Driven by the concept of agricultural sustainable development,crop planting structure optimization(CPSO)has become an effective measure to reduce regional crop water demand,ensure food security,and protect the environ...Driven by the concept of agricultural sustainable development,crop planting structure optimization(CPSO)has become an effective measure to reduce regional crop water demand,ensure food security,and protect the environment.However,traditional optimization of crop planting structures often ignores the impact on regional food supply–demand relations and interprovincial food trading.Therefore,using a system analysis concept and taking virtual water output as the connecting point,this study proposes a theoretical CPSO framework based on a multi-aspect and full-scale evaluation index system.To this end,a water footprint(WF)simulation module denoted as soil and water assessment tool–water footprint(SWAT-WF)is constructed to simulate the amount and components of regional crop WFs.A multi-objective spatial CPSO model with the objectives of maximizing the regional economic water productivity(EWP),minimizing the blue water dependency(BWFrate),and minimizing the grey water footprint(GWFgrey)is established to achieve an optimal planting layout.Considering various benefits,a fullscale evaluation index system based on region,province,and country scales is constructed.Through an entropy weight technique for order preference by similarity to an ideal solution(TOPSIS)comprehensive evaluation model,the optimal plan is selected from a variety of CPSO plans.The proposed framework is then verified through a case study of the upper–middle reaches of the Heihe River Basin in Gansu province,China.By combining the theory of virtual water trading with system analysis,the optimal planting structure is found.While sacrificing reasonable regional economic benefits,the optimization of the planting structure significantly improves the regional water resource benefits and ecological benefits at different scales.展开更多
The paper introduces thermal buoyancy effects to experimental investigation of wind tunnel simulation on direct air-cooled condenser for a large power plant. In order to get thermal flow field of air-cooled tower, PIV...The paper introduces thermal buoyancy effects to experimental investigation of wind tunnel simulation on direct air-cooled condenser for a large power plant. In order to get thermal flow field of air-cooled tower, PIV experiments are carried out and recirculation ratio of each condition is calculated. Results show that the thermal flow field of the cooling tower has great influence on the recirculation under the cooling tower. Ameliorating the thermal flow field of the cooling tower can reduce the recirculation under the cooling tower and improve the efficiency of air-cooled condenser also.展开更多
This study examined the ability of the white lupin to remove mercury (Hg) from a hydroponic system (Hg concentrations 0, 1.25, 2.5, 5 and 10 μmol/L) and from soil in pots and lysimeters (total Hg concentration ...This study examined the ability of the white lupin to remove mercury (Hg) from a hydroponic system (Hg concentrations 0, 1.25, 2.5, 5 and 10 μmol/L) and from soil in pots and lysimeters (total Hg concentration (19.2 ± 1.9) mg/kg availability 0.07%, and (28.9 ± 0.4) mg/kg availability 0.09%, respectively), and investigated the accumulation and distribution of Hg in different parts of the plant. White lupin roots efficiently took up Hg, but its translocation to the harvestable parts of the plant was low. The Hg concentration in the seeds posed no risk to human health according to the recommendations of the World Health Organization, but the shoots should not be used as fodder for livestock, at least when unmixed with other fodder crops. The accumulation of Hg in the hydroponically-grown plants was linear over the concentration range tested. The amount of Hg retained in the roots, relative to the shoots, was almost constant irrespective of Hg dose (90%). In the soil experiments, Hg accumulation increased with exposure time and was the greater in the lysimeter than in the pot experiments. Although Hg removal was the greater in the hydroponic system, revealing the potential of the white lupin to extract Hg, bioaccumulation was the greatest in the lysimeter-grown plants; the latter system more likely reflects the true behaviour of white lupin in the field when Hg availability is a factor that limits Hg removal. The present results suggest that the white lupin could be used in long-term soil reclamation strategies that include the goal of profitable land use in Hg-polluted areas.展开更多
Soft rock control is a big challenge in underground engineering.As for this problem,a high-strength support technique of confined concrete(CC)arches is proposed and studied in this paper.Based on full-scale mechanical...Soft rock control is a big challenge in underground engineering.As for this problem,a high-strength support technique of confined concrete(CC)arches is proposed and studied in this paper.Based on full-scale mechanical test system of arch,research is made on the failure mechanism and mechanical properties of CC arch.Then,a mechanical calculation model of circular section is established for the arches with arbitrary section and unequal rigidity;a calculation formula is deduced for the internal force of the arch;an analysis is made on the influence of different factors on the internal force of the arch;and a calculation formula is got for the bearing capacity of CC arch through the strength criterion of bearing capacity.With numerical calculation and laboratory experiment,the ultimate bearing capacity and internal force distribution is analyzed for CC arches.The research results show that:1)CC arch is 2.31 times higher in strength than the U-shaped steel arch and has better stability;2)The key damage position of the arch is the two sides;3)Theoretical analysis,numerical calculation and laboratory experiment have good consistency in the internal force distribution,bearing capacity,and deformation and failure modes of the arch.All of that verifies the correctness of the theoretical calculation.Based on the above results,a field experiment is carried out in Liangjia Mine.Compared with the U-shaped steel arch support,CC arch support is more effective in surrounding rock deformation control.The research results can provide a basis for the design of CC arch support in underground engineering.展开更多
Regulator station is an important part in the urban gas transmission and distribution system.Once gas explosion occurs,the real explosion process and consequences of methane gas explosion in the regulator station were...Regulator station is an important part in the urban gas transmission and distribution system.Once gas explosion occurs,the real explosion process and consequences of methane gas explosion in the regulator station were not revealed systematically.In this study,a full-scale experiment was carried out to simulate the regulator station explosion process,and some numerical simulations with a commercial CFD software called FLACS were conducted to analyze the effect of ignition and vent conditions on the blast overpressure and flame propagation.The experimental results demonstrated that the peak overpressure increased as the distance from the vent increased within a certain distance.And the maximum overpressure appeared 3 m away from the door,which was about 36.6 kPa.It was found that the pressure-time rising curves obtained from the simulation are basically the same as the ones from the experiment,however,the time of reaching the peak pressure was much shorter.The numerical simulation results show that the peak overpressures show an increase trend as the ignition height decreased and the vent relief pressure increased.It indicates that the damage and peak overpressure of gas explosion could be well predicted by FLACS in different styles of regulator station.In addition,the results help us to understand the internal mechanism and development process of gas explosion better.It also offers technical support for the safety protection of the urban regulator station.展开更多
Saltation is the major particle movement type in wind erosion process.Saltating sand grains can rebound up to tens of times larger in length and height over hard surface(such as gravel surface)than over loose sand sur...Saltation is the major particle movement type in wind erosion process.Saltating sand grains can rebound up to tens of times larger in length and height over hard surface(such as gravel surface)than over loose sand surface.Gravels usually have different faces,causing distinct response of the impacting grains,but the effects of the grain and gravel-surface contact angle on grain rebound are not yet well quantified.We performed full-range controlled experiments of grain saltation using different contact angles,grain sizes and impact speeds in still air,to show that contact angle increases the height of representative saltation path but decreases particle travel length.The results were compared with outputs from the COMprehensive numerical model of SALTation(COMSALT).Large saltation height of 4.8 m and length of 9.0 m were recorded.The maximum and representative saltation height over the gravel surface were found to be about 4.9 times and 12.8 times those over the loose sandy surface,respectively.The maximum saltation length may be reduced by 58%and the representative saltation height may be increased by 77%as contact angle increases from 20°to 40°.We further showed that the collision inertia contributes 60%of the saltation length,and wind contributes to the other 40%.These quantitative findings have important implications for modeling saltation trajectory over gravel surface.展开更多
It is an inevitable trend to replace the traditional agriculture with modern agricultural science and technology park, but the excessively unified development mode, similar functions and feature loss of modern science...It is an inevitable trend to replace the traditional agriculture with modern agricultural science and technology park, but the excessively unified development mode, similar functions and feature loss of modern science and technology park have become the obstacles to its development. As a kind of structure view element with the highest life attributes, plants can make the modern agricultural science and technology park have more vitality. Therefore, combined with the case study of Jiuxi Agricultural Science and Technology Park, the modern agricultural science and technology park planning was analyzed based on the perspective of plant experience, with the aim to provide bases for the planning of featured modern leisure science and technology park.展开更多
Full-scale loading tests were performed on shield segmental linings bearing a high earth pressure and high inner water pressure,focus-ing on the effects of the inner water load and assembly manner on the mechanical pr...Full-scale loading tests were performed on shield segmental linings bearing a high earth pressure and high inner water pressure,focus-ing on the effects of the inner water load and assembly manner on the mechanical properties of the segmental linings.The test results indicate that the deep-buried segmental linings without inner pressure have a high safety reserve.After the action of high inner water pressure,the lining deformation will increase with the reduction of the safety reserve,caused by the significant decrease in the axial force in the linings.Because the bending moment at the segmental joints is transferred to the segment sections in the adjacent ling rings,the convergence deformation,openings of segmental joints,and bolt strains are smaller for the stagger-jointed lining than those for the continuous-jointed lining;however,dislocations appear in the circumferential joints owing to the stagger-jointed assembly.Although it significantly improves the mechanical performance of the segmental lining,stagger-jointed assembly results in compromising the water-proofing safety of circumferential joints.The stagger-jointed assembly manner can be considered to improve the service performance of shield tunnels bearing high inner water pressure on the premise that circumferential joint waterproofing is satisfied.展开更多
Structure and sowing principles of rice rope direct seeding machine are introduced. In order to test the machine' s working performance, such as compacting effect, sowing depth, influence of sowing device to rice rop...Structure and sowing principles of rice rope direct seeding machine are introduced. In order to test the machine' s working performance, such as compacting effect, sowing depth, influence of sowing device to rice rope, etc., field experiments were conducted. It is concluded that mean slip ratio of compacting wheel 1 is 4.44%, wheel 2 is 5.58%, wheel 3 is 7.81%, and wheel 4 is 6.96%; mean depth of planting is 29.72 mm, and mean variability coefficient of planting depth is 6.39%. Maximum variability coefficient of planting depth is 8.40%. Rice rope's snapping is closely related with the machine's speed and guide thread wheel by sowing device orthogonal experiments. Test results show that the machine has a rational design, safe work and meets to the requirements of planting. This study has laid the foundation for further studying the project.展开更多
Environmental conditions of a parent plant can influence the performance of their clonal offspring,and such clonal transgenerational effects may help offspring adapt to different environments.However,it is still uncle...Environmental conditions of a parent plant can influence the performance of their clonal offspring,and such clonal transgenerational effects may help offspring adapt to different environments.However,it is still unclear how many vegetative generations clonal transgenerational effects can transmit for and whether it depends on the environmental conditions of the offspring.We grew the ancestor ramets of the floating clonal plant Spirodela polyrhiza under a high and a low nutrient level and obtained the so-called 1^(st)-generation offspring ramets of two types(from these two environments).Then we grew the 1^(st)-generation offspring ramets of each type under the high and the low nutrient level and obtained the so-called 2^(nd)-generation offspring ramets of four types.We repeated this procedure for another five times and analyzed clonal transgenerational effects on growth,morphology and biomass allocation of the 1^(st)-to the 6^(th)-generation offspring ramets.We found positive,negative or neutral(no)transgenerational effects of the ancestor nutrient condition on the offspring of S.polyrhiza,depending on the number of vegetative generations,the nutrient condition of the offspring environment and the traits considered.We observed significant clonal transgenerational effects on the 6^(th)-generation offspring;such effects occurred for all three types of traits(growth,morphology and allocation),but varied depending on the nutrient condition of the offspring environment and the traits considered.Our results suggest that clonal transgenerational effects can transmit for multiple vegetative generations and such impacts can vary depending on the environmental conditions of offspring.展开更多
The admixture and recombination of individuals from the native range into a new range may lead to the production of invasive genotypes that have higher fitness and wider climatic tolerances than the native genotypes. ...The admixture and recombination of individuals from the native range into a new range may lead to the production of invasive genotypes that have higher fitness and wider climatic tolerances than the native genotypes. In this paper, we compare the survival and growth of native EU and invasive NA genotypes when planted back into the native EU range near where the EU genotypes were collected. We test this hypothesis using the invasive wetland grass Phalaris arundinacea. If invasive genotypes have evolved to have higher survival and growth, then they should outperform the native EU genotypes under field conditions that are better suited to the EU genotypes. Individual plants of the wetland grass, Phalaris arundinacea collected from native Europe (Czech Republic (CZ) and France (FR)) and North America (Vermont (VT) and North Carolina (NC)) were planted into common gardens in Trebon, Czech Republic (49.0042°N, 14.7721°E) and Moussac, France (43.9808°N, 4.2241°E). Invasive genotypes from North Carolina (NC) survived as well or better than native genotypes in both the Trebon and Moussac garden. Additionally, invasive NC genotypes suffered higher herbivore damage than native genotypes but their growth and survival were not significantly different than genotypes from the other re-gions. A companion field experiment that simulated biomass removal through grazing indicated that invasive NC genotypes recovered faster following grazing than genotypes from other regions. Our results suggest that not all invasive genotypes are superior and regional differences in aggressiveness between invasive genotypes are as great as differences between individuals from native and invasive populations. Introduction of genotypes leading to invasion depends upon the environmental conditions and the suitability of the climate for the introduced individuals.展开更多
We experimented on welded hollow spherical joint of a stadium steel roof to investigate the stress and strain distributions on the surface of the joint and determine the ultimate bearing capacity. Then, finite element...We experimented on welded hollow spherical joint of a stadium steel roof to investigate the stress and strain distributions on the surface of the joint and determine the ultimate bearing capacity. Then, finite element analysis was made to experimental results. When the test load was 140% of the design load, the stress at the bottom of the fourth wimble pipe reached the yield point. The experimental results agree with the analytical results well.展开更多
In order to clear constructional design of corner joint, it is necessary to further investi-gate mechanical property of corner joint in gabled frames. Through static test and finite element software analysis of compar...In order to clear constructional design of corner joint, it is necessary to further investi-gate mechanical property of corner joint in gabled frames. Through static test and finite element software analysis of comparing the panel zone with and without inclined stiffener. Some conclusions are given in the article. The load displacement curves show that the capacity of oblique nodes installed within stiffening rib components is enhanced i.e. 40% more than those without stiffening rib nodes. The results reveal that in the gabled frames, the corner node with the inclined stiffening rib can improve the bearing capacity of the specimens. When the extraterritorial flange is tension, the erection of the inclined stiffening rib can prevent structural failure and improve effectually the ductility of the structure.展开更多
In this study,full-scale fire experiments were conducted in a hydropower station to investigate smoke propagation during tunnel construction.The flame height,smoke temperature and stratification,smoke descent and spre...In this study,full-scale fire experiments were conducted in a hydropower station to investigate smoke propagation during tunnel construction.The flame height,smoke temperature and stratification,smoke descent and spread velocity were analyzed via measurements and on-site observations.The initial combustion stage was largely affected by ignition source during tunnel construction for diesel pool fire,and the average flame height in the fully developed stage could reach 1.4-2.1 m in experimental fire scenarios.The gradient of the smoke temperature evolution near the fire was the opposite for the upstream and downstream regions.The longitudinal temperature distribution was concentrated in a small range at the heights of the smoke layer,and gradually decreased by air entrainment as the height decreased,while further increasing in the lower half of the tunnel height in the near-fire region under heat radiation from the fire source.Moreover,distinct and stable smoke stratification formed during the fully developed combustion stage,and the smoke layer interface was at approximately half the tunnel height.Smoke descent was aggravated in the decay stage of combustion,and the fire risk remained high after the fully developed period.The smoke front spread velocity was empirically determined for the full-scale tunnel fire scenarios.Conclusions from full-scale experiments can support smoke control design and on-site fire emergency response plans for hydropower stations.展开更多
基金financially supported by the National Key Research and Development Program of China(2022YFD1900501)National Natural Science Foundation of China(51861125103)。
文摘Driven by the concept of agricultural sustainable development,crop planting structure optimization(CPSO)has become an effective measure to reduce regional crop water demand,ensure food security,and protect the environment.However,traditional optimization of crop planting structures often ignores the impact on regional food supply–demand relations and interprovincial food trading.Therefore,using a system analysis concept and taking virtual water output as the connecting point,this study proposes a theoretical CPSO framework based on a multi-aspect and full-scale evaluation index system.To this end,a water footprint(WF)simulation module denoted as soil and water assessment tool–water footprint(SWAT-WF)is constructed to simulate the amount and components of regional crop WFs.A multi-objective spatial CPSO model with the objectives of maximizing the regional economic water productivity(EWP),minimizing the blue water dependency(BWFrate),and minimizing the grey water footprint(GWFgrey)is established to achieve an optimal planting layout.Considering various benefits,a fullscale evaluation index system based on region,province,and country scales is constructed.Through an entropy weight technique for order preference by similarity to an ideal solution(TOPSIS)comprehensive evaluation model,the optimal plan is selected from a variety of CPSO plans.The proposed framework is then verified through a case study of the upper–middle reaches of the Heihe River Basin in Gansu province,China.By combining the theory of virtual water trading with system analysis,the optimal planting structure is found.While sacrificing reasonable regional economic benefits,the optimization of the planting structure significantly improves the regional water resource benefits and ecological benefits at different scales.
文摘The paper introduces thermal buoyancy effects to experimental investigation of wind tunnel simulation on direct air-cooled condenser for a large power plant. In order to get thermal flow field of air-cooled tower, PIV experiments are carried out and recirculation ratio of each condition is calculated. Results show that the thermal flow field of the cooling tower has great influence on the recirculation under the cooling tower. Ameliorating the thermal flow field of the cooling tower can reduce the recirculation under the cooling tower and improve the efficiency of air-cooled condenser also.
基金The Spanish Ministry of Education and Science, Project CTM2005-04809/TECNO, financially supported this research
文摘This study examined the ability of the white lupin to remove mercury (Hg) from a hydroponic system (Hg concentrations 0, 1.25, 2.5, 5 and 10 μmol/L) and from soil in pots and lysimeters (total Hg concentration (19.2 ± 1.9) mg/kg availability 0.07%, and (28.9 ± 0.4) mg/kg availability 0.09%, respectively), and investigated the accumulation and distribution of Hg in different parts of the plant. White lupin roots efficiently took up Hg, but its translocation to the harvestable parts of the plant was low. The Hg concentration in the seeds posed no risk to human health according to the recommendations of the World Health Organization, but the shoots should not be used as fodder for livestock, at least when unmixed with other fodder crops. The accumulation of Hg in the hydroponically-grown plants was linear over the concentration range tested. The amount of Hg retained in the roots, relative to the shoots, was almost constant irrespective of Hg dose (90%). In the soil experiments, Hg accumulation increased with exposure time and was the greater in the lysimeter than in the pot experiments. Although Hg removal was the greater in the hydroponic system, revealing the potential of the white lupin to extract Hg, bioaccumulation was the greatest in the lysimeter-grown plants; the latter system more likely reflects the true behaviour of white lupin in the field when Hg availability is a factor that limits Hg removal. The present results suggest that the white lupin could be used in long-term soil reclamation strategies that include the goal of profitable land use in Hg-polluted areas.
基金Projects(51674154,51704125,51874188) supported by the National Natural Science Foundation of ChinaProjects(2017T100116,2017T100491,2016M590150,2016M602144) supported by the China Postdoctoral Science Foundation+2 种基金Projects(2017GGX30101,2018GGX109001,ZR2017QEE013) supported by the Natural Science Foundation of Shandong Province,ChinaProject(SKLCRSM18KF012) supported by the State Key Laboratory of Coal Resources and Safe Mining,ChinaProject(2018WLJH76) supported by the Young Scholars Program of Shandong University,China
文摘Soft rock control is a big challenge in underground engineering.As for this problem,a high-strength support technique of confined concrete(CC)arches is proposed and studied in this paper.Based on full-scale mechanical test system of arch,research is made on the failure mechanism and mechanical properties of CC arch.Then,a mechanical calculation model of circular section is established for the arches with arbitrary section and unequal rigidity;a calculation formula is deduced for the internal force of the arch;an analysis is made on the influence of different factors on the internal force of the arch;and a calculation formula is got for the bearing capacity of CC arch through the strength criterion of bearing capacity.With numerical calculation and laboratory experiment,the ultimate bearing capacity and internal force distribution is analyzed for CC arches.The research results show that:1)CC arch is 2.31 times higher in strength than the U-shaped steel arch and has better stability;2)The key damage position of the arch is the two sides;3)Theoretical analysis,numerical calculation and laboratory experiment have good consistency in the internal force distribution,bearing capacity,and deformation and failure modes of the arch.All of that verifies the correctness of the theoretical calculation.Based on the above results,a field experiment is carried out in Liangjia Mine.Compared with the U-shaped steel arch support,CC arch support is more effective in surrounding rock deformation control.The research results can provide a basis for the design of CC arch support in underground engineering.
基金Supported by the National Key Research and Development Program of China(2016YFC0802502)。
文摘Regulator station is an important part in the urban gas transmission and distribution system.Once gas explosion occurs,the real explosion process and consequences of methane gas explosion in the regulator station were not revealed systematically.In this study,a full-scale experiment was carried out to simulate the regulator station explosion process,and some numerical simulations with a commercial CFD software called FLACS were conducted to analyze the effect of ignition and vent conditions on the blast overpressure and flame propagation.The experimental results demonstrated that the peak overpressure increased as the distance from the vent increased within a certain distance.And the maximum overpressure appeared 3 m away from the door,which was about 36.6 kPa.It was found that the pressure-time rising curves obtained from the simulation are basically the same as the ones from the experiment,however,the time of reaching the peak pressure was much shorter.The numerical simulation results show that the peak overpressures show an increase trend as the ignition height decreased and the vent relief pressure increased.It indicates that the damage and peak overpressure of gas explosion could be well predicted by FLACS in different styles of regulator station.In addition,the results help us to understand the internal mechanism and development process of gas explosion better.It also offers technical support for the safety protection of the urban regulator station.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XD23060201)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0601)+1 种基金the National Natural Science Foundation of China(42071014)the Excellent Youth Innovation Promotion Association of the Chinese Academy of Sciences(Y202085)。
文摘Saltation is the major particle movement type in wind erosion process.Saltating sand grains can rebound up to tens of times larger in length and height over hard surface(such as gravel surface)than over loose sand surface.Gravels usually have different faces,causing distinct response of the impacting grains,but the effects of the grain and gravel-surface contact angle on grain rebound are not yet well quantified.We performed full-range controlled experiments of grain saltation using different contact angles,grain sizes and impact speeds in still air,to show that contact angle increases the height of representative saltation path but decreases particle travel length.The results were compared with outputs from the COMprehensive numerical model of SALTation(COMSALT).Large saltation height of 4.8 m and length of 9.0 m were recorded.The maximum and representative saltation height over the gravel surface were found to be about 4.9 times and 12.8 times those over the loose sandy surface,respectively.The maximum saltation length may be reduced by 58%and the representative saltation height may be increased by 77%as contact angle increases from 20°to 40°.We further showed that the collision inertia contributes 60%of the saltation length,and wind contributes to the other 40%.These quantitative findings have important implications for modeling saltation trajectory over gravel surface.
文摘It is an inevitable trend to replace the traditional agriculture with modern agricultural science and technology park, but the excessively unified development mode, similar functions and feature loss of modern science and technology park have become the obstacles to its development. As a kind of structure view element with the highest life attributes, plants can make the modern agricultural science and technology park have more vitality. Therefore, combined with the case study of Jiuxi Agricultural Science and Technology Park, the modern agricultural science and technology park planning was analyzed based on the perspective of plant experience, with the aim to provide bases for the planning of featured modern leisure science and technology park.
基金supported by the National Natural Science Foundation of China(Grant No.52008308)the Postdoctoral Innovative Talents Supporting Program(Grant No.BX20200247)the China Postdoctoral Science Foundation(Grant No.2021M692447).
文摘Full-scale loading tests were performed on shield segmental linings bearing a high earth pressure and high inner water pressure,focus-ing on the effects of the inner water load and assembly manner on the mechanical properties of the segmental linings.The test results indicate that the deep-buried segmental linings without inner pressure have a high safety reserve.After the action of high inner water pressure,the lining deformation will increase with the reduction of the safety reserve,caused by the significant decrease in the axial force in the linings.Because the bending moment at the segmental joints is transferred to the segment sections in the adjacent ling rings,the convergence deformation,openings of segmental joints,and bolt strains are smaller for the stagger-jointed lining than those for the continuous-jointed lining;however,dislocations appear in the circumferential joints owing to the stagger-jointed assembly.Although it significantly improves the mechanical performance of the segmental lining,stagger-jointed assembly results in compromising the water-proofing safety of circumferential joints.The stagger-jointed assembly manner can be considered to improve the service performance of shield tunnels bearing high inner water pressure on the premise that circumferential joint waterproofing is satisfied.
基金supported by the National Natural Science Foundation of China(50775150)
文摘Structure and sowing principles of rice rope direct seeding machine are introduced. In order to test the machine' s working performance, such as compacting effect, sowing depth, influence of sowing device to rice rope, etc., field experiments were conducted. It is concluded that mean slip ratio of compacting wheel 1 is 4.44%, wheel 2 is 5.58%, wheel 3 is 7.81%, and wheel 4 is 6.96%; mean depth of planting is 29.72 mm, and mean variability coefficient of planting depth is 6.39%. Maximum variability coefficient of planting depth is 8.40%. Rice rope's snapping is closely related with the machine's speed and guide thread wheel by sowing device orthogonal experiments. Test results show that the machine has a rational design, safe work and meets to the requirements of planting. This study has laid the foundation for further studying the project.
文摘Environmental conditions of a parent plant can influence the performance of their clonal offspring,and such clonal transgenerational effects may help offspring adapt to different environments.However,it is still unclear how many vegetative generations clonal transgenerational effects can transmit for and whether it depends on the environmental conditions of the offspring.We grew the ancestor ramets of the floating clonal plant Spirodela polyrhiza under a high and a low nutrient level and obtained the so-called 1^(st)-generation offspring ramets of two types(from these two environments).Then we grew the 1^(st)-generation offspring ramets of each type under the high and the low nutrient level and obtained the so-called 2^(nd)-generation offspring ramets of four types.We repeated this procedure for another five times and analyzed clonal transgenerational effects on growth,morphology and biomass allocation of the 1^(st)-to the 6^(th)-generation offspring ramets.We found positive,negative or neutral(no)transgenerational effects of the ancestor nutrient condition on the offspring of S.polyrhiza,depending on the number of vegetative generations,the nutrient condition of the offspring environment and the traits considered.We observed significant clonal transgenerational effects on the 6^(th)-generation offspring;such effects occurred for all three types of traits(growth,morphology and allocation),but varied depending on the nutrient condition of the offspring environment and the traits considered.Our results suggest that clonal transgenerational effects can transmit for multiple vegetative generations and such impacts can vary depending on the environmental conditions of offspring.
文摘The admixture and recombination of individuals from the native range into a new range may lead to the production of invasive genotypes that have higher fitness and wider climatic tolerances than the native genotypes. In this paper, we compare the survival and growth of native EU and invasive NA genotypes when planted back into the native EU range near where the EU genotypes were collected. We test this hypothesis using the invasive wetland grass Phalaris arundinacea. If invasive genotypes have evolved to have higher survival and growth, then they should outperform the native EU genotypes under field conditions that are better suited to the EU genotypes. Individual plants of the wetland grass, Phalaris arundinacea collected from native Europe (Czech Republic (CZ) and France (FR)) and North America (Vermont (VT) and North Carolina (NC)) were planted into common gardens in Trebon, Czech Republic (49.0042°N, 14.7721°E) and Moussac, France (43.9808°N, 4.2241°E). Invasive genotypes from North Carolina (NC) survived as well or better than native genotypes in both the Trebon and Moussac garden. Additionally, invasive NC genotypes suffered higher herbivore damage than native genotypes but their growth and survival were not significantly different than genotypes from the other re-gions. A companion field experiment that simulated biomass removal through grazing indicated that invasive NC genotypes recovered faster following grazing than genotypes from other regions. Our results suggest that not all invasive genotypes are superior and regional differences in aggressiveness between invasive genotypes are as great as differences between individuals from native and invasive populations. Introduction of genotypes leading to invasion depends upon the environmental conditions and the suitability of the climate for the introduced individuals.
基金The National Natural Science Foundation of China (No.50778077)
文摘We experimented on welded hollow spherical joint of a stadium steel roof to investigate the stress and strain distributions on the surface of the joint and determine the ultimate bearing capacity. Then, finite element analysis was made to experimental results. When the test load was 140% of the design load, the stress at the bottom of the fourth wimble pipe reached the yield point. The experimental results agree with the analytical results well.
文摘In order to clear constructional design of corner joint, it is necessary to further investi-gate mechanical property of corner joint in gabled frames. Through static test and finite element software analysis of comparing the panel zone with and without inclined stiffener. Some conclusions are given in the article. The load displacement curves show that the capacity of oblique nodes installed within stiffening rib components is enhanced i.e. 40% more than those without stiffening rib nodes. The results reveal that in the gabled frames, the corner node with the inclined stiffening rib can improve the bearing capacity of the specimens. When the extraterritorial flange is tension, the erection of the inclined stiffening rib can prevent structural failure and improve effectually the ductility of the structure.
基金supported by the National Natural Science Foundation of China(52104198,72091512)the Science and Technology Project of the Fire and Rescue Department Ministry of Emergency Management(2021XFZD02).
文摘In this study,full-scale fire experiments were conducted in a hydropower station to investigate smoke propagation during tunnel construction.The flame height,smoke temperature and stratification,smoke descent and spread velocity were analyzed via measurements and on-site observations.The initial combustion stage was largely affected by ignition source during tunnel construction for diesel pool fire,and the average flame height in the fully developed stage could reach 1.4-2.1 m in experimental fire scenarios.The gradient of the smoke temperature evolution near the fire was the opposite for the upstream and downstream regions.The longitudinal temperature distribution was concentrated in a small range at the heights of the smoke layer,and gradually decreased by air entrainment as the height decreased,while further increasing in the lower half of the tunnel height in the near-fire region under heat radiation from the fire source.Moreover,distinct and stable smoke stratification formed during the fully developed combustion stage,and the smoke layer interface was at approximately half the tunnel height.Smoke descent was aggravated in the decay stage of combustion,and the fire risk remained high after the fully developed period.The smoke front spread velocity was empirically determined for the full-scale tunnel fire scenarios.Conclusions from full-scale experiments can support smoke control design and on-site fire emergency response plans for hydropower stations.