Small modular reactors (SMRs) offer simple, standardized, and safe modular designs for new nuclear reactor construction. They are factory built, requiring smaller initial capital investment and facilitating shorter co...Small modular reactors (SMRs) offer simple, standardized, and safe modular designs for new nuclear reactor construction. They are factory built, requiring smaller initial capital investment and facilitating shorter construction times. SMRs also promise competitive economy when compared with the current reactor fleet. Construction cost of a majority of the projects, which are mostly in their design stages, is not publicly available, but variable costs can be determined from fuel enrichment, average burn-up, and plant thermal efficiency, which are public parameters for many near-term SMR projects. The fuel cost of electricity generation for selected SMRs and large reactors is simulated, including calculation of optimal tails assay in the uranium enrichment process. The results are compared between one another and with current generation large reactor designs providing a rough comparison of the long-term economics of a new nuclear reactor project. SMRs are predicted to have higher fuel costs than large reactors. Particularly, integral pressurized water reactors (iPWRs) are shown to have from 15% to 70% higher fuel costs than large light water reactors using 2014 nuclear fuels market data. Fuel cost sensitivities to reactor design parameters are presented.展开更多
By using high-power and high-efficiency propulsion systems,current hybrid electric vehicles(HEVs) in market can achieve excellent fuel economy and kinetic performance.However,it is the cost of current HEVs that hind...By using high-power and high-efficiency propulsion systems,current hybrid electric vehicles(HEVs) in market can achieve excellent fuel economy and kinetic performance.However,it is the cost of current HEVs that hinders HEVs coming into widespread use.A novel hybrid electric propulsion system is designed to balance HEV cost and performance for developing markets.A battery/supercapacitor-based hybrid energy storage system(HESS) is used to improve energy conversion efficiency and reduce battery size and cost.An all-in-one-controller(AIOC) which integrates engine electronic control unit(ECU),motor ECU,and HESS management system is developed to save materials and energy,and reduce the influence of distribution parameters on circuit.As for the powertrain configuration,four schemes are presented:belt-driven starter generator(BSG) scheme,four-wheel drive HEV scheme,full HEV scheme,and ranger-extender electric vehicle(EV) scheme.Component selection and parameter matching for the propulsion system are performed,and an energy management strategy is developed based on powertrain configuration and selected components.Forward-facing simulation models are built,comprehending the control strategy based on the optimal engine torque for the low-cost hybrid electric propulsion system.Co-simulation of AVL CRUISE and Matlab/Simulink is presented and the best scheme is selected.The simulation results indicate that,for the best design,fuel consumption in urban driving condition is 4.11 L/(100 km) and 0-50 km/h accelerating time is 10.95 s.The proposed research can realize low-cost concept for HEV while achieving satisfactory fuel economy and kinetic performance,and help to improve commercialization of HEVs.展开更多
This paper aims at formulization and overview of the cost performance evolutions of proton exchange membrane (PEM) fuel cell power generation along with load and time. For this purpose, electricity-cost ratio (ECR) is...This paper aims at formulization and overview of the cost performance evolutions of proton exchange membrane (PEM) fuel cell power generation along with load and time. For this purpose, electricity-cost ratio (ECR) is proposed as the measuring parameter for the cost performance and a two-constant cost model is proposed to concisely describe the cost characteristic of the power generation as the opposite of a multi-constant cost model. Combination of the two-constant cost model and the ideal cell model developed recently produces an inclusive ECR equation that has three analytical expressions and thus allows of straight overviews of the cost performance evolutions in the working zones of the cells. The applications to real cells confirm the validity of the equation for operation optimization and technique evaluation of PEM fuel cells. And more insights into the cost performance evolutions are inferred by means of the equation to help promote the commercialization of PEM fuel cells.展开更多
This paper is dedicated to analytical expression of the maximum electricity-cost ratio (M-ECR) point of the proton exchange membrane (PEM) fuel cell power generation as the function of cell constants and cost constant...This paper is dedicated to analytical expression of the maximum electricity-cost ratio (M-ECR) point of the proton exchange membrane (PEM) fuel cell power generation as the function of cell constants and cost constants. That is to formulize the maximum cost performance (MCP) magnitude and the optimal final operating (OFO) location in the working zone based on the five-constant ideal cell model and the two-constant cost model. The issues are well resolved by introducing the concepts of economic voltage and cost factor and describing the movement of the M-ECR point with cost factor. According to mathematical derivations, the movement can be described in the form of MCP and OFO curves. The derivations lead to a complete set of discriminants and criteria of the M-ECR point of PEM fuel cells that theoretically cover all of cell specialties and all of cost specialties. The discriminants and criteria may act as a general tool for the operation optimization of a diversity of PEM fuel cells and the economic viability estimation of the power generation.展开更多
The continuous rise in global environmental challenges has led to urgency toward establishing a secure framework to achieve sustainable development goals.This study establishes a novel theoretical framework to analyze...The continuous rise in global environmental challenges has led to urgency toward establishing a secure framework to achieve sustainable development goals.This study establishes a novel theoretical framework to analyze the role of energy prices,energy consumption,gold prices and economic growth on environmental degradation in newly industrialized economies.To realize sustainable development goals and foster environmental defence,this study utilizes CS-ARDL as the main econometric approach to investigate the asymmetric association between environmental degradation and relevant factors.We also use AMG,CS-DL,Driscoll-Kray and FGLS to enhance the robustness of our findings.Our econometric approach reveals that energy resource prices and renewable energy consumption reduce environmental degradation,while gold prices and fossil energy consumption elevate environmental pollutants.We also confirm the existence of the EKC hypothesis.The findings of our extensive analysis paved the way for a welldesigned environmental policy for NIC economies should focus on renewable energy consumption,green investments,and structural changes.展开更多
With the deepening of economic globalization,the business environment has seen profound changes.The cost of aviation fuel has grown to represent a significant portion of air transportation costs for“energy-dependent...With the deepening of economic globalization,the business environment has seen profound changes.The cost of aviation fuel has grown to represent a significant portion of air transportation costs for“energy-dependent”airlines.The cost of aviation fuel makes up a sizeable amount of Chinese airlines’cost structure and is increasingly limiting their profitability.The question of how to control the cost of aviation fuel from various perspectives has garnered widespread attention.This paper puts forward an overlooked perspective-the procurement strategy.Firstly,it describes the necessity of aviation fuel cost control,and then analyzes specific cases of aviation fuel procurement cost control.Finally,it proposes several effective suggestions from the perspective of aviation fuel procurement,aiming to improve the refined management of Chinese airlines’aviation fuel procurement.展开更多
文摘Small modular reactors (SMRs) offer simple, standardized, and safe modular designs for new nuclear reactor construction. They are factory built, requiring smaller initial capital investment and facilitating shorter construction times. SMRs also promise competitive economy when compared with the current reactor fleet. Construction cost of a majority of the projects, which are mostly in their design stages, is not publicly available, but variable costs can be determined from fuel enrichment, average burn-up, and plant thermal efficiency, which are public parameters for many near-term SMR projects. The fuel cost of electricity generation for selected SMRs and large reactors is simulated, including calculation of optimal tails assay in the uranium enrichment process. The results are compared between one another and with current generation large reactor designs providing a rough comparison of the long-term economics of a new nuclear reactor project. SMRs are predicted to have higher fuel costs than large reactors. Particularly, integral pressurized water reactors (iPWRs) are shown to have from 15% to 70% higher fuel costs than large light water reactors using 2014 nuclear fuels market data. Fuel cost sensitivities to reactor design parameters are presented.
基金supported by General Motors (Low-cost Hybrid Electric Propulsion System)
文摘By using high-power and high-efficiency propulsion systems,current hybrid electric vehicles(HEVs) in market can achieve excellent fuel economy and kinetic performance.However,it is the cost of current HEVs that hinders HEVs coming into widespread use.A novel hybrid electric propulsion system is designed to balance HEV cost and performance for developing markets.A battery/supercapacitor-based hybrid energy storage system(HESS) is used to improve energy conversion efficiency and reduce battery size and cost.An all-in-one-controller(AIOC) which integrates engine electronic control unit(ECU),motor ECU,and HESS management system is developed to save materials and energy,and reduce the influence of distribution parameters on circuit.As for the powertrain configuration,four schemes are presented:belt-driven starter generator(BSG) scheme,four-wheel drive HEV scheme,full HEV scheme,and ranger-extender electric vehicle(EV) scheme.Component selection and parameter matching for the propulsion system are performed,and an energy management strategy is developed based on powertrain configuration and selected components.Forward-facing simulation models are built,comprehending the control strategy based on the optimal engine torque for the low-cost hybrid electric propulsion system.Co-simulation of AVL CRUISE and Matlab/Simulink is presented and the best scheme is selected.The simulation results indicate that,for the best design,fuel consumption in urban driving condition is 4.11 L/(100 km) and 0-50 km/h accelerating time is 10.95 s.The proposed research can realize low-cost concept for HEV while achieving satisfactory fuel economy and kinetic performance,and help to improve commercialization of HEVs.
文摘This paper aims at formulization and overview of the cost performance evolutions of proton exchange membrane (PEM) fuel cell power generation along with load and time. For this purpose, electricity-cost ratio (ECR) is proposed as the measuring parameter for the cost performance and a two-constant cost model is proposed to concisely describe the cost characteristic of the power generation as the opposite of a multi-constant cost model. Combination of the two-constant cost model and the ideal cell model developed recently produces an inclusive ECR equation that has three analytical expressions and thus allows of straight overviews of the cost performance evolutions in the working zones of the cells. The applications to real cells confirm the validity of the equation for operation optimization and technique evaluation of PEM fuel cells. And more insights into the cost performance evolutions are inferred by means of the equation to help promote the commercialization of PEM fuel cells.
文摘This paper is dedicated to analytical expression of the maximum electricity-cost ratio (M-ECR) point of the proton exchange membrane (PEM) fuel cell power generation as the function of cell constants and cost constants. That is to formulize the maximum cost performance (MCP) magnitude and the optimal final operating (OFO) location in the working zone based on the five-constant ideal cell model and the two-constant cost model. The issues are well resolved by introducing the concepts of economic voltage and cost factor and describing the movement of the M-ECR point with cost factor. According to mathematical derivations, the movement can be described in the form of MCP and OFO curves. The derivations lead to a complete set of discriminants and criteria of the M-ECR point of PEM fuel cells that theoretically cover all of cell specialties and all of cost specialties. The discriminants and criteria may act as a general tool for the operation optimization of a diversity of PEM fuel cells and the economic viability estimation of the power generation.
基金the project titled“Cluster for innovative energy”in the frame of the program“HORIZON-MSCA-2022-SE-01”under the Grant agreement number 101129820.
文摘The continuous rise in global environmental challenges has led to urgency toward establishing a secure framework to achieve sustainable development goals.This study establishes a novel theoretical framework to analyze the role of energy prices,energy consumption,gold prices and economic growth on environmental degradation in newly industrialized economies.To realize sustainable development goals and foster environmental defence,this study utilizes CS-ARDL as the main econometric approach to investigate the asymmetric association between environmental degradation and relevant factors.We also use AMG,CS-DL,Driscoll-Kray and FGLS to enhance the robustness of our findings.Our econometric approach reveals that energy resource prices and renewable energy consumption reduce environmental degradation,while gold prices and fossil energy consumption elevate environmental pollutants.We also confirm the existence of the EKC hypothesis.The findings of our extensive analysis paved the way for a welldesigned environmental policy for NIC economies should focus on renewable energy consumption,green investments,and structural changes.
文摘With the deepening of economic globalization,the business environment has seen profound changes.The cost of aviation fuel has grown to represent a significant portion of air transportation costs for“energy-dependent”airlines.The cost of aviation fuel makes up a sizeable amount of Chinese airlines’cost structure and is increasingly limiting their profitability.The question of how to control the cost of aviation fuel from various perspectives has garnered widespread attention.This paper puts forward an overlooked perspective-the procurement strategy.Firstly,it describes the necessity of aviation fuel cost control,and then analyzes specific cases of aviation fuel procurement cost control.Finally,it proposes several effective suggestions from the perspective of aviation fuel procurement,aiming to improve the refined management of Chinese airlines’aviation fuel procurement.