Li_(1.5)Ga_(0.5)Ti_(1.5)PO_(4))_(3)(LGTP)is recognized as a promising solid electrolyte material for lithium ions.In this work,LGTP solid electrolyte materials were prepared under different process conditions to explo...Li_(1.5)Ga_(0.5)Ti_(1.5)PO_(4))_(3)(LGTP)is recognized as a promising solid electrolyte material for lithium ions.In this work,LGTP solid electrolyte materials were prepared under different process conditions to explore the effects of sintering temperature and holding time on relative density,phase composition,microstructure,bulk conductivity,and total conductivity.In the impedance test under frequency of 1-10^(6) Hz,the bulk conductivity of the samples increased with increasing sintering temperature,and the total conductivity first increased and then decreased.SEM results showed that the average grain size in the ceramics was controlled by the sintering temperature,which increased from(0.54±0.01)μm to(1.21±0.01)μm when the temperature changed from 750 to 950°C.The relative density of the ceramics increased and then decreased with increasing temperature as the porosity increased.The holding time had little effect on the grain size growth or sample density,but an extended holding time resulted in crack generation that served to reduce the conductivity of the solid electrolyte.展开更多
Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean...Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean temperature prediction is based on data-driven,but research on this method is mostly limited to the sea surface,with few studies on the prediction of internal ocean temperature.Existing graph neural network-based methods usually use predefined graphs or learned static graphs,which cannot capture the dynamic associations among data.In this study,we propose a novel dynamic spatiotemporal graph neural network(DSTGN)to predict threedimensional ocean temperature(3D-OT),which combines static graph learning and dynamic graph learning to automatically mine two unknown dependencies between sequences based on the original 3D-OT data without prior knowledge.Temporal and spatial dependencies in the time series were then captured using temporal and graph convolutions.We also integrated dynamic graph learning,static graph learning,graph convolution,and temporal convolution into an end-to-end framework for 3D-OT prediction using time-series grid data.In this study,we conducted prediction experiments using high-resolution 3D-OT from the Copernicus global ocean physical reanalysis,with data covering the vertical variation of temperature from the sea surface to 1000 m below the sea surface.We compared five mainstream models that are commonly used for ocean temperature prediction,and the results showed that the method achieved the best prediction results at all prediction scales.展开更多
Effectiveness and safety of a sports mouthguard depend on its thickness and material, and the thermoforming process affects these. The purpose of this study was to clarify the effects of differences in molding mechani...Effectiveness and safety of a sports mouthguard depend on its thickness and material, and the thermoforming process affects these. The purpose of this study was to clarify the effects of differences in molding mechanisms on the lower molding temperature limit and molding time in dental thermoforming. Ethylene vinyl acetate resin mouthguard sheet and two thermoforming machines;vacuum blower molding machine and vacuum ejector/pressure molding machine were used. The molding pressures for suction molding were −0.018 MPa for vacuum blower molding and −0.090 MPa for vacuum ejector molding, and for pressure molding was set to 0.090 MPa or 0.450 MPa. Based on the manufacturer’s standard molding temperature of 95˚C, the molding temperature was lowered in 2.5˚C increments to determine the lower molding temperature limit at which no molding defects occurred. In order to investigate the difference in molding time depending on the molding mechanism, the duration of molding pressure was adjusted in each molding machine, and the molding time required to obtain a sample without molding defects was measured. The molding time of each molding machine were compared using one-way analysis of variance. The lower molding temperature limit was 90.0˚C for the vacuum blower machine, 77.5˚C for the vacuum ejector machine, 77.5˚C for the pressure molding machine at 0.090 MPa, and 67.5˚C for the pressure molding machine at 0.45 MPa. The lower molding temperature limit was higher for lower absolute values of molding pressure. The molding time was shorter for pressure molding than for suction molding. Significant differences were observed between all conditions except between the pressure molding machine at 0.090 MPa and 0.45 MPa (P < 0.01). A comparison of the differences in lower molding temperature limit and molding time due to molding mechanisms in dental thermoforming revealed that the lower molding temperature limit depends on the molding pressure and that the molding time is longer for suction molding than for pressure molding.展开更多
Crop water stress index(CWSI)is widely used for efficient irrigation management.Precise canopy temperature(T_(c))measurement is necessary to derive a reliable CWSI.The objective of this research was to investigate the...Crop water stress index(CWSI)is widely used for efficient irrigation management.Precise canopy temperature(T_(c))measurement is necessary to derive a reliable CWSI.The objective of this research was to investigate the influences of atmospheric conditions,settled height,view angle of infrared thermography,and investigating time of temperature measuring on the performance of the CWSI.Three irrigation treatments were used to create different soil water conditions during the 2020-2021 and 2021-2022 winter wheat-growing seasons.The CWSI was calculated using the CWSI-E(an empirical approach)and CWSI-T(a theoretical approach)based on the T_(c).Weather conditions were recorded continuously throughout the experimental period.The results showed that atmospheric conditions influenced the estimation of the CWSI;when the vapor pressure deficit(VPD)was>2000 Pa,the estimated CWSI was related to soil water conditions.The height of the installed infrared thermograph influenced the T_(c)values,and the differences among the T_(c)values measured at height of 3,5,and 10 m was smaller in the afternoon than in the morning.However,the lens of the thermometer facing south recorded a higher T_(c)than those facing east or north,especially at a low height,indicating that the direction of the thermometer had a significant influence on T_(c).There was a large variation in CWSI derived at different times of the day,and the midday measurements(12:00-15:00)were the most reliable for estimating CWSI.Negative linear relationships were found between the transpiration rate and CWSI-E(R^(2)of 0.3646-0.5725)and CWSI-T(R^(2)of 0.5407-0.7213).The relations between fraction of available soil water(FASW)with CWSI-T was higher than that with CWSI-E,indicating CWSI-T was more accurate for predicting crop water status.In addition,The R^(2)between CWSI-T and FASW at 14:00 was higher than that at other times,indicating that 14:00 was the optimal time for using the CWSI for crop water status monitoring.Relative higher yield of winter wheat was obtained with average seasonal values of CWSI-E and CWSI-T around 0.23 and 0.25-0.26,respectively.The CWSI-E values were more easily influenced by meteorological factors and the timing of the measurements,and using the theoretical approach to derive the CWSI was recommended for precise irrigation water management.展开更多
The temperature drop of molten metal flowing in open channels is numerically determined. Rectangular, trapezoidal and triangular geometries are considered. The overall heat transfer coefficients for the bottom, side w...The temperature drop of molten metal flowing in open channels is numerically determined. Rectangular, trapezoidal and triangular geometries are considered. The overall heat transfer coefficients for the bottom, side walls and free surface of the channel have been taken from the literature. For each geometry, the volumetric flow rate, mean residence time and temperature drop as a function of the channel inclination angle were determined. The rectangular and trapezoidal geometries present the smallest temperature drops, while the triangular geometry presents the greatest temperature drop. The factors that most affect this drop are the value of the free surface area of the channel, and the average residence time of the molten metal in the channel.展开更多
A thermoelectric generation Stirling engine (TEG-Stirling engine) is discussed by employing a low temperature Stirling engine and the dissipative equation of motion derived from the method of thermomechanical dynamics...A thermoelectric generation Stirling engine (TEG-Stirling engine) is discussed by employing a low temperature Stirling engine and the dissipative equation of motion derived from the method of thermomechanical dynamics (TMD). The results and mechanism of axial flux electromagnetic induction (AF-EMI) are applied to a low temperature Stirling engine, resulting in a TEG-Stirling engine. The method of TMD produced thermodynamically consistent and time-dependent physical quantities for the first time, such as internal energy ℰ(t), thermodynamic work Wth(t), the total entropy (heat dissipation) Qd(t)and measure or temperature of a nonequilibrium state T˜(t). The TMD analysis produced a lightweight mechanical system of TEG-Stirling engine which derives electric power from waste heat of temperature (40˚CT100˚C) by a thermoelectric conversion method. An optimal low rotational speed about 30θ′(t)/(2π)60(rpm) is found, applicable to devices for sustainable, clean energy technologies. The stability of a thermal state and angular rotations of TEG-Stirling engine are specifically shown by employing properties of nonequilibrium temperature T˜(t), which is also applied to study optimal fuel-injection and combustion timings of heat engines.展开更多
In this paper,we describe and analyze two datasets entitled“Homogenised monthly and daily temperature and precipitation time series in China during 1960–2021”and“Homogenised monthly and daily temperature and preci...In this paper,we describe and analyze two datasets entitled“Homogenised monthly and daily temperature and precipitation time series in China during 1960–2021”and“Homogenised monthly and daily temperature and precipitation time series in Greece during 1960–2010”.These datasets provide the homogenised monthly and daily mean(TG),minimum(TN),and maximum(TX)temperature and precipitation(RR)records since 1960 at 366 stations in China and 56stations in Greece.The datasets are available at the Science Data Bank repository and can be downloaded from https://doi.org/10.57760/sciencedb.01731 and https://doi.org/10.57760/sciencedb.01720.For China,the regional mean annual TG,TX,TN,and RR series during 1960–2021 showed significant warming or increasing trends of 0.27℃(10 yr)^(-1),0.22℃(10 yr)^(-1),0.35℃(10 yr)^(-1),and 6.81 mm(10 yr)-1,respectively.Most of the seasonal series revealed trends significant at the 0.05level,except for the spring,summer,and autumn RR series.For Greece,there were increasing trends of 0.09℃(10 yr)-1,0.08℃(10 yr)^(-1),and 0.11℃(10 yr)^(-1)for the annual TG,TX,and TN series,respectively,while a decreasing trend of–23.35 mm(10 yr)^(-1)was present for RR.The seasonal trends showed a significant warming rate for summer,but no significant changes were noted for spring(except for TN),autumn,and winter.For RR,only the winter time series displayed a statistically significant and robust trend[–15.82 mm(10 yr)^(-1)].The final homogenised temperature and precipitation time series for both China and Greece provide a better representation of the large-scale pattern of climate change over the past decades and provide a quality information source for climatological analyses.展开更多
The purpose is to study the influence of cooking and storage habits on the quality of macadamia nut oil,so as to provide reference for macadamia nut processingenterprises and consumers.Macadamia oil was treated at 100...The purpose is to study the influence of cooking and storage habits on the quality of macadamia nut oil,so as to provide reference for macadamia nut processingenterprises and consumers.Macadamia oil was treated at 100℃,200℃,300℃,microwave heating,45℃constant temperature storage,natural light for different times,and its acid value,peroxide value,squalene,sterol and fatty acid content were detected according to the national standard method.The results showed that the acid value and peroxide value increased with time.The acid value and peroxide value of macadamia oil cooked at 300℃and stored under natural light were higher than those heated by microwave and stored at 45℃,and increased rapidly with the increase of cooking and light time.The acid value was as high as 0.77 mg/g,with an increase of 63.8%,and the peroxide value was as high as 6.18 mg/g,with an increase of 43.7%.As for squalene,it decreased in varying degrees with heating time and storage time.Squalene in macadamia oil cooked at 300℃and stored under natural light were lower than those heated by microwave and stored at 45℃constant temperature,respectively,and decreased rapidly with the increase of cooking and light time,with the reduction ranges of 38.6%and28.4%respectively;Stigmasterol was not detected in macadamia oil.But in macadamia oil the content ofβ-sitosterol was 0.132 g/100 g,and the content did not change significantly in each treatmentgroup.In the experimental treatment group,the content of fatty acids in macadamia oil had different trends.After treatment at 300℃for 20 minutes,the content of oleic acid decreased by 75.66%,the content of palmitic acid decreased by 75.28%,and thecontent of palmitic acid decreased by 74.12%.In conclusion,low temperature heating,microwave heating and storage away from light can better preserve the quality of macadamia oil,this study will provide a theoretical basisfor the rational utilization of macadamia oil as cooking oil.展开更多
The mature seed of Paris polyphylla var.chinensis(PPC)is morphophysiologically dormant and develops differently under warm and cold temperatures.To elucidate the molecular mechanisms underlying temperature-dependent r...The mature seed of Paris polyphylla var.chinensis(PPC)is morphophysiologically dormant and develops differently under warm and cold temperatures.To elucidate the molecular mechanisms underlying temperature-dependent regulation of PPC seed dormancy and germination,we investigated the dynamic changes in PPC seed transcript levels under warm and cold temperature stratifications(WS and CS,respectively)by time-resolved RNA sequencing,focusing on genes related to hormone metabolism and signaling and cell wall remodeling(CWRM)and encoding transcription factors/regulators(TFs/TRs).A total of 48765 and 47836 differentially expressed genes(DEGs)were associated with WS and CS,respectively.Of these,17581 and 16652 DEGs,respectively,unique to WS and CS,and 5386 were common to both temperature stratifications across nine analyzed growth stages.The expression of hormone metabolism and signaling,TF/TR,and CWRM genes were closely associated with temperature.More genes related to gibberellin(GA),cytokinin,auxin,and brassinosteroid biosynthetic were upregulated in WS as compared to CS seeds,while genes related to dormancy release and germination were downregulated in WS seeds.However,only GA and abscisic acid levels were altered in PPC seeds breaking morphophysiological dormancy(MPD).Overall,37 TF and five TR families were upregulated whereas 24 TF and 16 TR families were downregulated in WS as compared to CS seeds.Most CWRM families were highly expressed under WS as compared to CS,suggesting that they promote endosperm weakening and embryo growth of WS seeds and facilitate MPD release and germination.A coexpression analysis revealed positive correlations between TFs/TRs and DEGs involved in hormone metabolism and signaling and CWRM.These results provided a basis for investigating the interaction between the endosperm and underdeveloped embryo in the regulation of PPC seed germination and seedling emergence.展开更多
According to the Doehlert's matrix method, the adsorbent derived from sewage sludge was prepared through chemical activation under controlling the pyrolysis temperature and hold time. The characteristic parameters...According to the Doehlert's matrix method, the adsorbent derived from sewage sludge was prepared through chemical activation under controlling the pyrolysis temperature and hold time. The characteristic parameters including the total yield, adsorption of methylene blue, adsorption of iodine, BET surface area, micro-pore volume are 35%—49%, 16.5—38 mg/g, 285—362 mg/g, 185—359 m2/g, and 0.112—0.224 m3/g, respectively. According to the experimental data, the multi-linear regression method was adopted to fit the relations between the characteristic parameters and influential factors. At final, through optimization method, the optimal adsorbent is obtained when using 62 min as hold time and 1105K as pyrolysis temperature. Under the conditions, the adsorbent was produced and compared the characteristic parameters with model forecast value, the coherence is satisfied.展开更多
In this study,the effect of decarburization annealing temperature and time on the carbon content,microstructure,and texture of grain-oriented pure iron was investigated by optical microscopy and scanning electron micr...In this study,the effect of decarburization annealing temperature and time on the carbon content,microstructure,and texture of grain-oriented pure iron was investigated by optical microscopy and scanning electron microscopy with electron-backscatter diffraction. The results showed that the efficiency of decarburization dramatically increased with increasing decarburization temperature. However,when the annealing temperature was increased to 825°C and 850°C,the steel's carbon content remained essentially unchanged at 0.002%. With increasing decarburization time,the steel's carbon content generally decreased. When both the decarburization temperature and time were increased further,the average grain size dramatically increased and the number of fine grains decreased; meanwhile,some relatively larger grains developed. The main texture types of the decarburized sheets were approximately the same: {001}<110> and {112~115}<110>,with a γ-fiber texture. Furthermore,little change was observed in the texture. Compared with the experimental sheets,the texture of the cold-rolled sheet was very scattered. The best average magnetic induction(B_(800)) among the final products was 1.946 T.展开更多
Objective:To study the number of leptospirosis cases in relations to the seasonal pattern,and its association with climate factors.Methods:Time series analysis was used to study the time variations in the number of le...Objective:To study the number of leptospirosis cases in relations to the seasonal pattern,and its association with climate factors.Methods:Time series analysis was used to study the time variations in the number of leptospirosis cases.The Autoregressive Integrated Moving Average (ARIMA) model was used in data curve fitting and predicting the next leptospirosis cases. Results:We found that the amount of rainfall was correlated to leptospirosis cases in both regions of interest,namely the northern and northeastern region of Thailand,while the temperature played a role in the northeastern region only.The use of multivariate ARIMA(ARIMAX) model showed that factoring in rainfall(with an 8 months lag) yields the best model for the northern region while the model,which factors in rainfall(with a 10 months kg) and temperature(with an 8 months lag) was the best for the northeaslern region.Conclusions:The models are able to show the trend in leptospirosis cases and closely fit the recorded data in both regions.The models can also be used to predict the next seasonal peak quite accurately.展开更多
We aim in this research at synthesizing high-purity aluminium titanate with sludge from the aluminium profile factory by shock cooling method, and mainly discuss the effect of calcining reaction temperature and holdin...We aim in this research at synthesizing high-purity aluminium titanate with sludge from the aluminium profile factory by shock cooling method, and mainly discuss the effect of calcining reaction temperature and holding time on crystalline, microstructure and content of aluminum titanate materials to determine the preferred calcining temperature and holding time. XRD and SEM methods were utilized to characterize the crystalline and microstructure of each specimen, Rietveld Quantification software was used for the determination of different crystalline contents of specimens, and Philips plus software was applied to determine the cell parameters of aluminium titanate in different specimens. According to the experimental results, preferred calcining temperature is determined as 1400℃ and preferred holding time is 2 h, at which the grains of aluminum titanate grow completely and the purity of aluminum titanate is 97.2wt%.展开更多
Objective To examine the effect of hydraulic residence time (HRT) on the performance and stability, to treat dilute wastewater at different operational temperatures in a carrier anaerobic baffled reactor (CABR), a...Objective To examine the effect of hydraulic residence time (HRT) on the performance and stability, to treat dilute wastewater at different operational temperatures in a carrier anaerobic baffled reactor (CABR), and hence to gain a deeper insight into microbial responses to hydraulic shocks on the base of the relationships among macroscopic performance, catabolic intermediate, and microcosmic alternation. Methods COD, VFAs, and microbial activity were detected with constant feed strength (300 mg/L) at different HRTs (9-18 h) and temperatures (10℃-28℃) in a CABR. Results The removal efficiencies declined with the decreases of HRTs and temperatures. However, the COD removal load was still higher at short HRT than at long HRT. Devastating reactor performance happened at temperature of 10℃ and at HRT of 9 h. HRTs had effect on the VFAs in the reactor slightly both at high and low temperatures, but the reasons differed from each other. Microbial activity was sensitive to indicate changes of environmental and operational parameters in the reactor. Conclusion The CABR offers to certain extent an application to treat dilute wastewater under a hydraulic-shock at temperatures from 10℃to 28℃.展开更多
The uniaxial time-dependent strain cyclic behaviors and ratcheting of SS304 stainless steel were studied at high temperatures (350 ℃ and 700 ℃). The effects of straining and stressing rates, holding time at the pe...The uniaxial time-dependent strain cyclic behaviors and ratcheting of SS304 stainless steel were studied at high temperatures (350 ℃ and 700 ℃). The effects of straining and stressing rates, holding time at the peak and/or valley of each cycle in addition to ambient temperature on the cyclic softening/hardening behavior and ratcheting of the material were discussed. It can be seen from experimental results that the material presents remarkable time dependence at 700 ℃, and the ratcheting strain depends greatly on the stressing rate, holding time and ambient temperature. Some significant conclusions are obtained, which are useful to build a constitutive model describiog the time-dependent cyclic deformation of the material.展开更多
Using radiosonde temperatures of 92 selected stations in China,the uncertainties in homogenization processes caused by different reference series,including nighttime temperature,the NCEP (National Centers for Environ...Using radiosonde temperatures of 92 selected stations in China,the uncertainties in homogenization processes caused by different reference series,including nighttime temperature,the NCEP (National Centers for Environmental Prediction) and ERA-40 (European Centre for Medium-Range Weather Forecasts) forecasting background,are examined via a two-phase regression approach.Although the results showed limited consistency in the temporal and spatial distribution of identified break points (BPs) in the context of metadata events of instrument model change and correction method,significant uncertainties still existed in BP identification,adjustment,and impact on the estimated trend.Reanalysis reference series generally led to more BP identification in homogenization.However,those differences were parts of global climatic shifts,which may have confused the BP calculations.Discontinuities also existed in the reanalysis series due to changes in the satellite input.The adjustment values deduced from the reanalysis series ranged widely and were larger than those from the nighttime series and,therefore,impacted the estimated temperature trend.展开更多
In the paper, the finite element model(FEM) of wire arc additive manufacturing(WAAM) by TIG method was established by the ABAQUS soft, and the phase transformation latent heat was considered in the model. The evolutio...In the paper, the finite element model(FEM) of wire arc additive manufacturing(WAAM) by TIG method was established by the ABAQUS soft, and the phase transformation latent heat was considered in the model. The evolution rules of temperature field at the interlayer with the cooling time of 10 s, 30 s and 50 s were obtained by the model. The WAAM experiment were performed by 5356 aluminum alloy welding wire with φ1.2 mm, and the simulated temperature field were varified by the thermocouple. The result shows that the highest temperature at the molten pool center increases with the increased interlayers at the same interlayer cooling time;the highest temperature drops gradually and the decline is smaller with the increased interlayer cooling time at the same layer. No remelting occurs at the top layer, and at least two remelting times occur in the other layers, resulting in complex temperature field evolution.展开更多
This paper aims to detect the short-term as well as long-term change point in the surface air temperature time series for Asansol weather observation station, West Bengal, India. Temperature data for the period from 1...This paper aims to detect the short-term as well as long-term change point in the surface air temperature time series for Asansol weather observation station, West Bengal, India. Temperature data for the period from 1941 to 2010 of the said weather observatory have been collected from Indian Meteorological Department, Kolkata. Variations and trends of annual mean temperature, annual mean maximum temperature and annual minimum temperature time series were examined. The cumulative sum charts (CUSUM) and bootstrapping were used for the detection of abrupt changes in the time series data set. Statistically significant abrupt changes and trends have been detected. The major change point in the annual mean temperatures occurred around 1986 (0.57°C) at the period of 25 years in the long-term regional scale. On the other side, the annual mean maximum and annual mean minimum temperatures have distinct change points at level 1. There are abrupt changes in the year 1961 (Confidence interval 1961, 1963) for the annual mean maximum and 1994 (Confidence interval 1993, 1996) for the annual mean minimum temperatures at a confidence level of 100% and 98%, respectively. Before the change, the annual mean maximum and annual mean minimum temperatures were 30.90°C and 23.99°C, respectively, while after the change, the temperatures became 33.93°C and 24.84°C, respectively. Over the entire period of consideration (1941-2010), 11 forward and backward changes were found in total. Out of 11, there are 3 changes (1961, 1986 and 2001) in annual mean temperatures, 4 changes (1957, 1961, 1980 and 1994) in annual mean maximum temperatures, and rest 4 changes (1968, 1981, 1994 and 2001) are associated with annual mean minimum temperature data set.展开更多
Background: The foraging and diving behavior of waterfowl are affected by a number of important factors. Hence, learning more about these major factors is of great concern in order to protect endangered species. In th...Background: The foraging and diving behavior of waterfowl are affected by a number of important factors. Hence, learning more about these major factors is of great concern in order to protect endangered species. In this study, we verified the effect of sex, temperature, time and flock size on the diving behavior of the Scaly-sided Merganser(Mergus squamatus).Methods: The study was conducted by means of focal animal sampling in the Wuyuan section of the Poyang Lake watershed in Jiangxi Province, China from December 2015 to March 2016. We used one-way ANOVA and LSD tests to investigate the differences among these factors. Pearson correlations were used to test the relation between pause duration and the previous or subsequent dive duration. The relations between these factors and dive/pause duration are illustrated using Spearman correlations.Results: Mean dive duration and mean time on the pause of males were significantly higher than those of females. With an increase in temperature, dive duration significantly increased. Along with the passage of time of year and daytime, dive duration significantly increased, while dive duration decreased significantly with the increase in flock size.Conclusions: Sex, temperature, time and flock size have an effect on the diving behavior of the wintering Scalysided Merganser. The difference of diving behavior between males and females is related to differences in body mass. The difference of diving behavior among various temperatures and time periods may be related to a low minimum rate of oxygen consumption, while the difference among various flock sizes may be caused by rising intraspecific competition.展开更多
To investigate the association between temperature and daily mortality in Shanghai from June 1, 2000 to December 31, 2001. Methods Time-series approach was used to estimate the effect of temperature on daily tota...To investigate the association between temperature and daily mortality in Shanghai from June 1, 2000 to December 31, 2001. Methods Time-series approach was used to estimate the effect of temperature on daily total and cause-specific mortality. We fitted generalized additive Poisson regression using non-parametric smooth functions to control for long-term time trend, season and other variables. We also controlled for day of the week. Results A gently sloping V-like relationship between total mortality and temperature was found, with an optimum temperature (e.g. temperature with lowest mortality risk) value of 26.7癈 in Shanghai. For temperatures above the optimum value, total mortality increased by 0.73% for each degree Celsius increase; while for temperature below the optimum value, total mortality decreased by 1.21% for each degree Celsius increase. Conclusions Our findings indicate that temperature has an effect on daily mortality in Shanghai, and the time-series approach is a useful tool for studying the temperature-mortality association.展开更多
基金funded by the National Natural Science Foundation of China(Nos.51672310,51272288,51972344)。
文摘Li_(1.5)Ga_(0.5)Ti_(1.5)PO_(4))_(3)(LGTP)is recognized as a promising solid electrolyte material for lithium ions.In this work,LGTP solid electrolyte materials were prepared under different process conditions to explore the effects of sintering temperature and holding time on relative density,phase composition,microstructure,bulk conductivity,and total conductivity.In the impedance test under frequency of 1-10^(6) Hz,the bulk conductivity of the samples increased with increasing sintering temperature,and the total conductivity first increased and then decreased.SEM results showed that the average grain size in the ceramics was controlled by the sintering temperature,which increased from(0.54±0.01)μm to(1.21±0.01)μm when the temperature changed from 750 to 950°C.The relative density of the ceramics increased and then decreased with increasing temperature as the porosity increased.The holding time had little effect on the grain size growth or sample density,but an extended holding time resulted in crack generation that served to reduce the conductivity of the solid electrolyte.
基金The National Key R&D Program of China under contract No.2021YFC3101603.
文摘Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean temperature prediction is based on data-driven,but research on this method is mostly limited to the sea surface,with few studies on the prediction of internal ocean temperature.Existing graph neural network-based methods usually use predefined graphs or learned static graphs,which cannot capture the dynamic associations among data.In this study,we propose a novel dynamic spatiotemporal graph neural network(DSTGN)to predict threedimensional ocean temperature(3D-OT),which combines static graph learning and dynamic graph learning to automatically mine two unknown dependencies between sequences based on the original 3D-OT data without prior knowledge.Temporal and spatial dependencies in the time series were then captured using temporal and graph convolutions.We also integrated dynamic graph learning,static graph learning,graph convolution,and temporal convolution into an end-to-end framework for 3D-OT prediction using time-series grid data.In this study,we conducted prediction experiments using high-resolution 3D-OT from the Copernicus global ocean physical reanalysis,with data covering the vertical variation of temperature from the sea surface to 1000 m below the sea surface.We compared five mainstream models that are commonly used for ocean temperature prediction,and the results showed that the method achieved the best prediction results at all prediction scales.
文摘Effectiveness and safety of a sports mouthguard depend on its thickness and material, and the thermoforming process affects these. The purpose of this study was to clarify the effects of differences in molding mechanisms on the lower molding temperature limit and molding time in dental thermoforming. Ethylene vinyl acetate resin mouthguard sheet and two thermoforming machines;vacuum blower molding machine and vacuum ejector/pressure molding machine were used. The molding pressures for suction molding were −0.018 MPa for vacuum blower molding and −0.090 MPa for vacuum ejector molding, and for pressure molding was set to 0.090 MPa or 0.450 MPa. Based on the manufacturer’s standard molding temperature of 95˚C, the molding temperature was lowered in 2.5˚C increments to determine the lower molding temperature limit at which no molding defects occurred. In order to investigate the difference in molding time depending on the molding mechanism, the duration of molding pressure was adjusted in each molding machine, and the molding time required to obtain a sample without molding defects was measured. The molding time of each molding machine were compared using one-way analysis of variance. The lower molding temperature limit was 90.0˚C for the vacuum blower machine, 77.5˚C for the vacuum ejector machine, 77.5˚C for the pressure molding machine at 0.090 MPa, and 67.5˚C for the pressure molding machine at 0.45 MPa. The lower molding temperature limit was higher for lower absolute values of molding pressure. The molding time was shorter for pressure molding than for suction molding. Significant differences were observed between all conditions except between the pressure molding machine at 0.090 MPa and 0.45 MPa (P < 0.01). A comparison of the differences in lower molding temperature limit and molding time due to molding mechanisms in dental thermoforming revealed that the lower molding temperature limit depends on the molding pressure and that the molding time is longer for suction molding than for pressure molding.
基金supported by the Project of State Grid Hebei Electric Power Co.,Ltd.(SGHEYX00SCJS2100077).
文摘Crop water stress index(CWSI)is widely used for efficient irrigation management.Precise canopy temperature(T_(c))measurement is necessary to derive a reliable CWSI.The objective of this research was to investigate the influences of atmospheric conditions,settled height,view angle of infrared thermography,and investigating time of temperature measuring on the performance of the CWSI.Three irrigation treatments were used to create different soil water conditions during the 2020-2021 and 2021-2022 winter wheat-growing seasons.The CWSI was calculated using the CWSI-E(an empirical approach)and CWSI-T(a theoretical approach)based on the T_(c).Weather conditions were recorded continuously throughout the experimental period.The results showed that atmospheric conditions influenced the estimation of the CWSI;when the vapor pressure deficit(VPD)was>2000 Pa,the estimated CWSI was related to soil water conditions.The height of the installed infrared thermograph influenced the T_(c)values,and the differences among the T_(c)values measured at height of 3,5,and 10 m was smaller in the afternoon than in the morning.However,the lens of the thermometer facing south recorded a higher T_(c)than those facing east or north,especially at a low height,indicating that the direction of the thermometer had a significant influence on T_(c).There was a large variation in CWSI derived at different times of the day,and the midday measurements(12:00-15:00)were the most reliable for estimating CWSI.Negative linear relationships were found between the transpiration rate and CWSI-E(R^(2)of 0.3646-0.5725)and CWSI-T(R^(2)of 0.5407-0.7213).The relations between fraction of available soil water(FASW)with CWSI-T was higher than that with CWSI-E,indicating CWSI-T was more accurate for predicting crop water status.In addition,The R^(2)between CWSI-T and FASW at 14:00 was higher than that at other times,indicating that 14:00 was the optimal time for using the CWSI for crop water status monitoring.Relative higher yield of winter wheat was obtained with average seasonal values of CWSI-E and CWSI-T around 0.23 and 0.25-0.26,respectively.The CWSI-E values were more easily influenced by meteorological factors and the timing of the measurements,and using the theoretical approach to derive the CWSI was recommended for precise irrigation water management.
文摘The temperature drop of molten metal flowing in open channels is numerically determined. Rectangular, trapezoidal and triangular geometries are considered. The overall heat transfer coefficients for the bottom, side walls and free surface of the channel have been taken from the literature. For each geometry, the volumetric flow rate, mean residence time and temperature drop as a function of the channel inclination angle were determined. The rectangular and trapezoidal geometries present the smallest temperature drops, while the triangular geometry presents the greatest temperature drop. The factors that most affect this drop are the value of the free surface area of the channel, and the average residence time of the molten metal in the channel.
文摘A thermoelectric generation Stirling engine (TEG-Stirling engine) is discussed by employing a low temperature Stirling engine and the dissipative equation of motion derived from the method of thermomechanical dynamics (TMD). The results and mechanism of axial flux electromagnetic induction (AF-EMI) are applied to a low temperature Stirling engine, resulting in a TEG-Stirling engine. The method of TMD produced thermodynamically consistent and time-dependent physical quantities for the first time, such as internal energy ℰ(t), thermodynamic work Wth(t), the total entropy (heat dissipation) Qd(t)and measure or temperature of a nonequilibrium state T˜(t). The TMD analysis produced a lightweight mechanical system of TEG-Stirling engine which derives electric power from waste heat of temperature (40˚CT100˚C) by a thermoelectric conversion method. An optimal low rotational speed about 30θ′(t)/(2π)60(rpm) is found, applicable to devices for sustainable, clean energy technologies. The stability of a thermal state and angular rotations of TEG-Stirling engine are specifically shown by employing properties of nonequilibrium temperature T˜(t), which is also applied to study optimal fuel-injection and combustion timings of heat engines.
基金funded by the Hellenic and Chinese Governments,in the frame of the Greek-Chinese R&T Cooperation Programme project“Comparative study of extreme climate indices in China and Europe/Greece,based on homogenised daily observations—CLIMEX”(Contract T7ΔKI-00046)the National Key Technologies Research and Development Program“Comparative study of changing climate extremes between China and Europe/Greece based on homogenised daily observations”(Grant No.2017YFE0133600)。
文摘In this paper,we describe and analyze two datasets entitled“Homogenised monthly and daily temperature and precipitation time series in China during 1960–2021”and“Homogenised monthly and daily temperature and precipitation time series in Greece during 1960–2010”.These datasets provide the homogenised monthly and daily mean(TG),minimum(TN),and maximum(TX)temperature and precipitation(RR)records since 1960 at 366 stations in China and 56stations in Greece.The datasets are available at the Science Data Bank repository and can be downloaded from https://doi.org/10.57760/sciencedb.01731 and https://doi.org/10.57760/sciencedb.01720.For China,the regional mean annual TG,TX,TN,and RR series during 1960–2021 showed significant warming or increasing trends of 0.27℃(10 yr)^(-1),0.22℃(10 yr)^(-1),0.35℃(10 yr)^(-1),and 6.81 mm(10 yr)-1,respectively.Most of the seasonal series revealed trends significant at the 0.05level,except for the spring,summer,and autumn RR series.For Greece,there were increasing trends of 0.09℃(10 yr)-1,0.08℃(10 yr)^(-1),and 0.11℃(10 yr)^(-1)for the annual TG,TX,and TN series,respectively,while a decreasing trend of–23.35 mm(10 yr)^(-1)was present for RR.The seasonal trends showed a significant warming rate for summer,but no significant changes were noted for spring(except for TN),autumn,and winter.For RR,only the winter time series displayed a statistically significant and robust trend[–15.82 mm(10 yr)^(-1)].The final homogenised temperature and precipitation time series for both China and Greece provide a better representation of the large-scale pattern of climate change over the past decades and provide a quality information source for climatological analyses.
基金Science and Technology Project of Guangdong Forestry Society,Grant/Award Number:2020-GDFS-KJ-05Guangzhou Science and Technology Project,Grant/Award Number:202201011039Guangdong Science and Technology plan project,Grant/Award Number:2023B0208010001.
文摘The purpose is to study the influence of cooking and storage habits on the quality of macadamia nut oil,so as to provide reference for macadamia nut processingenterprises and consumers.Macadamia oil was treated at 100℃,200℃,300℃,microwave heating,45℃constant temperature storage,natural light for different times,and its acid value,peroxide value,squalene,sterol and fatty acid content were detected according to the national standard method.The results showed that the acid value and peroxide value increased with time.The acid value and peroxide value of macadamia oil cooked at 300℃and stored under natural light were higher than those heated by microwave and stored at 45℃,and increased rapidly with the increase of cooking and light time.The acid value was as high as 0.77 mg/g,with an increase of 63.8%,and the peroxide value was as high as 6.18 mg/g,with an increase of 43.7%.As for squalene,it decreased in varying degrees with heating time and storage time.Squalene in macadamia oil cooked at 300℃and stored under natural light were lower than those heated by microwave and stored at 45℃constant temperature,respectively,and decreased rapidly with the increase of cooking and light time,with the reduction ranges of 38.6%and28.4%respectively;Stigmasterol was not detected in macadamia oil.But in macadamia oil the content ofβ-sitosterol was 0.132 g/100 g,and the content did not change significantly in each treatmentgroup.In the experimental treatment group,the content of fatty acids in macadamia oil had different trends.After treatment at 300℃for 20 minutes,the content of oleic acid decreased by 75.66%,the content of palmitic acid decreased by 75.28%,and thecontent of palmitic acid decreased by 74.12%.In conclusion,low temperature heating,microwave heating and storage away from light can better preserve the quality of macadamia oil,this study will provide a theoretical basisfor the rational utilization of macadamia oil as cooking oil.
基金supported by the CAMS Innovation Fund for Medical Sciences (CIFMS) (2017-I2M-3-013)the National Key Research and Development Program of China (Grant No. 2017YFC1700706)the National Natural Science Foundation of China (Grant No. 31471575).
文摘The mature seed of Paris polyphylla var.chinensis(PPC)is morphophysiologically dormant and develops differently under warm and cold temperatures.To elucidate the molecular mechanisms underlying temperature-dependent regulation of PPC seed dormancy and germination,we investigated the dynamic changes in PPC seed transcript levels under warm and cold temperature stratifications(WS and CS,respectively)by time-resolved RNA sequencing,focusing on genes related to hormone metabolism and signaling and cell wall remodeling(CWRM)and encoding transcription factors/regulators(TFs/TRs).A total of 48765 and 47836 differentially expressed genes(DEGs)were associated with WS and CS,respectively.Of these,17581 and 16652 DEGs,respectively,unique to WS and CS,and 5386 were common to both temperature stratifications across nine analyzed growth stages.The expression of hormone metabolism and signaling,TF/TR,and CWRM genes were closely associated with temperature.More genes related to gibberellin(GA),cytokinin,auxin,and brassinosteroid biosynthetic were upregulated in WS as compared to CS seeds,while genes related to dormancy release and germination were downregulated in WS seeds.However,only GA and abscisic acid levels were altered in PPC seeds breaking morphophysiological dormancy(MPD).Overall,37 TF and five TR families were upregulated whereas 24 TF and 16 TR families were downregulated in WS as compared to CS seeds.Most CWRM families were highly expressed under WS as compared to CS,suggesting that they promote endosperm weakening and embryo growth of WS seeds and facilitate MPD release and germination.A coexpression analysis revealed positive correlations between TFs/TRs and DEGs involved in hormone metabolism and signaling and CWRM.These results provided a basis for investigating the interaction between the endosperm and underdeveloped embryo in the regulation of PPC seed germination and seedling emergence.
文摘According to the Doehlert's matrix method, the adsorbent derived from sewage sludge was prepared through chemical activation under controlling the pyrolysis temperature and hold time. The characteristic parameters including the total yield, adsorption of methylene blue, adsorption of iodine, BET surface area, micro-pore volume are 35%—49%, 16.5—38 mg/g, 285—362 mg/g, 185—359 m2/g, and 0.112—0.224 m3/g, respectively. According to the experimental data, the multi-linear regression method was adopted to fit the relations between the characteristic parameters and influential factors. At final, through optimization method, the optimal adsorbent is obtained when using 62 min as hold time and 1105K as pyrolysis temperature. Under the conditions, the adsorbent was produced and compared the characteristic parameters with model forecast value, the coherence is satisfied.
文摘In this study,the effect of decarburization annealing temperature and time on the carbon content,microstructure,and texture of grain-oriented pure iron was investigated by optical microscopy and scanning electron microscopy with electron-backscatter diffraction. The results showed that the efficiency of decarburization dramatically increased with increasing decarburization temperature. However,when the annealing temperature was increased to 825°C and 850°C,the steel's carbon content remained essentially unchanged at 0.002%. With increasing decarburization time,the steel's carbon content generally decreased. When both the decarburization temperature and time were increased further,the average grain size dramatically increased and the number of fine grains decreased; meanwhile,some relatively larger grains developed. The main texture types of the decarburized sheets were approximately the same: {001}<110> and {112~115}<110>,with a γ-fiber texture. Furthermore,little change was observed in the texture. Compared with the experimental sheets,the texture of the cold-rolled sheet was very scattered. The best average magnetic induction(B_(800)) among the final products was 1.946 T.
基金supported by Centre of Encellecne Mathentatics CHEThailand finanieally Sudaral Chadsuthi is supported by the Commission on Higher Education Thailand for its grant support under the Strategie Scholarships for Frintier Research Network for joint Ph.D.Programssupported by the National Science and Technology Development Agency (NSTDA) and Faculty of Science,Mahidol University
文摘Objective:To study the number of leptospirosis cases in relations to the seasonal pattern,and its association with climate factors.Methods:Time series analysis was used to study the time variations in the number of leptospirosis cases.The Autoregressive Integrated Moving Average (ARIMA) model was used in data curve fitting and predicting the next leptospirosis cases. Results:We found that the amount of rainfall was correlated to leptospirosis cases in both regions of interest,namely the northern and northeastern region of Thailand,while the temperature played a role in the northeastern region only.The use of multivariate ARIMA(ARIMAX) model showed that factoring in rainfall(with an 8 months lag) yields the best model for the northern region while the model,which factors in rainfall(with a 10 months kg) and temperature(with an 8 months lag) was the best for the northeaslern region.Conclusions:The models are able to show the trend in leptospirosis cases and closely fit the recorded data in both regions.The models can also be used to predict the next seasonal peak quite accurately.
基金supported by the Natural Science Foundation of Fujian Province (No. T08J0129)the Science and Technology Developing Foundation of Fuzhou University (No. 2008-XQ-001)2007-year New Century Talents Supporting Program of Fujian Province (No.XSJRC2007-17)
文摘We aim in this research at synthesizing high-purity aluminium titanate with sludge from the aluminium profile factory by shock cooling method, and mainly discuss the effect of calcining reaction temperature and holding time on crystalline, microstructure and content of aluminum titanate materials to determine the preferred calcining temperature and holding time. XRD and SEM methods were utilized to characterize the crystalline and microstructure of each specimen, Rietveld Quantification software was used for the determination of different crystalline contents of specimens, and Philips plus software was applied to determine the cell parameters of aluminium titanate in different specimens. According to the experimental results, preferred calcining temperature is determined as 1400℃ and preferred holding time is 2 h, at which the grains of aluminum titanate grow completely and the purity of aluminum titanate is 97.2wt%.
基金project supported by the Science and Technology Department of Zhejiang Province (2005C13003).
文摘Objective To examine the effect of hydraulic residence time (HRT) on the performance and stability, to treat dilute wastewater at different operational temperatures in a carrier anaerobic baffled reactor (CABR), and hence to gain a deeper insight into microbial responses to hydraulic shocks on the base of the relationships among macroscopic performance, catabolic intermediate, and microcosmic alternation. Methods COD, VFAs, and microbial activity were detected with constant feed strength (300 mg/L) at different HRTs (9-18 h) and temperatures (10℃-28℃) in a CABR. Results The removal efficiencies declined with the decreases of HRTs and temperatures. However, the COD removal load was still higher at short HRT than at long HRT. Devastating reactor performance happened at temperature of 10℃ and at HRT of 9 h. HRTs had effect on the VFAs in the reactor slightly both at high and low temperatures, but the reasons differed from each other. Microbial activity was sensitive to indicate changes of environmental and operational parameters in the reactor. Conclusion The CABR offers to certain extent an application to treat dilute wastewater under a hydraulic-shock at temperatures from 10℃to 28℃.
基金Item Sponsored by National Natural Science Foundation of China (NSFC10402037) Theoretical Research Fund of SouthwestJiaotong University (2005XJB23)
文摘The uniaxial time-dependent strain cyclic behaviors and ratcheting of SS304 stainless steel were studied at high temperatures (350 ℃ and 700 ℃). The effects of straining and stressing rates, holding time at the peak and/or valley of each cycle in addition to ambient temperature on the cyclic softening/hardening behavior and ratcheting of the material were discussed. It can be seen from experimental results that the material presents remarkable time dependence at 700 ℃, and the ratcheting strain depends greatly on the stressing rate, holding time and ambient temperature. Some significant conclusions are obtained, which are useful to build a constitutive model describiog the time-dependent cyclic deformation of the material.
文摘Using radiosonde temperatures of 92 selected stations in China,the uncertainties in homogenization processes caused by different reference series,including nighttime temperature,the NCEP (National Centers for Environmental Prediction) and ERA-40 (European Centre for Medium-Range Weather Forecasts) forecasting background,are examined via a two-phase regression approach.Although the results showed limited consistency in the temporal and spatial distribution of identified break points (BPs) in the context of metadata events of instrument model change and correction method,significant uncertainties still existed in BP identification,adjustment,and impact on the estimated trend.Reanalysis reference series generally led to more BP identification in homogenization.However,those differences were parts of global climatic shifts,which may have confused the BP calculations.Discontinuities also existed in the reanalysis series due to changes in the satellite input.The adjustment values deduced from the reanalysis series ranged widely and were larger than those from the nighttime series and,therefore,impacted the estimated temperature trend.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51905423)Natural.Science Basic Research Plan in Shaanxi Province of China(Grant No.2021JM338)+1 种基金China Scholarship Council(Grant No.201908610042)Application Technology R&D Project of Beilin District(GX2102).
文摘In the paper, the finite element model(FEM) of wire arc additive manufacturing(WAAM) by TIG method was established by the ABAQUS soft, and the phase transformation latent heat was considered in the model. The evolution rules of temperature field at the interlayer with the cooling time of 10 s, 30 s and 50 s were obtained by the model. The WAAM experiment were performed by 5356 aluminum alloy welding wire with φ1.2 mm, and the simulated temperature field were varified by the thermocouple. The result shows that the highest temperature at the molten pool center increases with the increased interlayers at the same interlayer cooling time;the highest temperature drops gradually and the decline is smaller with the increased interlayer cooling time at the same layer. No remelting occurs at the top layer, and at least two remelting times occur in the other layers, resulting in complex temperature field evolution.
文摘This paper aims to detect the short-term as well as long-term change point in the surface air temperature time series for Asansol weather observation station, West Bengal, India. Temperature data for the period from 1941 to 2010 of the said weather observatory have been collected from Indian Meteorological Department, Kolkata. Variations and trends of annual mean temperature, annual mean maximum temperature and annual minimum temperature time series were examined. The cumulative sum charts (CUSUM) and bootstrapping were used for the detection of abrupt changes in the time series data set. Statistically significant abrupt changes and trends have been detected. The major change point in the annual mean temperatures occurred around 1986 (0.57°C) at the period of 25 years in the long-term regional scale. On the other side, the annual mean maximum and annual mean minimum temperatures have distinct change points at level 1. There are abrupt changes in the year 1961 (Confidence interval 1961, 1963) for the annual mean maximum and 1994 (Confidence interval 1993, 1996) for the annual mean minimum temperatures at a confidence level of 100% and 98%, respectively. Before the change, the annual mean maximum and annual mean minimum temperatures were 30.90°C and 23.99°C, respectively, while after the change, the temperatures became 33.93°C and 24.84°C, respectively. Over the entire period of consideration (1941-2010), 11 forward and backward changes were found in total. Out of 11, there are 3 changes (1961, 1986 and 2001) in annual mean temperatures, 4 changes (1957, 1961, 1980 and 1994) in annual mean maximum temperatures, and rest 4 changes (1968, 1981, 1994 and 2001) are associated with annual mean minimum temperature data set.
基金supported by the National Natural Science Foundation of China(Grant No.31560597)
文摘Background: The foraging and diving behavior of waterfowl are affected by a number of important factors. Hence, learning more about these major factors is of great concern in order to protect endangered species. In this study, we verified the effect of sex, temperature, time and flock size on the diving behavior of the Scaly-sided Merganser(Mergus squamatus).Methods: The study was conducted by means of focal animal sampling in the Wuyuan section of the Poyang Lake watershed in Jiangxi Province, China from December 2015 to March 2016. We used one-way ANOVA and LSD tests to investigate the differences among these factors. Pearson correlations were used to test the relation between pause duration and the previous or subsequent dive duration. The relations between these factors and dive/pause duration are illustrated using Spearman correlations.Results: Mean dive duration and mean time on the pause of males were significantly higher than those of females. With an increase in temperature, dive duration significantly increased. Along with the passage of time of year and daytime, dive duration significantly increased, while dive duration decreased significantly with the increase in flock size.Conclusions: Sex, temperature, time and flock size have an effect on the diving behavior of the wintering Scalysided Merganser. The difference of diving behavior between males and females is related to differences in body mass. The difference of diving behavior among various temperatures and time periods may be related to a low minimum rate of oxygen consumption, while the difference among various flock sizes may be caused by rising intraspecific competition.
文摘To investigate the association between temperature and daily mortality in Shanghai from June 1, 2000 to December 31, 2001. Methods Time-series approach was used to estimate the effect of temperature on daily total and cause-specific mortality. We fitted generalized additive Poisson regression using non-parametric smooth functions to control for long-term time trend, season and other variables. We also controlled for day of the week. Results A gently sloping V-like relationship between total mortality and temperature was found, with an optimum temperature (e.g. temperature with lowest mortality risk) value of 26.7癈 in Shanghai. For temperatures above the optimum value, total mortality increased by 0.73% for each degree Celsius increase; while for temperature below the optimum value, total mortality decreased by 1.21% for each degree Celsius increase. Conclusions Our findings indicate that temperature has an effect on daily mortality in Shanghai, and the time-series approach is a useful tool for studying the temperature-mortality association.