期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
LINEAR COMPLEXITY AND RANDOM SEQUENCES WITH PERIOD 2~n
1
作者 章照止 杨义先 《Systems Science and Mathematical Sciences》 SCIE EI CSCD 1990年第2期136-142,共7页
Let (?)=(S,S,…)be a binary random sequence with period N=2<sup>n</sup>,where S=(S<sub>0</sub>,…,S<sub>N-1</sub>)is its one period with N independent and uniformly distributed ... Let (?)=(S,S,…)be a binary random sequence with period N=2<sup>n</sup>,where S=(S<sub>0</sub>,…,S<sub>N-1</sub>)is its one period with N independent and uniformly distributed binary random variables.The main results of this paper are as follows.1)Var c(?)=2-(2N+1)2<sup>-N</sup>-2<sup>-2N</sup>;2)E|c(?)-c(?)|=[2<sup>c(?)+1</sup>-2]2<sup>-N</sup>for any sequence (?) with period 2<sup>n</sup>;3)N-1+2<sup>-N</sup>-(n/2+1-2<sup>-(N-n)</sup>)≤E[(?)c(?)]≤N-1+2<sup>-N</sup>4)2-2<sup>-(N-1)</sup>≤E[(?)|c(?)-c(?)|]≤2-2<sup>-N</sup>+n/2-2<sup>-(N-n)</sup>,where E and Var stand for taking expectation and variance respectively,c(?) is the linearcomplexity of the sequence (?) and W(b) the Hamming weight of one period of the seqnence (?). 展开更多
关键词 Linear COMPLEXITY BOOLEAN funcation random SEQUENCE local COMPLEMENTATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部