Fuel accumulation, mainly as fatty acids, is one of the main characteristics of migratory, birds. Studying to what extent each population or species manages fuel load and how it varies along routes of migration or bet...Fuel accumulation, mainly as fatty acids, is one of the main characteristics of migratory, birds. Studying to what extent each population or species manages fuel load and how it varies along routes of migration or between seasons (autumn and spring migrations) is crucial to our understanding of bird migration strategies. Our aim here was to analyse whether migratory blackcaps Sylvia atrieapilla passing through northern Iberia differ in their mean fuel loads, rate of fuel accumulation and ' potential' flight ranges between migration seasons. Blackcaps were mist netted for 4 h-periods beginning at dawn from 16 September to 15 November 2003 - 2005, and from 1 March to 30 April 2004 - 2006 in a European Atlantic hedgerow at Loza, northern Iberia. Both fuel load and fuel deposition rate (this latter assessed with difference in body mass of within-season recaptured individuals) were higher in autumn than in spring. Possible hypotheses explaining these results could be seasonal-associated variations in food availability (likely lower during spring than during autumn), the fact that a fraction of the migrants captured in spring could breed close to the study area and different selective pressures for breeding and wintering展开更多
The variation of fuel loads after a fire for three forest types, phododendron -Larix gmetinii forest, herb--Larix gmelinii forest and herb--Betula plalyphlla forest , in the northern forest area of Daxing’anling regi...The variation of fuel loads after a fire for three forest types, phododendron -Larix gmetinii forest, herb--Larix gmelinii forest and herb--Betula plalyphlla forest , in the northern forest area of Daxing’anling region was discussed. The dynamic models were developed by gray theory for estimating the fuels loads of arbor- shrub, herbs’ grass, litter, and semi-decomposed litter, inflamma ble fuel and the total fuels in each forest type. After a fire, the inflammabIe fuel loads in phododendron-- Larix gmelinii forest and in the herb- - Betula platyphlla fores was estimated at 10.958 t/hm2and 10.473 t/hm2 respectively’ by 13 years later. and that was 12.297 t/hm 2 in herb--Larix gmeliniiforest by 7 years later.. It was predicated that a big fire may occur after 10 years based on inflammable fuel biomass accumulated.展开更多
Fuel reload pattern optimization is essential for attaining maximum fuel burnup for minimization of generation cost while minimizing power peaking factor(PPF).The aim of this work is to carry out detailed assessment o...Fuel reload pattern optimization is essential for attaining maximum fuel burnup for minimization of generation cost while minimizing power peaking factor(PPF).The aim of this work is to carry out detailed assessment of particle swarm optimization(PSO) in the context of fuel reload pattern search. With astronomically large number of possible loading patterns, the main constraints are limiting local power peaking factor, fixed number of assemblies,fixed fuel enrichment, and burnable poison rods. In this work, initial loading pattern of fixed batches of fuel assemblies is optimized by using particle swarm optimization technique employing novel feature of varying inertial weights with the objective function to obtain both flat power profile and cycle k_(eff)>1. For neutronics calculation, PSU-LEOPARD-generated assembly depletiondependent group-constant-based ADD files are used. The assembly data description file generated by PSU-LEOPARD is used as input cross-section library to MCRAC code, which computes normalized power profile of all fuel assemblies of PWR nuclear reactor core. The standard PSO with varying inertial weights is then employed to avoid trapping in local minima. A series of experiments havebeen conducted to obtain near-optimal converged fuelloading pattern of 300 MWe PWR Chashma reactor. The optimized loading pattern is found in good agreement with results found in literature. Hybrid scheme of PSO with simulated annealing has also been implemented and resulted in faster convergence.展开更多
Forest fuel investigations in central and southern Siberian taiga of Scots pine forest stands dominated by lichen and feather moss ground vegetation cover revealed that total aboveground biomass varied from 13.1 to 21...Forest fuel investigations in central and southern Siberian taiga of Scots pine forest stands dominated by lichen and feather moss ground vegetation cover revealed that total aboveground biomass varied from 13.1 to 21.0 kg/m 2.Stand biomass was higher in plots in the southern taiga,while ground fuel loads were higher in the central taiga.We developed equations for fuel biomass(both aerial and ground)that could be applicable to similar pine forest sites of Central Siberia.Fuel loading variability found among plots is related to the impact and recovery time since the last wildfi re and the mosaic distribution of living vegetation.Fuel consumption due to surface fi res of low to high-intensities ranged from 0.95 to 3.08 kg/m 2,that is,18–74%from prefi re values.The total amount of fuels available to burn in case of fi re was up to 4.5–6.5 kg/m 2.Moisture content of fuels(litter,lichen,feather moss)was related to weather conditions characterized by the Russian Fire Danger Index(PV-1)and FWI code of the Canadian Forest Fire Weather Index System.The data obtained provide a strong foundation for understanding and modeling fi re behavior,emissions,and fi re eff ects on ecosystem processes and carbon stocks and could be used to improve existing global and regional models that incorporate biomass and fuel characteristics.展开更多
The dynamic load characteristics of a proton exchange membrane fuel cell(PEMFC) with a dead-ended anode were studied. In a 70 h experiment, the effects of anode pressure, operating temperature, and relative humidity...The dynamic load characteristics of a proton exchange membrane fuel cell(PEMFC) with a dead-ended anode were studied. In a 70 h experiment, the effects of anode pressure, operating temperature, and relative humidity of the cathode on the performances of the fuel cell were investigated. The obtained results show that, with different relative humidity of the cathode at 65 ℃, dynamic loading has little effect on the performances of fuel cell and the electrochemically active surface area(ECSA). However, the fuel cell operating under dynamic load is unstable when the relative humidity is 50%, and at 50 ℃ with 100% relative humidity, applying a dynamic load has a significant influence on the fuel cell performances. Scanning electron microscopy(SEM) showed that both the upstream and middle catalyst layers of the cell were unchanged, whereas the downstream cathode catalyst layer thinned as a response to dynamic load.展开更多
Molten salt reactor, with good economics and inherent reliability, is one of the six types of Generation IV candidate reactors. The Basket-Fuel-Assembly Molten Salt Reactor(BFAMSR) is a new concept design based on fue...Molten salt reactor, with good economics and inherent reliability, is one of the six types of Generation IV candidate reactors. The Basket-Fuel-Assembly Molten Salt Reactor(BFAMSR) is a new concept design based on fuel assemblies composed of fuel pebbles made of TRISOcoated particles. Four refueling patterns, similar to the fuel management strategy for water reactors, are designed and analyzed for BFAMSR in terms of economy and security.The MCNPX is employed to calculate the parameters, such as the total duration time, cycle length, discharge burnup,total discharge quantity of ^(235)U, total discharge quantity of ^(239)Pu, neutron flux distribution and power distribution. The in–out loading pattern has the highest burnup and duration time, the worst neutron flux and power distribution and the lowest neutron leakage. The out–in pattern possesses the most uniform neutron flux distribution, the lowest burnup and total duration time, and the highest neutron leakage.The out–in partition alternate pattern has slightly higher burnup, longer total duration time and smaller neutron leakage than that of the out–in loading pattern at the cost of sacrificing some neutron flux distribution and power distribution. However, its alternative distribution of fuelelements cut down the refueling time. The low-leakage pattern is the second highest in burnup, and total duration time, and its neutron flux and power distributions are the second most uniform.展开更多
The electrode Pt-loading has an effect on the number of active sites and the thickness of catalyst layer,which has huge influence on the mass transfer and water management during dynamic process in PEMFCs. In this stu...The electrode Pt-loading has an effect on the number of active sites and the thickness of catalyst layer,which has huge influence on the mass transfer and water management during dynamic process in PEMFCs. In this study, membrane electrode assemblies with different Pt-loadings were prepared, and PEMFCs were assembled using those membrane electrode assemblies with traditional solid plate and water transport plate as cathode flow-field plates, respectively. The performance and electrochemical surface area of cells were characterized to evaluate the membrane electrode assemblies degradation after rapid currentvariation cycles. Scanning electron microscope and transmission electron microscope were used to investigate the decay of catalyst layers and Pt/C catalyst. With the increase of Pt-loading, the performance degradation of membrane electrode assemblies will be mitigated. But higher Pt-loading means thicker catalyst layer, which leads to a longer pathway of mass transfer, and it may result in carbon material corrosion in membrane electrode assemblies. The decay of Pt/C catalyst in cathode is mainly caused by the corrosion of carbon support, and the degradation of anode Pt/C catalyst is a consequence of migration and aggregation of Pt particles. And using water transport plate is beneficial to alleviating the age of cathode Pt/C catalyst.展开更多
There are two kinds of internationally recognized approaches in terms of lightweight design.One is based on fatigue accumulated damage theory to achieve better reliability by optimal structural design; another is to u...There are two kinds of internationally recognized approaches in terms of lightweight design.One is based on fatigue accumulated damage theory to achieve better reliability by optimal structural design; another is to use high performance lightweight materials.The former method takes very few considerations on the structural strengthening effects caused by the massive small loads in service.In order to ensure safety,the design is usually conservative,but the strength potential of the component is not fully exerted.In the latter method,cost is the biggest obstacle to lightweight materials in automotive applications.For the purpose of light weighting design on a fuel cell vehicle,the new design method is applied on drive shafts.The method is based on the low amplitude load strengthening characteristics of the material,and allows the stress,corresponding to test load,to enter into the strengthened range of the material.Under this condition,the light weighting design should assure that the reliability of the shaft is not impaired,even maximizes the strength potential of machine part in order to achieve the weight reduction and eventually to reduce the cost.At last,the feasibility of the design is verified by means of strength analysis and modal analysis based on the CAD model of light weighted shaft.The design applies to the load case of half shaft in independent axle,also provides technological reference for the structural lightweight design of vehicles and other machineries.展开更多
Along with the increasing importance of sustainable energy, the optimization of load assignment to boilers in an industrial boiler plant becomes one of the major projects for the optimal operation of boiler plants. Op...Along with the increasing importance of sustainable energy, the optimization of load assignment to boilers in an industrial boiler plant becomes one of the major projects for the optimal operation of boiler plants. Optimal load assignment for power systems has been a long-lasting subject, while it is quite new for industrial boiler plants. The existing methods of optimal load assignment for boiler plants are explained and analyzed briefly in the paper. They all need the fuel cost curves of boilers. Thanks to some special features of the curves for industrial boilers, a new model referred to as minimized departure model (MDM) of optimization of load assignment for boiler plants is developed and proposed in the paper. It merely relies upon the accessible data of two typical working conditions to build the model, viz. the working conditions with the highest efficiency of a boiler and with no-load. Explanation of the algorithm of computer program is given, and effort is made so as to determine in advance how many and which boilers are going to work. Comparison between the results using MDM and the results reported in references is carried out, which proves that MDM is preferable and practicable.展开更多
Platinum catalysts play a major role in the large scale commercialization of direct methanol fuel cells(DMFC).Here,we present a procedure to create a nanostructural graphene-platinum(Gr Pt)composite containing a small...Platinum catalysts play a major role in the large scale commercialization of direct methanol fuel cells(DMFC).Here,we present a procedure to create a nanostructural graphene-platinum(Gr Pt)composite containing a small amount(5.3 wt%)of platinum nanoparticles coated with at least four layers of graphene.The composite,as Gr Pt ink,was deposited on a glassy carbon electrode and its electrocatalytic activity in a methanol oxidation reaction(MOR)was evaluated in a 1 M CH3OH/1 M NaOH solution.The results indicated an enhanced catalytic performance of GrPt towards MOR in alkaline media compared with the Pt/C material.Electron energy-loss spectroscopy and X-ray photoelectron spectroscopy(recorded before and after the electrochemical assays)were employed to analyze the changes in the chemical composition of the nanomaterial and to explain the transformations that took place at the electrode surface.Our findings suggest that growing of graphene on platinum nanoparticles improve the catalytic performance of platinum-graphene composites towards MOR in alkaline media.展开更多
This paper presents an efficient analytical approach using Composite Cost Function (CCF) for solving the Economic Dispatch problem with Multiple Fuel Options (EDMFO). The solution methodology comprises two stages. Fir...This paper presents an efficient analytical approach using Composite Cost Function (CCF) for solving the Economic Dispatch problem with Multiple Fuel Options (EDMFO). The solution methodology comprises two stages. Firstly, the CCF of the plant is developed and the most economical fuel of each set can be easily identified for any load demand. In the next stage, for the selected fuels, CCF is evaluated and the optimal scheduling is obtained. The Proposed Method (PM) has been tested on the standard ten-generation set system;each set consists of two or three fuel options. The total fuel cost obtained by the PM is compared with earlier reports in order to validate its effectiveness. The comparison clears that this approach is a promising alterna-tive for solving EDMFO problems in practical power system.展开更多
基金supported by a postgraduate fellowship from the Basque Governmentsupported by project CGL2007-61395(Ministry of Education and Science,Government of Spain)
文摘Fuel accumulation, mainly as fatty acids, is one of the main characteristics of migratory, birds. Studying to what extent each population or species manages fuel load and how it varies along routes of migration or between seasons (autumn and spring migrations) is crucial to our understanding of bird migration strategies. Our aim here was to analyse whether migratory blackcaps Sylvia atrieapilla passing through northern Iberia differ in their mean fuel loads, rate of fuel accumulation and ' potential' flight ranges between migration seasons. Blackcaps were mist netted for 4 h-periods beginning at dawn from 16 September to 15 November 2003 - 2005, and from 1 March to 30 April 2004 - 2006 in a European Atlantic hedgerow at Loza, northern Iberia. Both fuel load and fuel deposition rate (this latter assessed with difference in body mass of within-season recaptured individuals) were higher in autumn than in spring. Possible hypotheses explaining these results could be seasonal-associated variations in food availability (likely lower during spring than during autumn), the fact that a fraction of the migrants captured in spring could breed close to the study area and different selective pressures for breeding and wintering
文摘The variation of fuel loads after a fire for three forest types, phododendron -Larix gmetinii forest, herb--Larix gmelinii forest and herb--Betula plalyphlla forest , in the northern forest area of Daxing’anling region was discussed. The dynamic models were developed by gray theory for estimating the fuels loads of arbor- shrub, herbs’ grass, litter, and semi-decomposed litter, inflamma ble fuel and the total fuels in each forest type. After a fire, the inflammabIe fuel loads in phododendron-- Larix gmelinii forest and in the herb- - Betula platyphlla fores was estimated at 10.958 t/hm2and 10.473 t/hm2 respectively’ by 13 years later. and that was 12.297 t/hm 2 in herb--Larix gmeliniiforest by 7 years later.. It was predicated that a big fire may occur after 10 years based on inflammable fuel biomass accumulated.
文摘Fuel reload pattern optimization is essential for attaining maximum fuel burnup for minimization of generation cost while minimizing power peaking factor(PPF).The aim of this work is to carry out detailed assessment of particle swarm optimization(PSO) in the context of fuel reload pattern search. With astronomically large number of possible loading patterns, the main constraints are limiting local power peaking factor, fixed number of assemblies,fixed fuel enrichment, and burnable poison rods. In this work, initial loading pattern of fixed batches of fuel assemblies is optimized by using particle swarm optimization technique employing novel feature of varying inertial weights with the objective function to obtain both flat power profile and cycle k_(eff)>1. For neutronics calculation, PSU-LEOPARD-generated assembly depletiondependent group-constant-based ADD files are used. The assembly data description file generated by PSU-LEOPARD is used as input cross-section library to MCRAC code, which computes normalized power profile of all fuel assemblies of PWR nuclear reactor core. The standard PSO with varying inertial weights is then employed to avoid trapping in local minima. A series of experiments havebeen conducted to obtain near-optimal converged fuelloading pattern of 300 MWe PWR Chashma reactor. The optimized loading pattern is found in good agreement with results found in literature. Hybrid scheme of PSO with simulated annealing has also been implemented and resulted in faster convergence.
基金Cooperation and logistical support of the Russian Aerial Forest Protection Service(Avialesookhrana)and Russian Forest Service(Regional and Local Forestry Committees)is greatly appreciated.A special thanks to L.Bobkova,N.Koshurnikova,and E.Krasnoshchekova for their assistance in fuel sampling and to D.Randall for statistical analysis of tree data.
文摘Forest fuel investigations in central and southern Siberian taiga of Scots pine forest stands dominated by lichen and feather moss ground vegetation cover revealed that total aboveground biomass varied from 13.1 to 21.0 kg/m 2.Stand biomass was higher in plots in the southern taiga,while ground fuel loads were higher in the central taiga.We developed equations for fuel biomass(both aerial and ground)that could be applicable to similar pine forest sites of Central Siberia.Fuel loading variability found among plots is related to the impact and recovery time since the last wildfi re and the mosaic distribution of living vegetation.Fuel consumption due to surface fi res of low to high-intensities ranged from 0.95 to 3.08 kg/m 2,that is,18–74%from prefi re values.The total amount of fuels available to burn in case of fi re was up to 4.5–6.5 kg/m 2.Moisture content of fuels(litter,lichen,feather moss)was related to weather conditions characterized by the Russian Fire Danger Index(PV-1)and FWI code of the Canadian Forest Fire Weather Index System.The data obtained provide a strong foundation for understanding and modeling fi re behavior,emissions,and fi re eff ects on ecosystem processes and carbon stocks and could be used to improve existing global and regional models that incorporate biomass and fuel characteristics.
基金Funded by the National Natural Science Foundation of China(Nos.51476119 and 51576147)the Natural Science Foundation of Hubei Province(No.2016CFA041)the Fundamental Research Funds for the Central Universities(No.2017 IVA 031)
文摘The dynamic load characteristics of a proton exchange membrane fuel cell(PEMFC) with a dead-ended anode were studied. In a 70 h experiment, the effects of anode pressure, operating temperature, and relative humidity of the cathode on the performances of the fuel cell were investigated. The obtained results show that, with different relative humidity of the cathode at 65 ℃, dynamic loading has little effect on the performances of fuel cell and the electrochemically active surface area(ECSA). However, the fuel cell operating under dynamic load is unstable when the relative humidity is 50%, and at 50 ℃ with 100% relative humidity, applying a dynamic load has a significant influence on the fuel cell performances. Scanning electron microscopy(SEM) showed that both the upstream and middle catalyst layers of the cell were unchanged, whereas the downstream cathode catalyst layer thinned as a response to dynamic load.
基金supported by the Strategic Priority Program of Chinese Academy of Sciences(No.XDA02030200)
文摘Molten salt reactor, with good economics and inherent reliability, is one of the six types of Generation IV candidate reactors. The Basket-Fuel-Assembly Molten Salt Reactor(BFAMSR) is a new concept design based on fuel assemblies composed of fuel pebbles made of TRISOcoated particles. Four refueling patterns, similar to the fuel management strategy for water reactors, are designed and analyzed for BFAMSR in terms of economy and security.The MCNPX is employed to calculate the parameters, such as the total duration time, cycle length, discharge burnup,total discharge quantity of ^(235)U, total discharge quantity of ^(239)Pu, neutron flux distribution and power distribution. The in–out loading pattern has the highest burnup and duration time, the worst neutron flux and power distribution and the lowest neutron leakage. The out–in pattern possesses the most uniform neutron flux distribution, the lowest burnup and total duration time, and the highest neutron leakage.The out–in partition alternate pattern has slightly higher burnup, longer total duration time and smaller neutron leakage than that of the out–in loading pattern at the cost of sacrificing some neutron flux distribution and power distribution. However, its alternative distribution of fuelelements cut down the refueling time. The low-leakage pattern is the second highest in burnup, and total duration time, and its neutron flux and power distributions are the second most uniform.
基金financially supported by the National Key Research and Development Program of China (Grant no.2016YFB0101208)NSFC-Liaoning Joint Funding (Grant no. U1508202)the National Natural Science Foundations of China (Grant no. 61433013 and 91434131)
文摘The electrode Pt-loading has an effect on the number of active sites and the thickness of catalyst layer,which has huge influence on the mass transfer and water management during dynamic process in PEMFCs. In this study, membrane electrode assemblies with different Pt-loadings were prepared, and PEMFCs were assembled using those membrane electrode assemblies with traditional solid plate and water transport plate as cathode flow-field plates, respectively. The performance and electrochemical surface area of cells were characterized to evaluate the membrane electrode assemblies degradation after rapid currentvariation cycles. Scanning electron microscope and transmission electron microscope were used to investigate the decay of catalyst layers and Pt/C catalyst. With the increase of Pt-loading, the performance degradation of membrane electrode assemblies will be mitigated. But higher Pt-loading means thicker catalyst layer, which leads to a longer pathway of mass transfer, and it may result in carbon material corrosion in membrane electrode assemblies. The decay of Pt/C catalyst in cathode is mainly caused by the corrosion of carbon support, and the degradation of anode Pt/C catalyst is a consequence of migration and aggregation of Pt particles. And using water transport plate is beneficial to alleviating the age of cathode Pt/C catalyst.
基金supported by National Natural Science Foundation of China (Grant No. 50875173)Shanghai Municipal Education Commission Key Foundation of China (Grant No. 09ZZ157)Shanghai Leading Academic Discipline Project of China (Grant No. J50503)
文摘There are two kinds of internationally recognized approaches in terms of lightweight design.One is based on fatigue accumulated damage theory to achieve better reliability by optimal structural design; another is to use high performance lightweight materials.The former method takes very few considerations on the structural strengthening effects caused by the massive small loads in service.In order to ensure safety,the design is usually conservative,but the strength potential of the component is not fully exerted.In the latter method,cost is the biggest obstacle to lightweight materials in automotive applications.For the purpose of light weighting design on a fuel cell vehicle,the new design method is applied on drive shafts.The method is based on the low amplitude load strengthening characteristics of the material,and allows the stress,corresponding to test load,to enter into the strengthened range of the material.Under this condition,the light weighting design should assure that the reliability of the shaft is not impaired,even maximizes the strength potential of machine part in order to achieve the weight reduction and eventually to reduce the cost.At last,the feasibility of the design is verified by means of strength analysis and modal analysis based on the CAD model of light weighted shaft.The design applies to the load case of half shaft in independent axle,also provides technological reference for the structural lightweight design of vehicles and other machineries.
文摘Along with the increasing importance of sustainable energy, the optimization of load assignment to boilers in an industrial boiler plant becomes one of the major projects for the optimal operation of boiler plants. Optimal load assignment for power systems has been a long-lasting subject, while it is quite new for industrial boiler plants. The existing methods of optimal load assignment for boiler plants are explained and analyzed briefly in the paper. They all need the fuel cost curves of boilers. Thanks to some special features of the curves for industrial boilers, a new model referred to as minimized departure model (MDM) of optimization of load assignment for boiler plants is developed and proposed in the paper. It merely relies upon the accessible data of two typical working conditions to build the model, viz. the working conditions with the highest efficiency of a boiler and with no-load. Explanation of the algorithm of computer program is given, and effort is made so as to determine in advance how many and which boilers are going to work. Comparison between the results using MDM and the results reported in references is carried out, which proves that MDM is preferable and practicable.
基金financially supported by Romanian National Authority for Scientific Research and Innovation (ANCSI) by NUCLEU Program PN 18 03 02 02
文摘Platinum catalysts play a major role in the large scale commercialization of direct methanol fuel cells(DMFC).Here,we present a procedure to create a nanostructural graphene-platinum(Gr Pt)composite containing a small amount(5.3 wt%)of platinum nanoparticles coated with at least four layers of graphene.The composite,as Gr Pt ink,was deposited on a glassy carbon electrode and its electrocatalytic activity in a methanol oxidation reaction(MOR)was evaluated in a 1 M CH3OH/1 M NaOH solution.The results indicated an enhanced catalytic performance of GrPt towards MOR in alkaline media compared with the Pt/C material.Electron energy-loss spectroscopy and X-ray photoelectron spectroscopy(recorded before and after the electrochemical assays)were employed to analyze the changes in the chemical composition of the nanomaterial and to explain the transformations that took place at the electrode surface.Our findings suggest that growing of graphene on platinum nanoparticles improve the catalytic performance of platinum-graphene composites towards MOR in alkaline media.
文摘This paper presents an efficient analytical approach using Composite Cost Function (CCF) for solving the Economic Dispatch problem with Multiple Fuel Options (EDMFO). The solution methodology comprises two stages. Firstly, the CCF of the plant is developed and the most economical fuel of each set can be easily identified for any load demand. In the next stage, for the selected fuels, CCF is evaluated and the optimal scheduling is obtained. The Proposed Method (PM) has been tested on the standard ten-generation set system;each set consists of two or three fuel options. The total fuel cost obtained by the PM is compared with earlier reports in order to validate its effectiveness. The comparison clears that this approach is a promising alterna-tive for solving EDMFO problems in practical power system.