Reactive material projectiles can be an extremely efficient lethality enhancement technology that incorporates the defeat mechanisms of chemical energy and kinetic energy.This paper presents such a research on the enh...Reactive material projectiles can be an extremely efficient lethality enhancement technology that incorporates the defeat mechanisms of chemical energy and kinetic energy.This paper presents such a research on the enhanced ignition behavior of reactive material projectiles impacting a fuel-filled tank.Firstly,the ignition process description of the fuel-filled tank impacted by inert metal and reactive material projectiles is presented.Secondly,ballistic impact experiments are performed to investigate the ignition effects of the fuel-filled tank impacted by reactive material versus tungsten alloy projectiles with mass matched.The fuel tank used for the experiments is a cylindrical steel casing structure filled with aviation kerosene and sealed with aluminum cover plates on both ends using screw bolts.The experimental results indicate that,compared with impacts from tungsten alloy projectiles,there is dramatically enhanced structural damage to the fuel-filled tank and an enhanced ignition effect caused by reactive material projectile impacts.Finally,an analytical model is developed,by which the effects of the aluminum cover plate thickness on critical structural failure energy of the fuel-filled tank and the total energy of the reactive material projectile deposited into the fuel-filled tank are discussed.The analysis shows a good agreement with the experiments.展开更多
This paper is mainly focused on the attitude dynamics and control of a fuel-filled flexible spacecraft sub- jected to the thermal payload during eclipse transitions. The flexible appendages are considered as Euler-Ber...This paper is mainly focused on the attitude dynamics and control of a fuel-filled flexible spacecraft sub- jected to the thermal payload during eclipse transitions. The flexible appendages are considered as Euler-Bernoulli beams, and the sloshing liquid is modeled as in two modes multi-spring-mass models; the governing equations of this coupled system are developed by using Hamilton's prin- ciple. Numerical results show that the spacecraft attitude responses consist of a quasi-static displacement and superim- posed vibration. Then, we design an adaptive sliding mode and use the Lyapunov approach control law to control the attitude disturbance and suppress the thermal jitter and liq- uid sloshing for the fuel filled flexible spacecraft subject to the thermal payload. Numerical results are presented to verify the efficiency of the hybrid control methods. The results show that the adaptive sliding mode method might be effective to handle the steady-state errors and the Lyapunov control algo- rithm would suppress the residual vibration.展开更多
基金funded under the National Innovation and Exploration Research Programsupported by the State Key Laboratory of Explosion Science and Technology Foundation of China
文摘Reactive material projectiles can be an extremely efficient lethality enhancement technology that incorporates the defeat mechanisms of chemical energy and kinetic energy.This paper presents such a research on the enhanced ignition behavior of reactive material projectiles impacting a fuel-filled tank.Firstly,the ignition process description of the fuel-filled tank impacted by inert metal and reactive material projectiles is presented.Secondly,ballistic impact experiments are performed to investigate the ignition effects of the fuel-filled tank impacted by reactive material versus tungsten alloy projectiles with mass matched.The fuel tank used for the experiments is a cylindrical steel casing structure filled with aviation kerosene and sealed with aluminum cover plates on both ends using screw bolts.The experimental results indicate that,compared with impacts from tungsten alloy projectiles,there is dramatically enhanced structural damage to the fuel-filled tank and an enhanced ignition effect caused by reactive material projectile impacts.Finally,an analytical model is developed,by which the effects of the aluminum cover plate thickness on critical structural failure energy of the fuel-filled tank and the total energy of the reactive material projectile deposited into the fuel-filled tank are discussed.The analysis shows a good agreement with the experiments.
基金supported by the National Natural Science Foundation of China(NNSFC)(Grant 11472041)the Research Fund for the Doctoral Program of Higher Education of China(Grant 20131101110002)
文摘This paper is mainly focused on the attitude dynamics and control of a fuel-filled flexible spacecraft sub- jected to the thermal payload during eclipse transitions. The flexible appendages are considered as Euler-Bernoulli beams, and the sloshing liquid is modeled as in two modes multi-spring-mass models; the governing equations of this coupled system are developed by using Hamilton's prin- ciple. Numerical results show that the spacecraft attitude responses consist of a quasi-static displacement and superim- posed vibration. Then, we design an adaptive sliding mode and use the Lyapunov approach control law to control the attitude disturbance and suppress the thermal jitter and liq- uid sloshing for the fuel filled flexible spacecraft subject to the thermal payload. Numerical results are presented to verify the efficiency of the hybrid control methods. The results show that the adaptive sliding mode method might be effective to handle the steady-state errors and the Lyapunov control algo- rithm would suppress the residual vibration.