshev’s differential equations via the application of the efficient Adomian Decomposition Method (ADM) and its modifications. We have proved the effectiveness of ... The current study examines the important class of Chebyshev’s differential equations via the application of the efficient Adomian Decomposition Method (ADM) and its modifications. We have proved the effectiveness of the employed methods by acquiring exact analytical solutions for the governing equations in most cases;while minimal noisy error terms have been observed in a particular method modification. Above all, the presented approaches have rightly affirmed the exactitude of the available literature. More to the point, the application of this methodology could be extended to examine various forms of high-order differential equations, as approximate exact solutions are rapidly attained with less computation stress. 展开更多
关键词 ADM Modifications Methods Chebyshev’s Differential equations IVPs series solutions
下载PDF
Verification of the Landau Equation and Hardy’s Inequality
12
作者 Salih Yousuf Mohamed Salih 《Applied Mathematics》 2023年第3期208-229,共22页
We prove the L estimate for the isotropic version of the homogeneous landau problem, which was explored by M. Gualdani and N. Guillen. As shown in a region of the smooth potentials range under values of the interactio... We prove the L estimate for the isotropic version of the homogeneous landau problem, which was explored by M. Gualdani and N. Guillen. As shown in a region of the smooth potentials range under values of the interaction exponent (2), a weighted Poincaré inequality is a natural consequence of the traditional weighted Hardy inequality, which in turn implies that the norms of solutions propagate in the L1 space. Now, the L estimate is based on the work of De Giorgi, Nash, and Moser, as well as a few weighted Sobolev inequalities. 展开更多
关键词 Hardy’s Inequality sobolev Inequalities the Landau equation L-Estimate
下载PDF
Pythagorician Divisors and Applications to Some Diophantine Equations
13
作者 François Emmanuel Tanoé Prosper Kouadio Kimou 《Advances in Pure Mathematics》 2023年第2期35-70,共36页
We consider the Pythagoras equation X<sup>2</sup> +Y<sup>2</sup> = Z<sup>2</sup>, and for any solution of the type (a,b = 2<sup>s</sup>b<sub>1 </sub>≠0,c) ... We consider the Pythagoras equation X<sup>2</sup> +Y<sup>2</sup> = Z<sup>2</sup>, and for any solution of the type (a,b = 2<sup>s</sup>b<sub>1 </sub>≠0,c) ∈ N<sup>*3</sup>, s ≥ 2, b<sub>1</sub>odd, (a,b,c) ≡ (±1,0,1)(mod 4), c > a , c > b, and gcd(a,b,c) = 1, we then prove the Pythagorician divisors Theorem, which results in the following: , where (d,d′′) (resp. (e,e<sup>n</sup>)) are unique particular divisors of a and b, such that a = dd′′ (resp. b = ee′′ ), these divisors are called: Pythagorician divisors from a, (resp. from b). Let’s put λ ∈{0,1}, defined by: and S = s -λ (s -1). Then such that . Moreover the map is a bijection. We apply this new tool to obtain a new classification of the primitive, positive and non-trivial solutions of the Pythagoras equations: a<sup>2</sup> + b<sup>2</sup> = c<sup>2</sup> via the Pythagorician parameters (d,e,S ). We obtain for (d, e) fixed, the equivalence class of any Pythagorician solution (a,b,c), checking , namely: . We also update the solutions of some Diophantine equations of degree 2, already known, but very important for the resolution of other equations. With this tool of Pythagorean divisors, we have obtained (in another paper) new recurrent methods to solve Fermat’s equation: a<sup>4</sup> + b<sup>4 </sup>= c<sup>4</sup>, other than usual infinite descent method;and to solve congruent numbers problem. We believe that this tool can bring new arguments, for Diophantine resolution, of the general equations of Fermat: a<sup>2p</sup> + b<sup>2p</sup> = c<sup>2p</sup> and a<sup>p</sup> + b<sup>p</sup> = c<sup>p</sup>. MSC2020-Mathematical Sciences Classification System: 11A05-11A51-11D25-11D41-11D72. 展开更多
关键词 Pythagoras equation Pythagorician Triplets Diophantine equations of Degree 2 Factorisation-Gcd-Fermat’s equations
下载PDF
A Family of Global Attractors for the Generalized Kirchhoff-Beam Equations
14
作者 Guoguang Lin Boshi Chen 《Journal of Applied Mathematics and Physics》 2023年第7期1945-1963,共19页
In this paper, we discuss the existence and uniqueness of global solutions, the existence of the family of global attractors and its dimension estimation for generalized Beam-Kirchhoff equation under initial condition... In this paper, we discuss the existence and uniqueness of global solutions, the existence of the family of global attractors and its dimension estimation for generalized Beam-Kirchhoff equation under initial conditions and boundary conditions, using the previous research results for reference. Firstly, the existence of bounded absorption set is proved by using a prior estimation, then the existence and uniqueness of the global solution of the problem is proved by using the classical Galerkin’s method. Finally, Housdorff dimension and fractal dimension of the family of global attractors are estimated by linear variational method and generalized Sobolev-Lieb-Thirring inequality. 展开更多
关键词 Beam-Kirchhoff equation Galerkin’s Method Family of Global Attractors Housdorff Dimension Fractal Dimension
下载PDF
Long Time Behavior of a Class of Generalized Beam-Kirchhoff Equations
15
作者 Guoguang Lin Keshun Peng 《Journal of Applied Mathematics and Physics》 2023年第10期2963-2981,共19页
In this paper, we study the long time behavior of a class of generalized Beam-Kirchhoff equation , and prove the existence and uniqueness of the global solution of this class of equation by Galerkin method by making s... In this paper, we study the long time behavior of a class of generalized Beam-Kirchhoff equation , and prove the existence and uniqueness of the global solution of this class of equation by Galerkin method by making some assumptions about the nonlinear function term . The existence of the family of global attractor and its Hausdorff dimension and Fractal dimension estimation are proved. 展开更多
关键词 Beam-Kirchhoff equation Galerkin’s Method The Family of Global Attractor Dimension Estimation
下载PDF
Second Approximation of the Generalized Planetary Equation Based upon Golden Metric Tensors
16
作者 Nura Yakubu Hayatu Abbba Ibrahim +1 位作者 Musa Hashimu Umar Bappah Alkali 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2023年第1期7-26,共20页
In this paper, we consider the Post Einstein Planetary equation of motion. We succeeded in offering a solution using second approximation method, in which we obtained eight exact mathematical solutions that rebel amaz... In this paper, we consider the Post Einstein Planetary equation of motion. We succeeded in offering a solution using second approximation method, in which we obtained eight exact mathematical solutions that rebel amazing theoretical results. To the order of C<sup>-2</sup>, two of these exact solutions are reduced to the approximate solutions from the method of successive approximations. 展开更多
关键词 Golden Matric Tensors Einstein’s Planetary equation
下载PDF
Complex Maxwell’s Equations
17
作者 Mahgoub A. Salih 《Journal of Modern Physics》 2023年第12期1662-1671,共10页
Maxwell’s equations in electromagnetism can be categorized into three dis-tinct groups based on the electromagnetic source when employing quaterni-ons. Each group represents a self-contained system in which Maxwell’... Maxwell’s equations in electromagnetism can be categorized into three dis-tinct groups based on the electromagnetic source when employing quaterni-ons. Each group represents a self-contained system in which Maxwell’s equations are applied and validated concurrently, in contrast to the previous approach that did not account for this. It has been noted that the formulation of these Maxwell equations ultimately results in the formulation of Max-well’s equations utilizing the scalar function. 展开更多
关键词 Maxwell’s equations scalar function Proca equation Gage Transformation QUATERNION
下载PDF
Generalized Extended tanh-function Method for Traveling Wave Solutions of Nonlinear Physical Equations 被引量:6
18
作者 CHANG JING GAO YI-XIAN AND CAI HUA 《Communications in Mathematical Research》 CSCD 2014年第1期60-70,共11页
In this paper, the generalized extended tanh-function method is used for constructing the traveling wave solutions of nonlinear evolution equations. We choose Fisher's equation, the nonlinear schr&#168;odinger equat... In this paper, the generalized extended tanh-function method is used for constructing the traveling wave solutions of nonlinear evolution equations. We choose Fisher's equation, the nonlinear schr&#168;odinger equation to illustrate the validity and ad-vantages of the method. Many new and more general traveling wave solutions are obtained. Furthermore, this method can also be applied to other nonlinear equations in physics. 展开更多
关键词 generalized tanh-function method nonlinear schrodinger equation Fisher's equation
下载PDF
Some Kind of Equations Involving Euler's Function 被引量:5
19
作者 LI Yi-jun LI Yu-sheng 《Chinese Quarterly Journal of Mathematics》 CSCD 2009年第4期605-608,共4页
For any given positive integer n ≥ 1, the Euler function φ(n) is defined to be the number of positive integers not exceeding n which are relatively prime to n. w(n) is defined to be the number of different prime... For any given positive integer n ≥ 1, the Euler function φ(n) is defined to be the number of positive integers not exceeding n which are relatively prime to n. w(n) is defined to be the number of different prime divisors of n. Some kind of equations involving Euler's function is studied in the paper. 展开更多
关键词 Euler's function equation number of solutions
下载PDF
Computing Bifurcation Diagrams of Steady State Kuramoto Sivashinsky Equation by Difference Method 被引量:1
20
作者 LI Chang pin (College of Sciences, Shanghai University) 《Advances in Manufacturing》 SCIE CAS 1999年第3期248-250,共3页
Utilizing difference formulae, we obtained the discrete systems of steady state Kuramoto Sivashinsky (K S) equation. Applied Newton's method and continuation technology to the systems, the bifurcated solutio... Utilizing difference formulae, we obtained the discrete systems of steady state Kuramoto Sivashinsky (K S) equation. Applied Newton's method and continuation technology to the systems, the bifurcated solutions are derived, and the bifurcation diagrams are constructed. All the results are successful and satisfactory. 展开更多
关键词 BIfuRCATION K s equation difference method
下载PDF
上一页 1 2 123 下一页 到第
使用帮助 返回顶部