According to the theory of ventilation network, a model for a filtration flow field in goaf was built and simulation soft- ware for determining the three zones in goaf has been developed. This software uses no-gap-con...According to the theory of ventilation network, a model for a filtration flow field in goaf was built and simulation soft- ware for determining the three zones in goaf has been developed. This software uses no-gap-connection between Visual Basic (VB) and Excel to exchange data, uses Component Object Model (COM) component of MATLAB to plot charts of the three zones and to export the corresponding coordinates of the isolines. An example shows that this software is convenient and simple. By using it, the three zones can be easily determined. The software is convenient in studies and analyses of the three zones in goaf.展开更多
The working condition of the hydraulic support in working face can be divided into three kinds of situations in the following: roof fall and col,lapse with cavity, advancing support and supporting. Took single suppor...The working condition of the hydraulic support in working face can be divided into three kinds of situations in the following: roof fall and col,lapse with cavity, advancing support and supporting. Took single support with four-pole in Iongwall face to the dip as research object, control method was studied to avoid support instability in three situations mentioned above. Based on these researches, the major factors of influencing on support stability and its controlling measures were put forward. According to specific conditions of working face 1215(3), which is fully-mechanized and Iongwall face to the dip with great mining height in Zhangji Coal Mine, Huainan Mining Group, the effective measures was taken to control supports stability..展开更多
A fully-mechanized coal mining (FMCM) technology capable of filling up the goaf with wastes (including solid wastes) is described. Industrial tests have proved that by using this technology not only can waste be re-us...A fully-mechanized coal mining (FMCM) technology capable of filling up the goaf with wastes (including solid wastes) is described. Industrial tests have proved that by using this technology not only can waste be re-used but also coal resources can be exploited with a higher recovery rate without removing buildings located over the working faces. Two special devices, a hydraulic support and a scraper conveyor, run side-by-side on the same working face to simultaneously realize mining and filling. These are described in detail. The tests allow analysis of rock pressure and ground subsidence when backfilling techniques are employed. These values are compared to those from mining without using backfilling techniques, under the same geological conditions. The concept of equivalent mining height is proposed based on theoretical analysis of rock pressure and ground subsidence. The upper limits of the rock pressure and ground subsidence can be estimated in backfilling mining using this concept along with traditional engineering formulae.展开更多
Characteristics of gas emission at the K8206 working face in the Third mine of the Yangquan Coal Group were investigated. The effects of strata movement,advancing velocity of working face,production capacity of workin...Characteristics of gas emission at the K8206 working face in the Third mine of the Yangquan Coal Group were investigated. The effects of strata movement,advancing velocity of working face,production capacity of working face and gas extraction capability of strike high-level entry on gas emission at K8206 working face were analyzed. A regression equation,reflecting the relationship between relative gas emission rate and the production capacity of work-ing faces,was established. Another regression equation showing the relationship between the gas emission rate from adjacent layers when the working face was advancing for one metre and advancing velocity was derived. It can be con-cluded that,1) the amount of gas emitted at the K8206 working face is far greater than that of ordinary top coal caving faces with a dip length of 180-190 m; 2) the dynamic process of gas emission from adjacent layers during the initial mining stage is controlled by the movement of key strata; 3) the amount of gas emitted that needs to be forced out by air is greatly affected by the capability of gas extraction; 4) when the advancing velocity is between 3.5-5.5 m/d or when the output is up to 8-12 kt/d,the gas emission from adjacent layers is almost constant.展开更多
By employing numerical modeling, similar material simulation and comprehen-sive field observation, investigations were made and patterns were obtained governing surrounding-rock stress distribution and strata behavior...By employing numerical modeling, similar material simulation and comprehen-sive field observation, investigations were made and patterns were obtained governing surrounding-rock stress distribution and strata behaviors. It shows that patterns governing displacement of FMC roadway surrounding rocks and those governing deformation of supports are basically the same along the strike, but the displacements vary greatly. The front stresses affect greater areas than the lateral stresses and their limit widths of equilib-rium zones and K are almost similar. The stress transmits very deep. Our findings offer scientific basis on which to determine parameters for coal pillar retaining and for roadway out-laying, thus increasing the recovery ratio and improving the maintenance of roadway.展开更多
The noise level of coal face by full-mechanized coal winning technology was measured in a coal mine. And then it was analyzed and evaluated using environment science, ergonomics and fussy mathematics analysis. Basis o...The noise level of coal face by full-mechanized coal winning technology was measured in a coal mine. And then it was analyzed and evaluated using environment science, ergonomics and fussy mathematics analysis. Basis of the statistics and analysis of the measured noise level some measures, such as applying the new materials and improving the construction of the equipment, were carried out. The resuts show that they can reduce the noise level, improve the working environment and enhance the work efficiency.展开更多
Analyzed the situations and characteristics of thin coal seam mining and its mining technologies,and introduced the mining innovation technology used by Tianchen Coal Mine of Zhaozhuang Coal Company of China.This inno...Analyzed the situations and characteristics of thin coal seam mining and its mining technologies,and introduced the mining innovation technology used by Tianchen Coal Mine of Zhaozhuang Coal Company of China.This innovation technology combined the fully mechanized mining with individual props,and the working face of mining is over length,irregular form and double units.The rotational adjusting mining technology on thin coal seam is also practiced in this new mining technology.The detail technologies,such as outlays of working face and ways,mining methods,equipments of cutting,transporting and sporting,have been introduced.So that,using the synthetic and creative mining tech- nologies,Tianchen Coal Mine solves the mining problems of thin coal seam successfully.展开更多
Based on the movement regularity of surrounding rock with road-in packing of gob-side entry retaining in fully-mechanized sub-level caving face(RPGERFCF),the me- chanical model of its surrounding rock was established ...Based on the movement regularity of surrounding rock with road-in packing of gob-side entry retaining in fully-mechanized sub-level caving face(RPGERFCF),the me- chanical model of its surrounding rock was established and the calculating formulas of the deformation of the roof,coal wall and filling body were attained.By the mechanical analy- sis to the deformation of the surrounding rock of RPGERFCF,the major factors influencing the deformation of the surrounding rock were found out and the technologic approaches reduced the deformation and enhanced the stability of the surrounding rock were put for- ward.Consequently,the scientific bases were provided for the stability control of the sur- rounding rock of RPGERFCF.展开更多
Production system of fully-mechanized face is a complicated system composed of human, machine and environment, meantime influenced by various random factors. Analyzing the reliability of system needs plentiful data by...Production system of fully-mechanized face is a complicated system composed of human, machine and environment, meantime influenced by various random factors. Analyzing the reliability of system needs plentiful data by means of system faults statistic. Based on the viewpoint that shift output of fully-mechanized face is the result of various random factors’ synthetical influence, the process of how to analyze its reliability was deduced by using probability theory, symbolic statistics theory and systematic reliability theory combined with the concrete case study in this paper. And it has been proved that this method is feasible and valuable.展开更多
To prevent support crush, the overlying strata safe thickness and its influential elements were studied by the adoption of theoretical analysis, numerical simulation and in-situ measurement. According to the productio...To prevent support crush, the overlying strata safe thickness and its influential elements were studied by the adoption of theoretical analysis, numerical simulation and in-situ measurement. According to the production and geological condition of first face in Sima coal mine, the results indicate that the clay contains large permissible bearing ability and has better arching force. After mining destruction, stable structure is formed in bedrock to ensure face safety. The clay thickness & bedrock thickness are the key influential elements to stable structure. The minimal bedrock thickness is about 40 m to ensure safe mining under loose surface soil condition. When surface soil contains mainly thick clay, it forms steady structure with the composition of thin bedrock, so that it can reduce minimal thickness of bedrock and to ensure safe mining. When clay thickness is 40 m, minimal bedrock thickness is 20 m. When clay thickness is 30 m, minimal bedrock thickness is 30 m. Bearing pressure peak ranges from 5 to 15 m in the front face under thin bedrock condition. The bearing pressure distribution range is 15 m. Main roof break distance is small, and initial weighting of main roof is not distinctive, while first periodic weighting of main roof is quite distinctive.展开更多
The overlying strata spatial structure academic viewpoint thinks the primary factor which controls the stope presses is the overlying strata spatial structure movement; the spatial structure above the later period coa...The overlying strata spatial structure academic viewpoint thinks the primary factor which controls the stope presses is the overlying strata spatial structure movement; the spatial structure above the later period coal pillar surrounded by mined areas is the most complex overlying strata spatial structure and study on its evolution law has the important realistic project significance for strata movement control and production safety. The existing research results indicate that the special structure of the first working face of the mine begins to develop lengthways from stratum movement above mined areas and extends level in the exploitation direction. From existing overlying strata spatial structure fundamental research achievement, the spatial structure above the later period coal column surrounded by mined areas have following characteristic: The spatial structure formation is from the top to the lower and from large to small. According to the findings, a formula with the use of rock layer migration angle delta was put forward to estimate isolated island coal column width on which different stratum structure is gonging to form.展开更多
The article introduced the key technology, mining process, and back-and-forth mining method for the caving working face of hard-thick coal seams in Datong mine, and researched this innovations process, optimized the s...The article introduced the key technology, mining process, and back-and-forth mining method for the caving working face of hard-thick coal seams in Datong mine, and researched this innovations process, optimized the systemic design and working face out-play, tried to perfect the caving mining technology of hard-thick coal seams further.展开更多
The three-dimensional damage constitutive relationship of coal is established and distribution law of the abutment pressure of the integrated coal beside the road-in packing for gob-side entry retaining in fully-mecha...The three-dimensional damage constitutive relationship of coal is established and distribution law of the abutment pressure of the integrated coal beside the road-in packing for gob-side entry retaining in fully-mechanized caving face under the effect of given deformation of the main roof is analyzed by the damage mechanics theory. And the relationship between distribution of the abutment pressure and thickness of coal seam is explored. The presented result is of great theoretical significance and practical value to the study on stability control of the surrounding rock of road-in packing for gob-side entry retaining in fully-mechanized caving face.展开更多
Knowledge of the airflow patterns and methane distributions at a continuous miner face under different ventilation conditions can minimize the risks of explosion and injury to miners by accurately forecasting potentia...Knowledge of the airflow patterns and methane distributions at a continuous miner face under different ventilation conditions can minimize the risks of explosion and injury to miners by accurately forecasting potentially hazardous face methane levels. This study focused on validating a series of computational fluid dynamics(CFD) models using full-scale ventilation gallery data that assessed how curtain setback distance impacted airflow patterns and methane distributions at an empty mining face(no continuous miner present). Three CFD models of face ventilation with 4.6, 7.6 and 10.7 m(15, 25, and 35 ft) blowing curtain setback distances were constructed and validated with experimental data collected in a full-scale ventilation test facility. Good agreement was obtained between the CFD simulation results and this data.Detailed airflow and methane distribution information are provided. Elevated methane zones at the working faces were identified with the three curtain setback distances. Visualization of the setback distance impact on the face methane distribution was performed by utilizing the post-processing capability of the CFD software.展开更多
A new approach for prediction of face advance rete (FAR) prior to mining operation and determination of the operation efficiency after mining operation in retreat longwall mining panel is presented based upon the conc...A new approach for prediction of face advance rete (FAR) prior to mining operation and determination of the operation efficiency after mining operation in retreat longwall mining panel is presented based upon the concepts of rock engineering system (RES). For this purpose, six longwall panels considered in Parvadeh-I coal mine. Seven major effective parameters on FAR was selected including coal mine roof rating, gas propagation, safety factor of longwall face, ratio of joint spacing to cutting depth at longwall face, longwall face inclination, panel width, floor rock mass rating. To performance evaluation of the presented model, the relationship between the average vulnerability indexes of advance operation with FAR was determined in considered panels with coefficient of determination (R2) equal to 0.884 that indicate relatively acceptable correlation and compatibility. Investigations of the research indicated that it is possible to determine the actual operation efficiency under fair conditions by a RES-based model. The inevitable reduction of FAR for each longwall panel was determined by presented model that the difference amount between the maximum possible practical face advance rate (FARmpp) and recorded actual face advance rate (FARa) indicate the operation efficiency. Applied approach in this paper can be used to prediction of FAR in retreat longwall mining panel for same conditions that can have many benefits, including better and more accurate planning for the sales market and mine operation. Also, presented method in this paper can be applied as a useful tool to determination of actual operation efficiency for other sections and extraction methods in coal mines.展开更多
Shearer and hydraulic support are matching equipments. To increase the operating speed of the shearer, the following speed of hydraulic support must be increased. This means increasing the volume of flow from emulsion...Shearer and hydraulic support are matching equipments. To increase the operating speed of the shearer, the following speed of hydraulic support must be increased. This means increasing the volume of flow from emulsion power station. Analyzing the operating characteristics of hydraulic supports, the number of simultaneously operating supports is obtained by means of pressure parameter and time history at a certain time, which is a theory base for development of control system to multi-pump emulsion power station.展开更多
Background of the development and achievement on sets equipment technologies for coal mine longwall face in China was reviewed initially. On the theoretical side, a coupling model of hydraulic support and surrounding ...Background of the development and achievement on sets equipment technologies for coal mine longwall face in China was reviewed initially. On the theoretical side, a coupling model of hydraulic support and surrounding rock, support pa- rameters optimization and threedimensional (3D) dynamic design method were presented. On the practical side, this paper out lined some of practical issues and discussed some relative methods and technologies. In thin seam coal longwall mining, how to lower equipment height is the first problem that should be solved. Roof pressure regularity, control of rooffall and collapse, and hydraulic support stability were investigated preferentially in 5-7 m coal seam longwall mining. The application of equip- ment for longwall mining with 5-7 m cutting height in China was concluded. The characteristics of full-mechanized top coal caving for extra thick seam coal were presented. The automation of top-caving hydraulic support and relevant equipment have achieved important breakthrough. At the end of this paper, further development of China's coal industry and longwall mining technologies and equipment were prospected in brief. This paper gives readers a comprehensive understanding of China's coal mine longwall face equipment technologies. It will give help to other countries on its coal mining development.展开更多
Due to the use of outdated mining technology or room and pillar mining process in small coal mines, the coal recovery ratio is only 10–25%. In many regions of China, the damage area caused by the small coal mines amo...Due to the use of outdated mining technology or room and pillar mining process in small coal mines, the coal recovery ratio is only 10–25%. In many regions of China, the damage area caused by the small coal mines amounted to nearly one hundred square kilometers. Therefore, special mining techniques must be taken to reclaim the wasted resource in disturbed coal areas. This paper focuses on the different mining methods by analyzing the longwall panel layout and abandoned gateroad(AG) distribution in the abandoned area of Cuijiazhai coal mine in northwestern China. On the basis of three-dimensional geological model, FLAC3 D numerical simulation was employed. The abutment pressure distribution was simulated when the panel face passed through the disturbed areas. The proper angle of the inclined face was analyzed when the panel face passed through the abandoned gateroads. The results show that the head end of the face should be 13–20 m ahead of the tail end. The pillars on both sides of abandoned gateroads had not been damaged at the same time, and no large-area stress concentration occured above the main roof.Therefore, the coal reserves of disturbed areas can be successfully recovered by using underground longwall mining.展开更多
To investigate the abnormal ground pressures and roof control problem in fully mechanized repeated mining of residual coal after room and pillar mining, the roof fracture structural model and mechanical model were dev...To investigate the abnormal ground pressures and roof control problem in fully mechanized repeated mining of residual coal after room and pillar mining, the roof fracture structural model and mechanical model were developed using numerical simulation and theoretical analysis. The roof fracture characteristics of a repeated mining face were revealed and the ground pressure law and roof supporting condi- tions of the repeated mining face were obtained. The results indicate that when the repeated mining face passes the residual pillars, the sudden instability causes fracturing in the main roof above the old goal and forms an extra-large rock block above the mining face. A relatively stable "Voussoir beam" structure is formed after the advance fracturing of the main roof. When the repeated mining face passes the old goaf, as the large rock block revolves and touches gangue, the rock block will break secondarily under overburden rock loads. An example calculation was performed involving an integrated mine in Shanxi province, results showed that minimum working resistance values of support determined to be reason- able were respectively 11,412 kN and 10,743 kN when repeated mining face passed through residual pillar and goaf. On-site ground pressure monitoring results indicated that the mechanical model and support resistance calculation were reasonable.展开更多
Gateways at faces of great mining heights are mostly driven along the roof of coal seams.For gateway height restrictions,a 1-3 m floor coal is retained,leaving a triangular floor coal at the face ends,causing a loss o...Gateways at faces of great mining heights are mostly driven along the roof of coal seams.For gateway height restrictions,a 1-3 m floor coal is retained,leaving a triangular floor coal at the face ends,causing a loss of coal.In order to improve coal recovery rates and to ensure efficiency of equipment at coal mining faces,we investigated suitable retention methods and recovery technology of floor coal at face ends.The upper floor coal can directly be recovered by a shearer with floor dinting.The lower floor coal is recovered by shearer with floor dinting after advanced floor dinting and retaining a step for protecting coal sides in a haulage gateway.Field practice shows that this method can improve the coal recovery rates at fully mechanized working faces with great mining heights.展开更多
文摘According to the theory of ventilation network, a model for a filtration flow field in goaf was built and simulation soft- ware for determining the three zones in goaf has been developed. This software uses no-gap-connection between Visual Basic (VB) and Excel to exchange data, uses Component Object Model (COM) component of MATLAB to plot charts of the three zones and to export the corresponding coordinates of the isolines. An example shows that this software is convenient and simple. By using it, the three zones can be easily determined. The software is convenient in studies and analyses of the three zones in goaf.
文摘The working condition of the hydraulic support in working face can be divided into three kinds of situations in the following: roof fall and col,lapse with cavity, advancing support and supporting. Took single support with four-pole in Iongwall face to the dip as research object, control method was studied to avoid support instability in three situations mentioned above. Based on these researches, the major factors of influencing on support stability and its controlling measures were put forward. According to specific conditions of working face 1215(3), which is fully-mechanized and Iongwall face to the dip with great mining height in Zhangji Coal Mine, Huainan Mining Group, the effective measures was taken to control supports stability..
基金supports for this work provided by Na-tional basic research program of China (No. 2007CB209400)the National Natural Science Foundation of China (No. 50834004)+1 种基金the National Natural Science Foundation of China (No. 50574090) SR Foundation of China University of Mining & Technology (No. 50634050)
文摘A fully-mechanized coal mining (FMCM) technology capable of filling up the goaf with wastes (including solid wastes) is described. Industrial tests have proved that by using this technology not only can waste be re-used but also coal resources can be exploited with a higher recovery rate without removing buildings located over the working faces. Two special devices, a hydraulic support and a scraper conveyor, run side-by-side on the same working face to simultaneously realize mining and filling. These are described in detail. The tests allow analysis of rock pressure and ground subsidence when backfilling techniques are employed. These values are compared to those from mining without using backfilling techniques, under the same geological conditions. The concept of equivalent mining height is proposed based on theoretical analysis of rock pressure and ground subsidence. The upper limits of the rock pressure and ground subsidence can be estimated in backfilling mining using this concept along with traditional engineering formulae.
基金Projects 50374066 supported by the National Natural Science Foundation of ChinaNCET-05-0478 by the Program for New Century Excellent Talents in University
文摘Characteristics of gas emission at the K8206 working face in the Third mine of the Yangquan Coal Group were investigated. The effects of strata movement,advancing velocity of working face,production capacity of working face and gas extraction capability of strike high-level entry on gas emission at K8206 working face were analyzed. A regression equation,reflecting the relationship between relative gas emission rate and the production capacity of work-ing faces,was established. Another regression equation showing the relationship between the gas emission rate from adjacent layers when the working face was advancing for one metre and advancing velocity was derived. It can be con-cluded that,1) the amount of gas emitted at the K8206 working face is far greater than that of ordinary top coal caving faces with a dip length of 180-190 m; 2) the dynamic process of gas emission from adjacent layers during the initial mining stage is controlled by the movement of key strata; 3) the amount of gas emitted that needs to be forced out by air is greatly affected by the capability of gas extraction; 4) when the advancing velocity is between 3.5-5.5 m/d or when the output is up to 8-12 kt/d,the gas emission from adjacent layers is almost constant.
基金Supported by the Natural Sciences of Anhui Provincial Education Division(2002kj286ZD,01044403)
文摘By employing numerical modeling, similar material simulation and comprehen-sive field observation, investigations were made and patterns were obtained governing surrounding-rock stress distribution and strata behaviors. It shows that patterns governing displacement of FMC roadway surrounding rocks and those governing deformation of supports are basically the same along the strike, but the displacements vary greatly. The front stresses affect greater areas than the lateral stresses and their limit widths of equilib-rium zones and K are almost similar. The stress transmits very deep. Our findings offer scientific basis on which to determine parameters for coal pillar retaining and for roadway out-laying, thus increasing the recovery ratio and improving the maintenance of roadway.
文摘The noise level of coal face by full-mechanized coal winning technology was measured in a coal mine. And then it was analyzed and evaluated using environment science, ergonomics and fussy mathematics analysis. Basis of the statistics and analysis of the measured noise level some measures, such as applying the new materials and improving the construction of the equipment, were carried out. The resuts show that they can reduce the noise level, improve the working environment and enhance the work efficiency.
基金the Natural Science Fund of China(70771060)the Production Safety and Supervision of Management Bureau of China(04-116)+3 种基金the National Soft Science Planed Program(2004DGQ3D090)and(2006GXQ3D154)the Natural Science Fund of Shandong Province(Y2006H10)the Social Science Planning Program of Shandong Province(06BJJ005)the Soft-science Planed Program of Shandong Province(2007RKA134)
文摘Analyzed the situations and characteristics of thin coal seam mining and its mining technologies,and introduced the mining innovation technology used by Tianchen Coal Mine of Zhaozhuang Coal Company of China.This innovation technology combined the fully mechanized mining with individual props,and the working face of mining is over length,irregular form and double units.The rotational adjusting mining technology on thin coal seam is also practiced in this new mining technology.The detail technologies,such as outlays of working face and ways,mining methods,equipments of cutting,transporting and sporting,have been introduced.So that,using the synthetic and creative mining tech- nologies,Tianchen Coal Mine solves the mining problems of thin coal seam successfully.
基金the National Science Foundation of China(50674046)National Science Important Foundation(50634050)Hunan Science Foundation(06JJ50092)
文摘Based on the movement regularity of surrounding rock with road-in packing of gob-side entry retaining in fully-mechanized sub-level caving face(RPGERFCF),the me- chanical model of its surrounding rock was established and the calculating formulas of the deformation of the roof,coal wall and filling body were attained.By the mechanical analy- sis to the deformation of the surrounding rock of RPGERFCF,the major factors influencing the deformation of the surrounding rock were found out and the technologic approaches reduced the deformation and enhanced the stability of the surrounding rock were put for- ward.Consequently,the scientific bases were provided for the stability control of the sur- rounding rock of RPGERFCF.
基金Project 50474069 supported by National Natural Science Foundation of China Project 20020290005 supported by Specialized Research Fund for theDoctoral Program of Higher Education
文摘Production system of fully-mechanized face is a complicated system composed of human, machine and environment, meantime influenced by various random factors. Analyzing the reliability of system needs plentiful data by means of system faults statistic. Based on the viewpoint that shift output of fully-mechanized face is the result of various random factors’ synthetical influence, the process of how to analyze its reliability was deduced by using probability theory, symbolic statistics theory and systematic reliability theory combined with the concrete case study in this paper. And it has been proved that this method is feasible and valuable.
基金Supported by the National Natural Science Foundation of China(50504014)
文摘To prevent support crush, the overlying strata safe thickness and its influential elements were studied by the adoption of theoretical analysis, numerical simulation and in-situ measurement. According to the production and geological condition of first face in Sima coal mine, the results indicate that the clay contains large permissible bearing ability and has better arching force. After mining destruction, stable structure is formed in bedrock to ensure face safety. The clay thickness & bedrock thickness are the key influential elements to stable structure. The minimal bedrock thickness is about 40 m to ensure safe mining under loose surface soil condition. When surface soil contains mainly thick clay, it forms steady structure with the composition of thin bedrock, so that it can reduce minimal thickness of bedrock and to ensure safe mining. When clay thickness is 40 m, minimal bedrock thickness is 20 m. When clay thickness is 30 m, minimal bedrock thickness is 30 m. Bearing pressure peak ranges from 5 to 15 m in the front face under thin bedrock condition. The bearing pressure distribution range is 15 m. Main roof break distance is small, and initial weighting of main roof is not distinctive, while first periodic weighting of main roof is quite distinctive.
文摘The overlying strata spatial structure academic viewpoint thinks the primary factor which controls the stope presses is the overlying strata spatial structure movement; the spatial structure above the later period coal pillar surrounded by mined areas is the most complex overlying strata spatial structure and study on its evolution law has the important realistic project significance for strata movement control and production safety. The existing research results indicate that the special structure of the first working face of the mine begins to develop lengthways from stratum movement above mined areas and extends level in the exploitation direction. From existing overlying strata spatial structure fundamental research achievement, the spatial structure above the later period coal column surrounded by mined areas have following characteristic: The spatial structure formation is from the top to the lower and from large to small. According to the findings, a formula with the use of rock layer migration angle delta was put forward to estimate isolated island coal column width on which different stratum structure is gonging to form.
基金Supported by the Production Safety and Supervision of Management Bureau of China(04-116) the Returned Overseas Scholar Fund of Educational Department of China(2003406)+1 种基金 the Soft Science Planning Program of Shandong Province(A200423-6) the National Soft Science Planed Program (2004DGQ3D090)
文摘The article introduced the key technology, mining process, and back-and-forth mining method for the caving working face of hard-thick coal seams in Datong mine, and researched this innovations process, optimized the systemic design and working face out-play, tried to perfect the caving mining technology of hard-thick coal seams further.
基金Supported by the National Science Foundation of China (50874042, 50674046)National Science Important Foundation (50634050)Hunan Science Foundation (06JJ50092)
文摘The three-dimensional damage constitutive relationship of coal is established and distribution law of the abutment pressure of the integrated coal beside the road-in packing for gob-side entry retaining in fully-mechanized caving face under the effect of given deformation of the main roof is analyzed by the damage mechanics theory. And the relationship between distribution of the abutment pressure and thickness of coal seam is explored. The presented result is of great theoretical significance and practical value to the study on stability control of the surrounding rock of road-in packing for gob-side entry retaining in fully-mechanized caving face.
文摘Knowledge of the airflow patterns and methane distributions at a continuous miner face under different ventilation conditions can minimize the risks of explosion and injury to miners by accurately forecasting potentially hazardous face methane levels. This study focused on validating a series of computational fluid dynamics(CFD) models using full-scale ventilation gallery data that assessed how curtain setback distance impacted airflow patterns and methane distributions at an empty mining face(no continuous miner present). Three CFD models of face ventilation with 4.6, 7.6 and 10.7 m(15, 25, and 35 ft) blowing curtain setback distances were constructed and validated with experimental data collected in a full-scale ventilation test facility. Good agreement was obtained between the CFD simulation results and this data.Detailed airflow and methane distribution information are provided. Elevated methane zones at the working faces were identified with the three curtain setback distances. Visualization of the setback distance impact on the face methane distribution was performed by utilizing the post-processing capability of the CFD software.
文摘A new approach for prediction of face advance rete (FAR) prior to mining operation and determination of the operation efficiency after mining operation in retreat longwall mining panel is presented based upon the concepts of rock engineering system (RES). For this purpose, six longwall panels considered in Parvadeh-I coal mine. Seven major effective parameters on FAR was selected including coal mine roof rating, gas propagation, safety factor of longwall face, ratio of joint spacing to cutting depth at longwall face, longwall face inclination, panel width, floor rock mass rating. To performance evaluation of the presented model, the relationship between the average vulnerability indexes of advance operation with FAR was determined in considered panels with coefficient of determination (R2) equal to 0.884 that indicate relatively acceptable correlation and compatibility. Investigations of the research indicated that it is possible to determine the actual operation efficiency under fair conditions by a RES-based model. The inevitable reduction of FAR for each longwall panel was determined by presented model that the difference amount between the maximum possible practical face advance rate (FARmpp) and recorded actual face advance rate (FARa) indicate the operation efficiency. Applied approach in this paper can be used to prediction of FAR in retreat longwall mining panel for same conditions that can have many benefits, including better and more accurate planning for the sales market and mine operation. Also, presented method in this paper can be applied as a useful tool to determination of actual operation efficiency for other sections and extraction methods in coal mines.
文摘Shearer and hydraulic support are matching equipments. To increase the operating speed of the shearer, the following speed of hydraulic support must be increased. This means increasing the volume of flow from emulsion power station. Analyzing the operating characteristics of hydraulic supports, the number of simultaneously operating supports is obtained by means of pressure parameter and time history at a certain time, which is a theory base for development of control system to multi-pump emulsion power station.
文摘Background of the development and achievement on sets equipment technologies for coal mine longwall face in China was reviewed initially. On the theoretical side, a coupling model of hydraulic support and surrounding rock, support pa- rameters optimization and threedimensional (3D) dynamic design method were presented. On the practical side, this paper out lined some of practical issues and discussed some relative methods and technologies. In thin seam coal longwall mining, how to lower equipment height is the first problem that should be solved. Roof pressure regularity, control of rooffall and collapse, and hydraulic support stability were investigated preferentially in 5-7 m coal seam longwall mining. The application of equip- ment for longwall mining with 5-7 m cutting height in China was concluded. The characteristics of full-mechanized top coal caving for extra thick seam coal were presented. The automation of top-caving hydraulic support and relevant equipment have achieved important breakthrough. At the end of this paper, further development of China's coal industry and longwall mining technologies and equipment were prospected in brief. This paper gives readers a comprehensive understanding of China's coal mine longwall face equipment technologies. It will give help to other countries on its coal mining development.
基金supported by the National Natural Science Foundation of China(Nos.51404275 and U1361209)the Fundamental Research Funds for the Central Universities of China(2013QZ03)
文摘Due to the use of outdated mining technology or room and pillar mining process in small coal mines, the coal recovery ratio is only 10–25%. In many regions of China, the damage area caused by the small coal mines amounted to nearly one hundred square kilometers. Therefore, special mining techniques must be taken to reclaim the wasted resource in disturbed coal areas. This paper focuses on the different mining methods by analyzing the longwall panel layout and abandoned gateroad(AG) distribution in the abandoned area of Cuijiazhai coal mine in northwestern China. On the basis of three-dimensional geological model, FLAC3 D numerical simulation was employed. The abutment pressure distribution was simulated when the panel face passed through the disturbed areas. The proper angle of the inclined face was analyzed when the panel face passed through the abandoned gateroads. The results show that the head end of the face should be 13–20 m ahead of the tail end. The pillars on both sides of abandoned gateroads had not been damaged at the same time, and no large-area stress concentration occured above the main roof.Therefore, the coal reserves of disturbed areas can be successfully recovered by using underground longwall mining.
基金the National Basic Research Program of China (No.2014CB046905)Innovation Project for Graduates in Jiangsu Province (No.KYLX15_1405)+1 种基金the National Natural Science Foundation of China (Nos.51274191 and 51404245)the Doctoral Fund of Ministry of Education of China (No.20130095110018)
文摘To investigate the abnormal ground pressures and roof control problem in fully mechanized repeated mining of residual coal after room and pillar mining, the roof fracture structural model and mechanical model were developed using numerical simulation and theoretical analysis. The roof fracture characteristics of a repeated mining face were revealed and the ground pressure law and roof supporting condi- tions of the repeated mining face were obtained. The results indicate that when the repeated mining face passes the residual pillars, the sudden instability causes fracturing in the main roof above the old goal and forms an extra-large rock block above the mining face. A relatively stable "Voussoir beam" structure is formed after the advance fracturing of the main roof. When the repeated mining face passes the old goaf, as the large rock block revolves and touches gangue, the rock block will break secondarily under overburden rock loads. An example calculation was performed involving an integrated mine in Shanxi province, results showed that minimum working resistance values of support determined to be reason- able were respectively 11,412 kN and 10,743 kN when repeated mining face passed through residual pillar and goaf. On-site ground pressure monitoring results indicated that the mechanical model and support resistance calculation were reasonable.
基金the Independent Research of the State Key Laboratory of Coal Resources and Mine Safety(No. SKLCRSM09X02)the Open Research Fund of the State Key Laboratory of Coal Resources and Mine Safety(No.08KF12)the Graduate Students of Jiangsu Province Innovation Program Funded Projects(No.CX09B_120Z) for their financial support
文摘Gateways at faces of great mining heights are mostly driven along the roof of coal seams.For gateway height restrictions,a 1-3 m floor coal is retained,leaving a triangular floor coal at the face ends,causing a loss of coal.In order to improve coal recovery rates and to ensure efficiency of equipment at coal mining faces,we investigated suitable retention methods and recovery technology of floor coal at face ends.The upper floor coal can directly be recovered by a shearer with floor dinting.The lower floor coal is recovered by shearer with floor dinting after advanced floor dinting and retaining a step for protecting coal sides in a haulage gateway.Field practice shows that this method can improve the coal recovery rates at fully mechanized working faces with great mining heights.