Hydrogen challenge mitigation stands as one of the main objectives in the management of severe accidents at Nuclear Power Plants (NPPs). Key strategies for hydrogen control include atmospheric inertization and hydroge...Hydrogen challenge mitigation stands as one of the main objectives in the management of severe accidents at Nuclear Power Plants (NPPs). Key strategies for hydrogen control include atmospheric inertization and hydrogen removal with Passive Autocatalytic Recombiners (PARs) being a commonly accepted approach. However, an examination of PAR operation specificity reveals potential inefficiencies and reliability issues in certain severe accident scenarios. Moreover, during the in-vessel stage of severe accident development, in some severe accident scenarios PARs can unexpectedly become a source of hydrogen detonation. The effectiveness of hydrogen removal systems depends on various factors, including the chosen strategies, severe accident scenarios, reactor building design, and other influencing factors. Consequently, a comprehensive hydrogen mitigation strategy must effectively incorporate a combination of strategies rather than be based on one strategy, taking into consideration the probabilistic risks and uncertainties associated with the implementation of PARs or other traditional methods. In response to these considerations, within the framework of this research it has been suggested a conceptual strategy to mitigate the hydrogen challenge during the in-vessel stage of severe accident development.展开更多
It has been revealed that prolonged shelter life caused by Fukushima Daiichi Nuclear Power Station accident in conjunction with the Great East Japan Earthquake influences sleep and mental health of the residents, and ...It has been revealed that prolonged shelter life caused by Fukushima Daiichi Nuclear Power Station accident in conjunction with the Great East Japan Earthquake influences sleep and mental health of the residents, and therefore its influence on their physical and emotional health has become a concern. Therefore, in this study, the authors aimed at clarifying actual situations of sleep and stress of middle age males living in shelters for a long period in each of emergency temporary houses and post-earthquake public houses. For 5 males who moved from emergency temporary houses to post-earthquake public houses, their objective and subjective sleep states were measured with Actigraph and PSQI, respectively. Furthermore, their objective and subjective stresses were measured with saliva stress biomarkers and GHQ28, respectively. Their data were analyzed by paired t-test. As result, in comparison between the life in the emergency temporary houses and post-earthquake public houses, significant variation was not recognized in their objective sleep states and saliva stress biomarkers though their subjective sleep and subjective stress were significantly worsened after moving to the post-earthquake public houses.展开更多
Huge amount of digital data of the Great East Japan Earthquake is provided by the highly-developed digital data technology. But the method and technique for analysis of these huge digital data are not developed suffic...Huge amount of digital data of the Great East Japan Earthquake is provided by the highly-developed digital data technology. But the method and technique for analysis of these huge digital data are not developed sufficiently. This paper proposes a running spectrum technique for text data and analyzing changes of disaster phase during the disaster management cycle. Impact analysis of the nuclear power plant accidents have been performed by using Fukushima Minpo newspaper for its verification. The result shows the dynamic characteristics of the nuclear power plant accidents. As the time interval B becomes longer, the analysis data is used from wide range period along with the smoothing effect. When observing different time intervals B, fewer keywords have been ranked in the longer time intervals of B. The proposed technique is a powerful tool to effective and efficient disaster response and management. analyze effectively the huge amount of digital data for the展开更多
The paper presents a computer code system 'SRDAAR- QNPP' for the real-time dose as-sessment of an accident release for Qinshan Nuclear Power Plant. It includes three parts:thereal-time data acquisition system,...The paper presents a computer code system 'SRDAAR- QNPP' for the real-time dose as-sessment of an accident release for Qinshan Nuclear Power Plant. It includes three parts:thereal-time data acquisition system, assessment computer. and the assessment operating code system. InSRDAAR-QNPP, the wind field of the surface and the lower levels are determined hourly by using amass consistent three-dimension diasnosis model with the topographic following coordinate system.A Lagrangin Puff model under changing meteorological condition is adopted for atmosphericdispersion, the correction for dry and wet depositions. physical decay and partial plume penetrationof the top inversion and the deviation of plume axis caused by complex terrain have been taken in-to account. The calculation domain areas include three square grid areas with the sideline 10 km, 40krn and 160 km and a grid interval 0.5 km, 2.0 km, 8.0 km respectively. Three exposure pathwaysare taken into account:the external exposure from immersion cloud and passing puff, the internalexposure from inhalation and the external exposure from contaminated ground. This system is ableto provide the results of concentration and dose distributions within 10 minutes after the data havebeen inputed.展开更多
The Lagrangian Particle Dispersion Model (LPDM) in the 594 km× 594 km model domain with the horizontal grid scale of 3 km×3 km centered at a power plant and the Eulerian Transport Model (ETM) modified from t...The Lagrangian Particle Dispersion Model (LPDM) in the 594 km× 594 km model domain with the horizontal grid scale of 3 km×3 km centered at a power plant and the Eulerian Transport Model (ETM) modified from the Asian Dust Aerosol Model 2 (ADAM2) in the domain of 70° LAT × 140° LON with the horizontal grid scale of 27 km×27 km have been developed. These models have been implemented to simulate the concentration and deposition of radionuclides (137Cs and 131I) released from the accident of the Fukushima Dai-ichi nuclear power plant. It is found that both models are able to simulate quite reasonably the observed concentrations of 137Cs and 131I near the power plant. However, the LPDM model is more useful for the estimation of concentration near the power plant site in details whereas the ETM model is good for the long-range transport processes of the radionuclide plume. The estimated maximum mean surface concentration, column integrated mean concentration and the total deposition (wet+dry) by LPDM for the period from 12 March to 30 April 2011 are, respectively found to be 2.975 × 102 Bq m-3, 3.7 × 107 Bq m-2, and 1.78 × 1014 Bq m-2 for 137Cs and 1.96 × 104 Bq m-3, 2.24 × 109 Bq m-2 and 5.96 × 1014 Bq m-2 for 131I. The radionuclide plumes released from the accident power plant are found to spread wide regions not only the whole model domain of downwind regions but the upwind regions of Russia, Mongolia, Korea, eastern China, Philippines and Vietnam within the analysis period.展开更多
The countermeasures are the actions that should be taken, after the occurrence of a nuclear accident to protect the public against the associated risks. These actions may be represented by sheltering, evacuation, dist...The countermeasures are the actions that should be taken, after the occurrence of a nuclear accident to protect the public against the associated risks. These actions may be represented by sheltering, evacuation, distribution of stable iodine tablets and/or relocation. This study represents a comprehensive probabilistic study to investigate the role of the adoption of the countermeasures in case of a hypothetical accident of type LOCA for nuclear power plant of PWR (1000 Mw). The effective doses in different organs, short and long health effects, and the associated risks are calculated with and without countermeasures. In addition, the overall costs of the accident and the costs of countermeasures are estimated which represent our first trials to know how much the proposed accident cost. The results showed that, the area around the site requires early and late countermeasures action after the accident especially in the downwind sectors. For late countermeasures, the duration time of relocation ranged from about two to 10 years. The adoption of the countermeasures increases the costs of emergency plan by 40% but reduces the risk associated the accident.展开更多
The paper reports some technical solutions, which suggested or used for increasing of environmental protection during accidents at NPPs. For NNPs with two protective shells and pressure release system such as WWER-100...The paper reports some technical solutions, which suggested or used for increasing of environmental protection during accidents at NPPs. For NNPs with two protective shells and pressure release system such as WWER-1000 a comprehensive, passive-mode environmental protection system of decontamination of the radioactive steam-air mixture from the containment and the intercontainment area was suggested. This system includes the “wet” stage (scrubbers, etc.), the “dry” stage (sorption module), and also an ejector, which in a passive mode is capable of solving the multi-purpose task of decontamination of the air-steam mixture. For WWER-440/230 NPPs three protection levels: 1) a jet-vortex condenser;2) the spray system;3) a sorption module were suggested and installed. For modern designs of new generation NPPs, which do not provide for pressure release systems, a new passive filtering system together with the passive heat-removal system, which can be used during severe accidents in case all power supply units become unavailable, was proposed and after modernization was installed at the KudanKulam NPP (India).展开更多
[Background]The previous studies suggest that radioactive elements like Cs and Sr may adversely affect marine ecosystems and the fishing industry.Traditional treatment systems for radioactive wastewater like the Advan...[Background]The previous studies suggest that radioactive elements like Cs and Sr may adversely affect marine ecosystems and the fishing industry.Traditional treatment systems for radioactive wastewater like the Advanced Liquid Processing System(ALPS)and Kurion have faced challenges in limiting concentration and achieving safety criteria.Studies suggest potential long-term impacts on benthic organisms and seafood networks due to radioactive elements like Cs and Sr from the discharged radioactive wastewater,which may hinder post-disaster recovery and provoke economic losses in the fishing industry both domestically and internationally.A series of studies indicate that there are issues of Cs and Sr pollution migration in soil and water conservation in Fukushima.[Methods]To provide feasible solutions,the main article includes five nuclear wastewater treatment technologies,and soil and water conservation measures for different media(water and soil)were evaluated through reviewing the previous fifteen years'articles.To provide feasible solutions,the main articles,the phytoextraction technologies in Cs and Sr treatment within different land use areas were wildly analyzed(Camellia japonica,Arabidopsis halleri and other local species).[Results]1)A 99.9%removal rate for Cs^(+)and 99.5%for Sr^(2+)was achieved by the KFe[Fe(CN)_(6)]and BaSO_(4)co-precipitation method.2)For membrane filtration,Sr^(2+)and Cs^(+)were removed using metal-organic framework(MOF/graphene oxide)and ion exchange techniques using inorganic materials like titanosilicates.The absorption efficiency of membrane filtration for Sr^(2+)and Cs^(+)was at least 92%and 94%,respectively.The study analyzed soil and water conservation technologies in different land uses,river basins and catchments.3)The underground water treatment mainly were completed via the membrance technologies like reverse osmosis and Permeable Reactive Barriers(PRB)technologies.The ^(90) Sr concentration decreased 77%-91%compared to the initial concentration by PRB technology.These diverse methods offered effective strategies for radioactive wastewater treatment,especially the co-precipitation method may be feasible remediation measures to ensure ecological safety surrounding nuclear power utilizing areas.Soil and water conservation measures for soil pollution treatment mainly focused on the use of stabilizers to hinder the migration of Cs and Sr in the soil and the effects of wind erosion such as interpolyelectrolyte complexes.[Conclusions]We evaluated the pollution of Cs and Sr in the Fukushima nuclear radiation soil and water to provide solutions for the treatment of nuclear wastewater and to prevent radionuclide pollutants from migrating into the soil and water.展开更多
The accidents at the Fukushima Daiichi nuclear power station stunned the world as the sequences played out over severals days and videos of hydrogen explosions were televised as they took place. The accidents all resu...The accidents at the Fukushima Daiichi nuclear power station stunned the world as the sequences played out over severals days and videos of hydrogen explosions were televised as they took place. The accidents all resulted in severe damage to the reactor cores and releases of radioactivity to the environment despite heroic measures had taken by the operating personnel. The following paper provides some background into the development of these accidents and their root causes,chief among them,the prolonged station blackout conditions that isolated the reactors from their ultimate heat sink - the ocean. The interpretations given in this paper are summarized from a recently completed report funded by the United States Department of Energy (USDOE).展开更多
A variety of environmental media were analyzed for fallout radionuclides resulting from the Fukushima nuclear accident by the Low Background Facility (LBF) at the Lawrence Berkeley National Laboratory (LBNL) in Berkel...A variety of environmental media were analyzed for fallout radionuclides resulting from the Fukushima nuclear accident by the Low Background Facility (LBF) at the Lawrence Berkeley National Laboratory (LBNL) in Berkeley, CA. Monitoring activities in air and rainwater began soon after the onset of the March 11, 2011 tsunami and are reported here through the end of 2012. Observed fallout isotopes include 131I, 132I, 132Te, 134Cs, 136Cs, and 137Cs. Isotopes were measured on environmental air filters, automobile filters, and in rainwater. An additional analysis of rainwater in search of 90Sr is also presented. Last, a series of food measurements conducted in September of 2013 are included due to extended media concerns of 134,137Cs in fish. Similar measurements of fallout from the Chernobyl disaster at LBNL, previously unpublished publicly, are also presented here as a comparison with the Fukushima incident. All measurements presented also include natural radionuclides found in the environment to provide a basis for comparison.展开更多
Hydrogen combustion in a nuclear power plant containment building may threaten the integrity of the containment. Hydrogen recombiners and igniters are two methods to reduce hydrogen levels in containment buildings dur...Hydrogen combustion in a nuclear power plant containment building may threaten the integrity of the containment. Hydrogen recombiners and igniters are two methods to reduce hydrogen levels in containment buildings during severe accidents. The purpose of this paper is to evaluate the safety implementation of hydrogen igniters and recombiners. This paper analyzes the risk of deliberate hydrogen ignition and investigates three mitigation measures using igniters only, hydrogen recombiners only or a combination of recombiners and igniters. The results indicate that steam can effectively control the hydrogen flame acceleration and the deflagration-to-detonation transition.展开更多
Knowledge and control of the thermo-hydraulic conditions in the reactor is required for the effective accident management. Dedicated and qualified for harsh environment instrumentation has to be in place for this purp...Knowledge and control of the thermo-hydraulic conditions in the reactor is required for the effective accident management. Dedicated and qualified for harsh environment instrumentation has to be in place for this purpose. Experience of the Fukushima Dai-ichi plant and the lessons learned from the European stress tests demonstrated that alternative and divers tools and methods are needed for the identification of reactor condition in extreme situations. In the paper the feasibility of development of an alternative accident monitoring via well-known noise diagnostics methods is proposed and demonstrated. The possibility of identification of reactor accident conditions using temperature and pressure fluctuations, noise of the neutron and gamma field is considered on the basis of research achievements in reactor noise. As an example the use of pressure fluctuations for accident monitoring is presented.展开更多
The subject of this study is the oxidation of fuel rod cladding made of material Zr1Nb(0.1% O) in steam at temperatures in the range of 660℃ to 1200℃ with a surface in the initial state (after manufacturing - grindi...The subject of this study is the oxidation of fuel rod cladding made of material Zr1Nb(0.1% O) in steam at temperatures in the range of 660℃ to 1200℃ with a surface in the initial state (after manufacturing - grinding) and after additional chemical etching. The changes in the microstructure of tubes due to the interaction with steam were investigated. A comparison was made between the oxidation rate of this material (weight gain) and the data on the oxidation of other alloys for nuclear power plants. The oxidation rate of Zr1Nb(0.1% O) is close to the oxidation rate of other zirconium alloys. It is shown that after chemical treatment of the surface of the samples there is a more even growth of oxide films, and they have a smaller thickness for the same time of exposure than after mechanical grinding. Surface treatment before oxidation also affects the change of microstructure of samples when heated to high temperatures.展开更多
文摘Hydrogen challenge mitigation stands as one of the main objectives in the management of severe accidents at Nuclear Power Plants (NPPs). Key strategies for hydrogen control include atmospheric inertization and hydrogen removal with Passive Autocatalytic Recombiners (PARs) being a commonly accepted approach. However, an examination of PAR operation specificity reveals potential inefficiencies and reliability issues in certain severe accident scenarios. Moreover, during the in-vessel stage of severe accident development, in some severe accident scenarios PARs can unexpectedly become a source of hydrogen detonation. The effectiveness of hydrogen removal systems depends on various factors, including the chosen strategies, severe accident scenarios, reactor building design, and other influencing factors. Consequently, a comprehensive hydrogen mitigation strategy must effectively incorporate a combination of strategies rather than be based on one strategy, taking into consideration the probabilistic risks and uncertainties associated with the implementation of PARs or other traditional methods. In response to these considerations, within the framework of this research it has been suggested a conceptual strategy to mitigate the hydrogen challenge during the in-vessel stage of severe accident development.
文摘It has been revealed that prolonged shelter life caused by Fukushima Daiichi Nuclear Power Station accident in conjunction with the Great East Japan Earthquake influences sleep and mental health of the residents, and therefore its influence on their physical and emotional health has become a concern. Therefore, in this study, the authors aimed at clarifying actual situations of sleep and stress of middle age males living in shelters for a long period in each of emergency temporary houses and post-earthquake public houses. For 5 males who moved from emergency temporary houses to post-earthquake public houses, their objective and subjective sleep states were measured with Actigraph and PSQI, respectively. Furthermore, their objective and subjective stresses were measured with saliva stress biomarkers and GHQ28, respectively. Their data were analyzed by paired t-test. As result, in comparison between the life in the emergency temporary houses and post-earthquake public houses, significant variation was not recognized in their objective sleep states and saliva stress biomarkers though their subjective sleep and subjective stress were significantly worsened after moving to the post-earthquake public houses.
文摘Huge amount of digital data of the Great East Japan Earthquake is provided by the highly-developed digital data technology. But the method and technique for analysis of these huge digital data are not developed sufficiently. This paper proposes a running spectrum technique for text data and analyzing changes of disaster phase during the disaster management cycle. Impact analysis of the nuclear power plant accidents have been performed by using Fukushima Minpo newspaper for its verification. The result shows the dynamic characteristics of the nuclear power plant accidents. As the time interval B becomes longer, the analysis data is used from wide range period along with the smoothing effect. When observing different time intervals B, fewer keywords have been ranked in the longer time intervals of B. The proposed technique is a powerful tool to effective and efficient disaster response and management. analyze effectively the huge amount of digital data for the
文摘The paper presents a computer code system 'SRDAAR- QNPP' for the real-time dose as-sessment of an accident release for Qinshan Nuclear Power Plant. It includes three parts:thereal-time data acquisition system, assessment computer. and the assessment operating code system. InSRDAAR-QNPP, the wind field of the surface and the lower levels are determined hourly by using amass consistent three-dimension diasnosis model with the topographic following coordinate system.A Lagrangin Puff model under changing meteorological condition is adopted for atmosphericdispersion, the correction for dry and wet depositions. physical decay and partial plume penetrationof the top inversion and the deviation of plume axis caused by complex terrain have been taken in-to account. The calculation domain areas include three square grid areas with the sideline 10 km, 40krn and 160 km and a grid interval 0.5 km, 2.0 km, 8.0 km respectively. Three exposure pathwaysare taken into account:the external exposure from immersion cloud and passing puff, the internalexposure from inhalation and the external exposure from contaminated ground. This system is ableto provide the results of concentration and dose distributions within 10 minutes after the data havebeen inputed.
文摘The Lagrangian Particle Dispersion Model (LPDM) in the 594 km× 594 km model domain with the horizontal grid scale of 3 km×3 km centered at a power plant and the Eulerian Transport Model (ETM) modified from the Asian Dust Aerosol Model 2 (ADAM2) in the domain of 70° LAT × 140° LON with the horizontal grid scale of 27 km×27 km have been developed. These models have been implemented to simulate the concentration and deposition of radionuclides (137Cs and 131I) released from the accident of the Fukushima Dai-ichi nuclear power plant. It is found that both models are able to simulate quite reasonably the observed concentrations of 137Cs and 131I near the power plant. However, the LPDM model is more useful for the estimation of concentration near the power plant site in details whereas the ETM model is good for the long-range transport processes of the radionuclide plume. The estimated maximum mean surface concentration, column integrated mean concentration and the total deposition (wet+dry) by LPDM for the period from 12 March to 30 April 2011 are, respectively found to be 2.975 × 102 Bq m-3, 3.7 × 107 Bq m-2, and 1.78 × 1014 Bq m-2 for 137Cs and 1.96 × 104 Bq m-3, 2.24 × 109 Bq m-2 and 5.96 × 1014 Bq m-2 for 131I. The radionuclide plumes released from the accident power plant are found to spread wide regions not only the whole model domain of downwind regions but the upwind regions of Russia, Mongolia, Korea, eastern China, Philippines and Vietnam within the analysis period.
文摘The countermeasures are the actions that should be taken, after the occurrence of a nuclear accident to protect the public against the associated risks. These actions may be represented by sheltering, evacuation, distribution of stable iodine tablets and/or relocation. This study represents a comprehensive probabilistic study to investigate the role of the adoption of the countermeasures in case of a hypothetical accident of type LOCA for nuclear power plant of PWR (1000 Mw). The effective doses in different organs, short and long health effects, and the associated risks are calculated with and without countermeasures. In addition, the overall costs of the accident and the costs of countermeasures are estimated which represent our first trials to know how much the proposed accident cost. The results showed that, the area around the site requires early and late countermeasures action after the accident especially in the downwind sectors. For late countermeasures, the duration time of relocation ranged from about two to 10 years. The adoption of the countermeasures increases the costs of emergency plan by 40% but reduces the risk associated the accident.
文摘The paper reports some technical solutions, which suggested or used for increasing of environmental protection during accidents at NPPs. For NNPs with two protective shells and pressure release system such as WWER-1000 a comprehensive, passive-mode environmental protection system of decontamination of the radioactive steam-air mixture from the containment and the intercontainment area was suggested. This system includes the “wet” stage (scrubbers, etc.), the “dry” stage (sorption module), and also an ejector, which in a passive mode is capable of solving the multi-purpose task of decontamination of the air-steam mixture. For WWER-440/230 NPPs three protection levels: 1) a jet-vortex condenser;2) the spray system;3) a sorption module were suggested and installed. For modern designs of new generation NPPs, which do not provide for pressure release systems, a new passive filtering system together with the passive heat-removal system, which can be used during severe accidents in case all power supply units become unavailable, was proposed and after modernization was installed at the KudanKulam NPP (India).
基金Xiong′an New Area Science and Technology Innovation Project(2022XACX1000)。
文摘[Background]The previous studies suggest that radioactive elements like Cs and Sr may adversely affect marine ecosystems and the fishing industry.Traditional treatment systems for radioactive wastewater like the Advanced Liquid Processing System(ALPS)and Kurion have faced challenges in limiting concentration and achieving safety criteria.Studies suggest potential long-term impacts on benthic organisms and seafood networks due to radioactive elements like Cs and Sr from the discharged radioactive wastewater,which may hinder post-disaster recovery and provoke economic losses in the fishing industry both domestically and internationally.A series of studies indicate that there are issues of Cs and Sr pollution migration in soil and water conservation in Fukushima.[Methods]To provide feasible solutions,the main article includes five nuclear wastewater treatment technologies,and soil and water conservation measures for different media(water and soil)were evaluated through reviewing the previous fifteen years'articles.To provide feasible solutions,the main articles,the phytoextraction technologies in Cs and Sr treatment within different land use areas were wildly analyzed(Camellia japonica,Arabidopsis halleri and other local species).[Results]1)A 99.9%removal rate for Cs^(+)and 99.5%for Sr^(2+)was achieved by the KFe[Fe(CN)_(6)]and BaSO_(4)co-precipitation method.2)For membrane filtration,Sr^(2+)and Cs^(+)were removed using metal-organic framework(MOF/graphene oxide)and ion exchange techniques using inorganic materials like titanosilicates.The absorption efficiency of membrane filtration for Sr^(2+)and Cs^(+)was at least 92%and 94%,respectively.The study analyzed soil and water conservation technologies in different land uses,river basins and catchments.3)The underground water treatment mainly were completed via the membrance technologies like reverse osmosis and Permeable Reactive Barriers(PRB)technologies.The ^(90) Sr concentration decreased 77%-91%compared to the initial concentration by PRB technology.These diverse methods offered effective strategies for radioactive wastewater treatment,especially the co-precipitation method may be feasible remediation measures to ensure ecological safety surrounding nuclear power utilizing areas.Soil and water conservation measures for soil pollution treatment mainly focused on the use of stabilizers to hinder the migration of Cs and Sr in the soil and the effects of wind erosion such as interpolyelectrolyte complexes.[Conclusions]We evaluated the pollution of Cs and Sr in the Fukushima nuclear radiation soil and water to provide solutions for the treatment of nuclear wastewater and to prevent radionuclide pollutants from migrating into the soil and water.
文摘The accidents at the Fukushima Daiichi nuclear power station stunned the world as the sequences played out over severals days and videos of hydrogen explosions were televised as they took place. The accidents all resulted in severe damage to the reactor cores and releases of radioactivity to the environment despite heroic measures had taken by the operating personnel. The following paper provides some background into the development of these accidents and their root causes,chief among them,the prolonged station blackout conditions that isolated the reactors from their ultimate heat sink - the ocean. The interpretations given in this paper are summarized from a recently completed report funded by the United States Department of Energy (USDOE).
基金supported by the Department of Energy National Nuclear Security Administration under Award Number(s)DE-NA0000979by the Director,Office of Energy Research,Office of High Energy and Nuclear Physics,Division of Nuclear Physics,of the US Department of Energy under Contract No.DE-AC02-05CH11231.
文摘A variety of environmental media were analyzed for fallout radionuclides resulting from the Fukushima nuclear accident by the Low Background Facility (LBF) at the Lawrence Berkeley National Laboratory (LBNL) in Berkeley, CA. Monitoring activities in air and rainwater began soon after the onset of the March 11, 2011 tsunami and are reported here through the end of 2012. Observed fallout isotopes include 131I, 132I, 132Te, 134Cs, 136Cs, and 137Cs. Isotopes were measured on environmental air filters, automobile filters, and in rainwater. An additional analysis of rainwater in search of 90Sr is also presented. Last, a series of food measurements conducted in September of 2013 are included due to extended media concerns of 134,137Cs in fish. Similar measurements of fallout from the Chernobyl disaster at LBNL, previously unpublished publicly, are also presented here as a comparison with the Fukushima incident. All measurements presented also include natural radionuclides found in the environment to provide a basis for comparison.
文摘Hydrogen combustion in a nuclear power plant containment building may threaten the integrity of the containment. Hydrogen recombiners and igniters are two methods to reduce hydrogen levels in containment buildings during severe accidents. The purpose of this paper is to evaluate the safety implementation of hydrogen igniters and recombiners. This paper analyzes the risk of deliberate hydrogen ignition and investigates three mitigation measures using igniters only, hydrogen recombiners only or a combination of recombiners and igniters. The results indicate that steam can effectively control the hydrogen flame acceleration and the deflagration-to-detonation transition.
文摘Knowledge and control of the thermo-hydraulic conditions in the reactor is required for the effective accident management. Dedicated and qualified for harsh environment instrumentation has to be in place for this purpose. Experience of the Fukushima Dai-ichi plant and the lessons learned from the European stress tests demonstrated that alternative and divers tools and methods are needed for the identification of reactor condition in extreme situations. In the paper the feasibility of development of an alternative accident monitoring via well-known noise diagnostics methods is proposed and demonstrated. The possibility of identification of reactor accident conditions using temperature and pressure fluctuations, noise of the neutron and gamma field is considered on the basis of research achievements in reactor noise. As an example the use of pressure fluctuations for accident monitoring is presented.
文摘The subject of this study is the oxidation of fuel rod cladding made of material Zr1Nb(0.1% O) in steam at temperatures in the range of 660℃ to 1200℃ with a surface in the initial state (after manufacturing - grinding) and after additional chemical etching. The changes in the microstructure of tubes due to the interaction with steam were investigated. A comparison was made between the oxidation rate of this material (weight gain) and the data on the oxidation of other alloys for nuclear power plants. The oxidation rate of Zr1Nb(0.1% O) is close to the oxidation rate of other zirconium alloys. It is shown that after chemical treatment of the surface of the samples there is a more even growth of oxide films, and they have a smaller thickness for the same time of exposure than after mechanical grinding. Surface treatment before oxidation also affects the change of microstructure of samples when heated to high temperatures.