Tree mortality significantly influences forest structure and function,yet our understanding of its dynamic patterns among a range of tree sizes and among different plant functional types(PFTs)remains incomplete.This s...Tree mortality significantly influences forest structure and function,yet our understanding of its dynamic patterns among a range of tree sizes and among different plant functional types(PFTs)remains incomplete.This study analysed size-dependent tree mortality in a temperate forest,encompassing 46 tree species and 32,565 individuals across different PFTs(i.e.,evergreen conifer vs.deciduous broadleaf species,shade-tolerant vs.shade-intolerant species).By employing all-subset regression procedures and logistic generalized linear mixed-effects models,we identified distinct mortality patterns influenced by biotic and abiotic factors.Our results showed a stable mortality patte rn in eve rgreen conifer species,contrasted by a declining pattern in deciduous broadleaf and shadetolerant,as well as shade-intolerant species,across size classes.The contribution to tree mortality of evergreen conifer species shifted from abiotic to biotic factors with increasing size,while the mortality of deciduous broadleaf species was mainly influenced by biotic factors,such as initial diameter at breast height(DBH)and conspecific negative density.For shade-tolerant species,the mortality of small individuals was mainly determined by initial DBH and conspecific negative density dependence,whereas the mortality of large individuals was subjected to the combined effect of biotic(competition from neighbours)and abiotic factors(i.e.,convexity and pH).As for shade-intolerant species,competition from neighbours was found to be the main driver of tree mortality throughout their growth stages.Thus,these insights enhance our understanding of forest dynamics by revealing the size-dependent and PFT-specific tree mortality patterns,which may inform strategies for maintaining forest diversity and resilience in temperate forest ecosystems.展开更多
The ecological concept of Plant Functional Types(PFTs), which refers to the assemblage of plants with certain functional traits, has been introduced for the study of plant responses to the environment change and hum...The ecological concept of Plant Functional Types(PFTs), which refers to the assemblage of plants with certain functional traits, has been introduced for the study of plant responses to the environment change and human disturbance. Taking the alpine meadow community in the Zoigê Plateau as a study case, this paper classified PFTs in terms of plant nutrition traits. The sequential results are as follows.(1) The main herbages in the Zoigê Plateau included 16 species in 5 families. Among the five families, Cyperaceae vegetation accounted for 81.37%of herbage area in total, while the remaining 4families occupied less than 20%. As for the species,Kobresia setchwanensis Hand.-Maizz. was dominant,accounting for 48.74% of the total area; while the remaining 51.26% was comprised of Polygonum viviparum L., Anaphalis fiavescens Hand.-Mazz.,Stipa aliena Keng and other species.(2) By using the Principal Component Analysis(PCA), the assessment of herbages nutrition was carried out based on the comprehensive multi-index evaluation model.Polygonum viviparum L. had the highest nutritional value score(1.43), and Stipa aliena Keng had the lowest(-1.40). Nutritional value of herbage species had a significantly positive correlation with altitude(P<0.01) in the Zoigê Plateau.(3) Based on the nutritional values, herbages in the Zoigê Plateau could be grouped into 3 nutrition PFTs(high, medium and low) by using the Natural Breaks(Jenks) method.展开更多
We conducted a systematic census of leaf N for 102 plant species at 112 research sites along the North-South Transect of Eastern China (NSTEC) following the same protocol, to explore how plant functional types (PFT...We conducted a systematic census of leaf N for 102 plant species at 112 research sites along the North-South Transect of Eastern China (NSTEC) following the same protocol, to explore how plant functional types (PFTs) and environmental factors affect the spatial pattern of leaf N. The results showed that mean leaf N was 17.7 mg g^-1 for all plant species. The highest and lowest leaf N were found in deciduous-broadleaf and evergreen-conifer species, respectively, and the ranking of leaf N from high to low was: deciduous 〉 evergreen species, broadleaf 〉 coniferous species, shrubs ≈ trees 〉 grasses. For all data pooled, leaf N showed a convex quadratic response to mean annual temperature (MAT), and a negative linear relationship with mean annual precipitation (MAP), but a positive linear relationship with soil nitrogen concentration (Nsoil). These patterns were similar when PFTs were examined individually. Importantly, PFTs, climate and Nsoil, jointly explained 46.1% of the spatial variation in leaf N, of which the independent explanatory powers of PFTs, climate and Nsoil, were 15.6%, 2.3% and 4.7%, respectively. Our findings suggest that leaf N is regulated by climate and Nsoil, mainly via plant species composition. The wide scale empirical relationships developed here are useful for understanding and modeling of the effects of PFTs and environmental factors on leaf N.展开更多
The identification of easily measured plant functional types (PFTs) that consistently predict grazing response would be a major advance.The responses to grazing of individual traits and PFTs were analyzed along a graz...The identification of easily measured plant functional types (PFTs) that consistently predict grazing response would be a major advance.The responses to grazing of individual traits and PFTs were analyzed along a grazing gradient in an alpine shrub meadow on the Qinghai-Tibet Plateau,China.Three response types were identified;grazing increaser (GI),grazing decreaser (GD),and neutral (NE) for both traits and PFTs.Seven traits were measured:plant height,economic group,cotyledon type,plant inclination,growth form,life cycle,and vegetative structure.The first five were significantly affected by grazing.Ordinal regressions for grazing response of the seven traits showed that the best single predictors of response were growth form (including the attributes "Scattered","Bunched" or "Closely Bunched"),and plant inclination ("Rosette","Prostrate",or "Erect"),followed by economic group ("Shrub","Grass","Sedge","Legume","Forb",or "Harmful") and plant height ("Tall","Medium",or "Small").Within the four optimal traits,the summed dominance ratio (SDR) of small plants,forbs,rosette and bunched plants,invariably increased,while that of tall plants,shrubs,grasses,and erect plants decreased,when grazing pressure was enhanced.Canonical correspondence analysis (CCA) identified eleven explanatory PFTs based on 195 defined PFTs,by combining the different attributes of the four optimal traits.Among explanatory PFTs,the most valuable in predicting the community response to grazing were Tall×Shrub×Erect×Scattered and Small×Forb×Rosette,as these have the closest connections with grazing disturbance and include fewer species.Species richness,diversity,and community evenness,did not differ among grazing treatments because turnover occurred in component species and their relative abundances along the grazing gradient.We have demonstrated that a minimum set of PFTs resulting from optimal individual traits can provide consistent prediction of community responses to grazing in this region.This approach provides a more accurate indicator of change within a changing environment than do univariate measures of species diversity.We hope to provide a link between management practices and vegetation structure,forming a basis for future,large scale,plant trait comparisons.展开更多
Potassium(K),calcium(Ca),and magnesium(Mg)are essential elements with important physiological functions in plants.Previous studies showed that leaf K,Ca,and Mg concentrations generally increase with increasing latitud...Potassium(K),calcium(Ca),and magnesium(Mg)are essential elements with important physiological functions in plants.Previous studies showed that leaf K,Ca,and Mg concentrations generally increase with increasing latitudes.However,recent meta-analyses suggested the possibility of a unimodal pattern in the concentrations of these elements along latitudinal gradients.The authenticity of this unimodal latitudinal pattern,however,requires validation through large-scale field experimental data,and exploration of the underlying mechanisms if the pattern is confirmed.Here,we collected leaves of common species of woody plants from 19 montane forests in the north-south transect of eastern China,including 322 species from 160 genera,67 families;and then determined leaf K,Ca,and Mg concentrations to explore their latitudinal patterns and driving mechanisms.Our results support unimodal latitudinal patterns for all three elements in woody plants across eastern China,with peak values at latitude 36.5±1.0°N.The shift of plant-functional-type compositions from evergreen broadleaves to deciduous broadleaves and to conifers along this latitudinal span was the key factor contributing to these patterns.Climatic factors,mainly temperature,and to a lesser extent solar radiation and precipitation,were the main environmental drivers.These factors,by altering the composition of plant communities and regulating plant physiological activities,influence the latitudinal patterns of plant nutrient concentrations.Our findings also suggest that high leaf K,Ca,and Mg concentrations may represent an adaptive strategy for plants to withstand water stress,which might be used to predict plant nutrient responses to climate changes at large scales,and broaden the understanding of biogeochemical cycling of K,Ca,and Mg.展开更多
Land surface models and dynamic global vegetation models typically represent vegetation through coarse plant functional type groupings based on leaf form, phenology, and bioclimatic limits. Although these groupings we...Land surface models and dynamic global vegetation models typically represent vegetation through coarse plant functional type groupings based on leaf form, phenology, and bioclimatic limits. Although these groupings were both feasible and functional for early model generations, in light of the pace at which our knowledge of functional ecology, ecosystem demographics, and vegetation-climate feedbacks has advanced and the ever growing demand for enhanced model performance, these groupings have become antiquated and are identified as a key source of model uncertainty. The newest wave of model development is centered on shifting the vegetation paradigm away from plant functional types(PFTs)and towards flexible trait-based representations. These models seek to improve errors in ecosystem fluxes that result from information loss due to over-aggregation of dissimilar species into the same functional class. We advocate the importance of the inclusion of plant hydraulic trait representation within the new paradigm through a framework of the whole-plant hydraulic strategy. Plant hydraulic strategy is known to play a critical role in the regulation of stomatal conductance and thus transpiration and latent heat flux. It is typical that coexisting plants employ opposing hydraulic strategies, and therefore have disparate patterns of water acquisition and use. Hydraulic traits are deterministic of drought resilience, response to disturbance, and other demographic processes. The addition of plant hydraulic properties in models may not only improve the simulation of carbon and water fluxes but also vegetation population distributions.展开更多
The main purpose of this paper is to study the persistence of the general multispecies competition predator-pray system with Holling Ⅲ type functional response. In this system, the competition among predator species ...The main purpose of this paper is to study the persistence of the general multispecies competition predator-pray system with Holling Ⅲ type functional response. In this system, the competition among predator species and among prey species are simultaneously considered. By using the comparison theory and qualitative analysis, the sufficient conditions for uniform strong persistence are obtained.展开更多
In this paper, we introduce a new concept of land-surface state representation for southern South America, which is based on "functional" attributes of vegetation, and implement a new land-cover (Ecosystem Function...In this paper, we introduce a new concept of land-surface state representation for southern South America, which is based on "functional" attributes of vegetation, and implement a new land-cover (Ecosystem Functional Type, hereafter EFT) dataset in the Weather and Research Forecasting (WRF) model. We found that the EFT data enabled us to deal with functional attributes of vegetation and time-variant features more easily than the default land-cover data in the WRF. In order to explore the usefulness of the EFT data in simulations of surface and atmospheric variables, numerical simulations of the WRF model, using both the US Geological Survey (USGS) and the EFT data, were conducted over the La Plata Basin in South America for the austral spring of 1998 and compared with observations. Results showed that the model simulations were sensitive to the lower boundary conditions and that the use of the EFT data improved the climate simulation of 2-m temperature and precipitation, implying the need for this type of information to be included in numerical climate models.展开更多
In this study, the impulsive predator-prey dynamic systems on time scales calculus are studied. When the system has periodic solution is investigated, and three different conditions have been found, which are necessar...In this study, the impulsive predator-prey dynamic systems on time scales calculus are studied. When the system has periodic solution is investigated, and three different conditions have been found, which are necessary for the periodic solution of the predator-prey dynamic systems with Beddington-DeAngelis type functional response. For this study the main tools are time scales calculus and coincidence degree theory. Also the findings are beneficial for continuous case, discrete case and the unification of both these cases. Additionally, unification of continuous and discrete case is a good example for the modeling of the life cycle of insects.展开更多
The present work aims to determine the solution of trigonometric functional equation f with involution from group to field by using the properties of involution function, and the solution and Ulam-Hyers stability of t...The present work aims to determine the solution of trigonometric functional equation f with involution from group to field by using the properties of involution function, and the solution and Ulam-Hyers stability of the trigonometric functional equation are also discussed. Furthermore, this method generalizes the main theorem and gives the supplement in some reference.展开更多
Recently,the field of rural vitalization has received extensive research attention.However,only few studies have proposed an approach to rural vitalization from the coupling perspective of township construction and th...Recently,the field of rural vitalization has received extensive research attention.However,only few studies have proposed an approach to rural vitalization from the coupling perspective of township construction and the resource environment.Taking Jiangsu Province of China as the study area,we constructed index systems of township construction function types and resource environments.Based on 875 township study units in Jiangsu,we characterized the township construction function type and resource environment and analyzed the dynamic process of their coupling from 2005 to 2017.The results are as follows:1)the townships of planting and breeding types in Jiangsu were mainly distributed in northern and central Jiangsu;the townships of business travel,industry,and integrated types were mainly distributed in southern Jiangsu;and the townships of ecological type were irregularly distributed throughout Jiangsu.2)Resource environment factors and township construction function types in Jiangsu clustered based on their location with some overlap.3)Spatial variability in the degree of coupling level between township construction and the resource environment in Jiangsu was not apparent,and low coupling levels accounted for most of the study units.The sum of the number of medium and high coupling townships in southern,central,and northern Jiangsu was roughly equal,and the coupling level between township construction and the resource environment in southern Jiangsu evolved remained unchanged,whereas that in the central and northern Jiangsu became imbalanced.4)In Jiangsu,township construction was mainly constrained by water resources,and the constraint parameters gradually increase.Large variability in resource environment constraint was observed in northern,central,and southern Jiangsu for different township construction function types.Based on these findings,we proposed the implementation of targeted rural vitalization strategies.展开更多
Hanson and Mond have grven sets of necessary and sufficient conditions for optimality in constrained optimization by introducing classes of generalized functions, called type Ⅰ functions. Recently, Bector definded un...Hanson and Mond have grven sets of necessary and sufficient conditions for optimality in constrained optimization by introducing classes of generalized functions, called type Ⅰ functions. Recently, Bector definded univex functions, a new class of functions that unifies several concepts of generalized convexity. In this paper, additional conditions are attached to the Kuhn Tucker conditions giving a set of conditions which are both necessary and sufficient for optimality in constrained optimization, under appropriate constraint qualifications.展开更多
Bone morphogenetic proteins (BMPs) have multiple roles in skeletal development, homeostasis and regeneration. BMPs signal via type I and type II serine/threonine kinase receptors (BMPRI and BMPRII). In recent deca...Bone morphogenetic proteins (BMPs) have multiple roles in skeletal development, homeostasis and regeneration. BMPs signal via type I and type II serine/threonine kinase receptors (BMPRI and BMPRII). In recent decades, genetic studies in humans and mice have demonstrated that perturbations in BMP signaling via BMPRI resulted in various diseases in bone, cartilage, and muscles. In this review, we focus on all three types of BMPRI, which consist of activin-like kinase 2 (ALK2, also called type IA activin receptor), activin- llke kinase 3 (ALK3, also called BMPRIA), and activin-like kinase 6 (ALK6, also called BMPRIB). The research areas covered include the current progress regarding the roles of these receptors during myogenesis, chondrogenesis, and osteogenesis. Understanding the physiological and pathological functions of these receptors at the cellular and molecular levels will advance drug development and tissue regeneration for treating musculoskeletal diseases and bone defects in the future.展开更多
A class of Beddington-DeAngelis' type predator-prey dynamic system with prey and predator both having linear density restriction is considered. By using the qualitative methods of ODE, the existence and uniqueness of...A class of Beddington-DeAngelis' type predator-prey dynamic system with prey and predator both having linear density restriction is considered. By using the qualitative methods of ODE, the existence and uniqueness of positive equilibrium and its global asymptotic stability are analyzed. The direct criterions for local stability of positive equilibrium and existence of limit cycle are also established when inference parameter of predator is small.展开更多
Background:Litter traits critically affect litter decomposition from local to global scales.However,our understanding of the temporal dynamics of litter trait-decomposition linkages,especially their dependence on plan...Background:Litter traits critically affect litter decomposition from local to global scales.However,our understanding of the temporal dynamics of litter trait-decomposition linkages,especially their dependence on plant functional type remains limited.Methods:We decomposed the leaf litter of 203 tree species that belong to two different functional types(deciduous and evergreen)for 2 years in a subtropical forest in China.The Weibull residence model was used to describe the different stages of litter decomposition by calculating the time to 10%,25%and 50%mass loss(Weibull t_(1/10),t_(1/4),and t_(1/2)respectively)and litter mean residence time(Weibull MRT).The resulting model parameters were used to explore the control of litter traits(e.g.,N,P,condensed tannins and tensile strength)over leaf litter decomposition across different decomposition stages.Results:The litter traits we measured had lower explanatory power for the early stages(Weibull t_(1/10)and t_(1/4))than for the later stages(Weibull t_(1/2)and MRT)of decomposition.The relative importance of different types of litter traits in influencing decomposition changed dramatically during decomposition,with physical traits exerting predominant control for the stages of Weibull t_(1/10)and MRT and nutrient-related traits for the stages of Weibull t_(1/4),and t_(1/2).Moreover,we found that litter decomposition of the early three stages(Weibull t_(1/10),t_(1/4),and t_(1/2))of the two functional types was controlled by different types of litter traits;that is,the litter decomposition rates of deciduous species were predominately controlled by nutrient-related traits,while the litter decomposition rates of evergreen species were mainly controlled by carbon-related traits.Conclusions:This study suggests that litter trait-decomposition linkages vary with decomposition stages and are strongly mediated by plant functional type,highlighting the necessity to consider their temporal dynamics and plant functional types for improving predictions of litter decomposition.展开更多
In this paper, The integral characterizations of alpha-Bloch (little alpha-Bloch) axe given in terms of higher radial derivative, and their characterizations of Caxleson type measure are obtained.
Estimating the volume growth of forest ecosystems accurately is important for understanding carbon sequestration and achieving carbon neutrality goals.However,the key environmental factors affecting volume growth diff...Estimating the volume growth of forest ecosystems accurately is important for understanding carbon sequestration and achieving carbon neutrality goals.However,the key environmental factors affecting volume growth differ across various scales and plant functional types.This study was,therefore,conducted to estimate the volume growth of Larix and Quercus forests based on national-scale forestry inventory data in China and its influencing factors using random forest algorithms.The results showed that the model performances of volume growth in natural forests(R^(2)=0.65 for Larix and 0.66 for Quercus,respectively)were better than those in planted forests(R^(2)=0.44 for Larix and 0.40 for Quercus,respectively).In both natural and planted forests,the stand age showed a strong relative importance for volume growth(8.6%–66.2%),while the edaphic and climatic variables had a limited relative importance(<6.0%).The relationship between stand age and volume growth was unimodal in natural forests and linear increase in planted Quercus forests.And the specific locations(i.e.,altitude and aspect)of sampling plots exhibited high relative importance for volume growth in planted forests(4.1%–18.2%).Altitude positively affected volume growth in planted Larix forests but controlled volume growth negatively in planted Quercus forests.Similarly,the effects of other environmental factors on volume growth also differed in both stand origins(planted versus natural)and plant functional types(Larix versus Quercus).These results highlighted that the stand age was the most important predictor for volume growth and there were diverse effects of environmental factors on volume growth among stand origins and plant functional types.Our findings will provide a good framework for site-specific recommendations regarding the management practices necessary to maintain the volume growth in China's forest ecosystems.展开更多
Vegetation population dynamics play an essential role in shaping the structure and function of terrestrial ecosystems. However, large uncertainties remain in the parameterizations of population dynamics in current Dyn...Vegetation population dynamics play an essential role in shaping the structure and function of terrestrial ecosystems. However, large uncertainties remain in the parameterizations of population dynamics in current Dynamic Global Vegetation Models (DGVMs). In this study, the global distribution and probability density functions of tree population densities in the revised Community Land Model-Dynamic Global Vegetation Model (CLM-DGVM) were evaluated, and the impacts of population densities on ecosystem characteristics were investigated. The results showed that the model predicted unrealistically high population density with small individual size of tree PFTs (Plant Punetional Types) in boreal forests, as well as peripheral areas of tropical and temperate forests. Such biases then led to the underestimation of forest carbon storage and incorrect carbon allocation among plant leaves, stems and root pools, and hence predicted shorter time scales for the building/recovering of mature forests. These results imply that further improvements in the parameterizations of population dynamics in the model are needed in order for the model to correctly represent the response of ecosystems to climate change.展开更多
In this article, we prove the Hyers-Ulam-Rassias stability of the following Cauchy-Jensen functional inequality:‖f (x) + f (y) + 2f (z) + 2f (w)‖ ≤‖ 2f x + y2 + z + w ‖(0.1)This is applied to inv...In this article, we prove the Hyers-Ulam-Rassias stability of the following Cauchy-Jensen functional inequality:‖f (x) + f (y) + 2f (z) + 2f (w)‖ ≤‖ 2f x + y2 + z + w ‖(0.1)This is applied to investigate isomorphisms between C*-algebras, Lie C*-algebras and JC*-algebras, and derivations on C*-algebras, Lie C*-algebras and JC*-algebras, associated with the Cauchy-Jensen functional equation 2f (x + y/2 + z + w) = f(x) + f(y) + 2f(z) + 2f(w).展开更多
In this paper,a discrete Lotka-Volterra predator-prey model is proposed that considers mixed functional responses of Holling types I and III.The equilibrium points of the model are obtained,and their stability is test...In this paper,a discrete Lotka-Volterra predator-prey model is proposed that considers mixed functional responses of Holling types I and III.The equilibrium points of the model are obtained,and their stability is tested.The dynamical behavior of this model is studied according to the change of the control parameters.We find that the complex dynamical behavior extends from a stable state to chaotic attractors.Finally,the analytical results are clarified by some numerical simulations.展开更多
基金supported by the China Postdoctoral Science Foundation (No.2023M733712)the National Natural Science Foundation of China (No.31971491)。
文摘Tree mortality significantly influences forest structure and function,yet our understanding of its dynamic patterns among a range of tree sizes and among different plant functional types(PFTs)remains incomplete.This study analysed size-dependent tree mortality in a temperate forest,encompassing 46 tree species and 32,565 individuals across different PFTs(i.e.,evergreen conifer vs.deciduous broadleaf species,shade-tolerant vs.shade-intolerant species).By employing all-subset regression procedures and logistic generalized linear mixed-effects models,we identified distinct mortality patterns influenced by biotic and abiotic factors.Our results showed a stable mortality patte rn in eve rgreen conifer species,contrasted by a declining pattern in deciduous broadleaf and shadetolerant,as well as shade-intolerant species,across size classes.The contribution to tree mortality of evergreen conifer species shifted from abiotic to biotic factors with increasing size,while the mortality of deciduous broadleaf species was mainly influenced by biotic factors,such as initial diameter at breast height(DBH)and conspecific negative density.For shade-tolerant species,the mortality of small individuals was mainly determined by initial DBH and conspecific negative density dependence,whereas the mortality of large individuals was subjected to the combined effect of biotic(competition from neighbours)and abiotic factors(i.e.,convexity and pH).As for shade-intolerant species,competition from neighbours was found to be the main driver of tree mortality throughout their growth stages.Thus,these insights enhance our understanding of forest dynamics by revealing the size-dependent and PFT-specific tree mortality patterns,which may inform strategies for maintaining forest diversity and resilience in temperate forest ecosystems.
基金supported by the sub topics of National Key Technology R&D Program (Grant No. 2015BAC05B05-01)
文摘The ecological concept of Plant Functional Types(PFTs), which refers to the assemblage of plants with certain functional traits, has been introduced for the study of plant responses to the environment change and human disturbance. Taking the alpine meadow community in the Zoigê Plateau as a study case, this paper classified PFTs in terms of plant nutrition traits. The sequential results are as follows.(1) The main herbages in the Zoigê Plateau included 16 species in 5 families. Among the five families, Cyperaceae vegetation accounted for 81.37%of herbage area in total, while the remaining 4families occupied less than 20%. As for the species,Kobresia setchwanensis Hand.-Maizz. was dominant,accounting for 48.74% of the total area; while the remaining 51.26% was comprised of Polygonum viviparum L., Anaphalis fiavescens Hand.-Mazz.,Stipa aliena Keng and other species.(2) By using the Principal Component Analysis(PCA), the assessment of herbages nutrition was carried out based on the comprehensive multi-index evaluation model.Polygonum viviparum L. had the highest nutritional value score(1.43), and Stipa aliena Keng had the lowest(-1.40). Nutritional value of herbage species had a significantly positive correlation with altitude(P&lt;0.01) in the Zoigê Plateau.(3) Based on the nutritional values, herbages in the Zoigê Plateau could be grouped into 3 nutrition PFTs(high, medium and low) by using the Natural Breaks(Jenks) method.
基金supported by the National Key Research and Development Program (2010CB833504)the CAS Strategic Priority Research Program (XDA05050602)
文摘We conducted a systematic census of leaf N for 102 plant species at 112 research sites along the North-South Transect of Eastern China (NSTEC) following the same protocol, to explore how plant functional types (PFTs) and environmental factors affect the spatial pattern of leaf N. The results showed that mean leaf N was 17.7 mg g^-1 for all plant species. The highest and lowest leaf N were found in deciduous-broadleaf and evergreen-conifer species, respectively, and the ranking of leaf N from high to low was: deciduous 〉 evergreen species, broadleaf 〉 coniferous species, shrubs ≈ trees 〉 grasses. For all data pooled, leaf N showed a convex quadratic response to mean annual temperature (MAT), and a negative linear relationship with mean annual precipitation (MAP), but a positive linear relationship with soil nitrogen concentration (Nsoil). These patterns were similar when PFTs were examined individually. Importantly, PFTs, climate and Nsoil, jointly explained 46.1% of the spatial variation in leaf N, of which the independent explanatory powers of PFTs, climate and Nsoil, were 15.6%, 2.3% and 4.7%, respectively. Our findings suggest that leaf N is regulated by climate and Nsoil, mainly via plant species composition. The wide scale empirical relationships developed here are useful for understanding and modeling of the effects of PFTs and environmental factors on leaf N.
基金supported by National Natural Science Foundation of China (Grant Nos. 30671490, and 31070382)
文摘The identification of easily measured plant functional types (PFTs) that consistently predict grazing response would be a major advance.The responses to grazing of individual traits and PFTs were analyzed along a grazing gradient in an alpine shrub meadow on the Qinghai-Tibet Plateau,China.Three response types were identified;grazing increaser (GI),grazing decreaser (GD),and neutral (NE) for both traits and PFTs.Seven traits were measured:plant height,economic group,cotyledon type,plant inclination,growth form,life cycle,and vegetative structure.The first five were significantly affected by grazing.Ordinal regressions for grazing response of the seven traits showed that the best single predictors of response were growth form (including the attributes "Scattered","Bunched" or "Closely Bunched"),and plant inclination ("Rosette","Prostrate",or "Erect"),followed by economic group ("Shrub","Grass","Sedge","Legume","Forb",or "Harmful") and plant height ("Tall","Medium",or "Small").Within the four optimal traits,the summed dominance ratio (SDR) of small plants,forbs,rosette and bunched plants,invariably increased,while that of tall plants,shrubs,grasses,and erect plants decreased,when grazing pressure was enhanced.Canonical correspondence analysis (CCA) identified eleven explanatory PFTs based on 195 defined PFTs,by combining the different attributes of the four optimal traits.Among explanatory PFTs,the most valuable in predicting the community response to grazing were Tall×Shrub×Erect×Scattered and Small×Forb×Rosette,as these have the closest connections with grazing disturbance and include fewer species.Species richness,diversity,and community evenness,did not differ among grazing treatments because turnover occurred in component species and their relative abundances along the grazing gradient.We have demonstrated that a minimum set of PFTs resulting from optimal individual traits can provide consistent prediction of community responses to grazing in this region.This approach provides a more accurate indicator of change within a changing environment than do univariate measures of species diversity.We hope to provide a link between management practices and vegetation structure,forming a basis for future,large scale,plant trait comparisons.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA26040202)the National Natural Science Foundation of China(41173083)+1 种基金SL was also supported by the National Natural Science Foundation of China(32001165)the Natural Science Foundation of Sichuan Province(2022NSFSC1753)。
文摘Potassium(K),calcium(Ca),and magnesium(Mg)are essential elements with important physiological functions in plants.Previous studies showed that leaf K,Ca,and Mg concentrations generally increase with increasing latitudes.However,recent meta-analyses suggested the possibility of a unimodal pattern in the concentrations of these elements along latitudinal gradients.The authenticity of this unimodal latitudinal pattern,however,requires validation through large-scale field experimental data,and exploration of the underlying mechanisms if the pattern is confirmed.Here,we collected leaves of common species of woody plants from 19 montane forests in the north-south transect of eastern China,including 322 species from 160 genera,67 families;and then determined leaf K,Ca,and Mg concentrations to explore their latitudinal patterns and driving mechanisms.Our results support unimodal latitudinal patterns for all three elements in woody plants across eastern China,with peak values at latitude 36.5±1.0°N.The shift of plant-functional-type compositions from evergreen broadleaves to deciduous broadleaves and to conifers along this latitudinal span was the key factor contributing to these patterns.Climatic factors,mainly temperature,and to a lesser extent solar radiation and precipitation,were the main environmental drivers.These factors,by altering the composition of plant communities and regulating plant physiological activities,influence the latitudinal patterns of plant nutrient concentrations.Our findings also suggest that high leaf K,Ca,and Mg concentrations may represent an adaptive strategy for plants to withstand water stress,which might be used to predict plant nutrient responses to climate changes at large scales,and broaden the understanding of biogeochemical cycling of K,Ca,and Mg.
基金Funding for this study was provided by the U.S. National Science Foundation Hydrological Science grant 1521238the U.S. Department of Energy's Office of Science Office of Biological and Environmental Research,Terrestrial Ecosystem Sciences Program Award No. DE-SC0007041Ameriflux Management Project Core Site Agreement No. 7096915
文摘Land surface models and dynamic global vegetation models typically represent vegetation through coarse plant functional type groupings based on leaf form, phenology, and bioclimatic limits. Although these groupings were both feasible and functional for early model generations, in light of the pace at which our knowledge of functional ecology, ecosystem demographics, and vegetation-climate feedbacks has advanced and the ever growing demand for enhanced model performance, these groupings have become antiquated and are identified as a key source of model uncertainty. The newest wave of model development is centered on shifting the vegetation paradigm away from plant functional types(PFTs)and towards flexible trait-based representations. These models seek to improve errors in ecosystem fluxes that result from information loss due to over-aggregation of dissimilar species into the same functional class. We advocate the importance of the inclusion of plant hydraulic trait representation within the new paradigm through a framework of the whole-plant hydraulic strategy. Plant hydraulic strategy is known to play a critical role in the regulation of stomatal conductance and thus transpiration and latent heat flux. It is typical that coexisting plants employ opposing hydraulic strategies, and therefore have disparate patterns of water acquisition and use. Hydraulic traits are deterministic of drought resilience, response to disturbance, and other demographic processes. The addition of plant hydraulic properties in models may not only improve the simulation of carbon and water fluxes but also vegetation population distributions.
基金Supported by the National Natural Science Foundation of China (10701020)
文摘The main purpose of this paper is to study the persistence of the general multispecies competition predator-pray system with Holling Ⅲ type functional response. In this system, the competition among predator species and among prey species are simultaneously considered. By using the comparison theory and qualitative analysis, the sufficient conditions for uniform strong persistence are obtained.
基金supported by the Korea Meteorological Administration Research and Development Program under Grant CATER 2012-3030supported by NASA Grant NNX08AE50G+1 种基金NOAA Grant NA09OAR4310189the Inter American Institute for Global Change Research (IAI) through the Cooperative Research Network (CRN)-2094
文摘In this paper, we introduce a new concept of land-surface state representation for southern South America, which is based on "functional" attributes of vegetation, and implement a new land-cover (Ecosystem Functional Type, hereafter EFT) dataset in the Weather and Research Forecasting (WRF) model. We found that the EFT data enabled us to deal with functional attributes of vegetation and time-variant features more easily than the default land-cover data in the WRF. In order to explore the usefulness of the EFT data in simulations of surface and atmospheric variables, numerical simulations of the WRF model, using both the US Geological Survey (USGS) and the EFT data, were conducted over the La Plata Basin in South America for the austral spring of 1998 and compared with observations. Results showed that the model simulations were sensitive to the lower boundary conditions and that the use of the EFT data improved the climate simulation of 2-m temperature and precipitation, implying the need for this type of information to be included in numerical climate models.
文摘In this study, the impulsive predator-prey dynamic systems on time scales calculus are studied. When the system has periodic solution is investigated, and three different conditions have been found, which are necessary for the periodic solution of the predator-prey dynamic systems with Beddington-DeAngelis type functional response. For this study the main tools are time scales calculus and coincidence degree theory. Also the findings are beneficial for continuous case, discrete case and the unification of both these cases. Additionally, unification of continuous and discrete case is a good example for the modeling of the life cycle of insects.
文摘The present work aims to determine the solution of trigonometric functional equation f with involution from group to field by using the properties of involution function, and the solution and Ulam-Hyers stability of the trigonometric functional equation are also discussed. Furthermore, this method generalizes the main theorem and gives the supplement in some reference.
基金Under the auspices of National Key R&D Program of China(No.2018YFD1100100)。
文摘Recently,the field of rural vitalization has received extensive research attention.However,only few studies have proposed an approach to rural vitalization from the coupling perspective of township construction and the resource environment.Taking Jiangsu Province of China as the study area,we constructed index systems of township construction function types and resource environments.Based on 875 township study units in Jiangsu,we characterized the township construction function type and resource environment and analyzed the dynamic process of their coupling from 2005 to 2017.The results are as follows:1)the townships of planting and breeding types in Jiangsu were mainly distributed in northern and central Jiangsu;the townships of business travel,industry,and integrated types were mainly distributed in southern Jiangsu;and the townships of ecological type were irregularly distributed throughout Jiangsu.2)Resource environment factors and township construction function types in Jiangsu clustered based on their location with some overlap.3)Spatial variability in the degree of coupling level between township construction and the resource environment in Jiangsu was not apparent,and low coupling levels accounted for most of the study units.The sum of the number of medium and high coupling townships in southern,central,and northern Jiangsu was roughly equal,and the coupling level between township construction and the resource environment in southern Jiangsu evolved remained unchanged,whereas that in the central and northern Jiangsu became imbalanced.4)In Jiangsu,township construction was mainly constrained by water resources,and the constraint parameters gradually increase.Large variability in resource environment constraint was observed in northern,central,and southern Jiangsu for different township construction function types.Based on these findings,we proposed the implementation of targeted rural vitalization strategies.
文摘Hanson and Mond have grven sets of necessary and sufficient conditions for optimality in constrained optimization by introducing classes of generalized functions, called type Ⅰ functions. Recently, Bector definded univex functions, a new class of functions that unifies several concepts of generalized convexity. In this paper, additional conditions are attached to the Kuhn Tucker conditions giving a set of conditions which are both necessary and sufficient for optimality in constrained optimization, under appropriate constraint qualifications.
基金supported by the National Natural Science Foundation of China (No. 81500814) (SXL)the National Natural Science Foundation of China (No. 81430012 and No. 81170939) (XJ)+2 种基金the National Basic Research Program of China (973 Program, 2012CB933604)the National Science Fund for Distinguished Young Scholars of China (No. 81225006)the National Institutes of Health Grants DE025014 and R56DE022789 (JQF)
文摘Bone morphogenetic proteins (BMPs) have multiple roles in skeletal development, homeostasis and regeneration. BMPs signal via type I and type II serine/threonine kinase receptors (BMPRI and BMPRII). In recent decades, genetic studies in humans and mice have demonstrated that perturbations in BMP signaling via BMPRI resulted in various diseases in bone, cartilage, and muscles. In this review, we focus on all three types of BMPRI, which consist of activin-like kinase 2 (ALK2, also called type IA activin receptor), activin- llke kinase 3 (ALK3, also called BMPRIA), and activin-like kinase 6 (ALK6, also called BMPRIB). The research areas covered include the current progress regarding the roles of these receptors during myogenesis, chondrogenesis, and osteogenesis. Understanding the physiological and pathological functions of these receptors at the cellular and molecular levels will advance drug development and tissue regeneration for treating musculoskeletal diseases and bone defects in the future.
基金Supported by the NNSF of China( 10171044) the Foundation for University Key Teachers of the Ministry of Education of China .
文摘A class of Beddington-DeAngelis' type predator-prey dynamic system with prey and predator both having linear density restriction is considered. By using the qualitative methods of ODE, the existence and uniqueness of positive equilibrium and its global asymptotic stability are analyzed. The direct criterions for local stability of positive equilibrium and existence of limit cycle are also established when inference parameter of predator is small.
基金supported by the National Natural Science Foundation of China(Grant Nos.31830015 and 32171752)。
文摘Background:Litter traits critically affect litter decomposition from local to global scales.However,our understanding of the temporal dynamics of litter trait-decomposition linkages,especially their dependence on plant functional type remains limited.Methods:We decomposed the leaf litter of 203 tree species that belong to two different functional types(deciduous and evergreen)for 2 years in a subtropical forest in China.The Weibull residence model was used to describe the different stages of litter decomposition by calculating the time to 10%,25%and 50%mass loss(Weibull t_(1/10),t_(1/4),and t_(1/2)respectively)and litter mean residence time(Weibull MRT).The resulting model parameters were used to explore the control of litter traits(e.g.,N,P,condensed tannins and tensile strength)over leaf litter decomposition across different decomposition stages.Results:The litter traits we measured had lower explanatory power for the early stages(Weibull t_(1/10)and t_(1/4))than for the later stages(Weibull t_(1/2)and MRT)of decomposition.The relative importance of different types of litter traits in influencing decomposition changed dramatically during decomposition,with physical traits exerting predominant control for the stages of Weibull t_(1/10)and MRT and nutrient-related traits for the stages of Weibull t_(1/4),and t_(1/2).Moreover,we found that litter decomposition of the early three stages(Weibull t_(1/10),t_(1/4),and t_(1/2))of the two functional types was controlled by different types of litter traits;that is,the litter decomposition rates of deciduous species were predominately controlled by nutrient-related traits,while the litter decomposition rates of evergreen species were mainly controlled by carbon-related traits.Conclusions:This study suggests that litter trait-decomposition linkages vary with decomposition stages and are strongly mediated by plant functional type,highlighting the necessity to consider their temporal dynamics and plant functional types for improving predictions of litter decomposition.
基金The research is supported by NNSF of China(19771082)
文摘In this paper, The integral characterizations of alpha-Bloch (little alpha-Bloch) axe given in terms of higher radial derivative, and their characterizations of Caxleson type measure are obtained.
基金supported by the Major Program of the National Natural Science Foundation of China(No.32192434)the Fundamental Research Funds of Chinese Academy of Forestry(No.CAFYBB2019ZD001)the National Key Research and Development Program of China(2016YFD060020602).
文摘Estimating the volume growth of forest ecosystems accurately is important for understanding carbon sequestration and achieving carbon neutrality goals.However,the key environmental factors affecting volume growth differ across various scales and plant functional types.This study was,therefore,conducted to estimate the volume growth of Larix and Quercus forests based on national-scale forestry inventory data in China and its influencing factors using random forest algorithms.The results showed that the model performances of volume growth in natural forests(R^(2)=0.65 for Larix and 0.66 for Quercus,respectively)were better than those in planted forests(R^(2)=0.44 for Larix and 0.40 for Quercus,respectively).In both natural and planted forests,the stand age showed a strong relative importance for volume growth(8.6%–66.2%),while the edaphic and climatic variables had a limited relative importance(<6.0%).The relationship between stand age and volume growth was unimodal in natural forests and linear increase in planted Quercus forests.And the specific locations(i.e.,altitude and aspect)of sampling plots exhibited high relative importance for volume growth in planted forests(4.1%–18.2%).Altitude positively affected volume growth in planted Larix forests but controlled volume growth negatively in planted Quercus forests.Similarly,the effects of other environmental factors on volume growth also differed in both stand origins(planted versus natural)and plant functional types(Larix versus Quercus).These results highlighted that the stand age was the most important predictor for volume growth and there were diverse effects of environmental factors on volume growth among stand origins and plant functional types.Our findings will provide a good framework for site-specific recommendations regarding the management practices necessary to maintain the volume growth in China's forest ecosystems.
基金supported by the Chinese Academy of Sciences (Strategic Priority Re-search ProgramGrant No. XDA05110103)the StateKey Project for Basic Research Program of China (alsocalled 973 Program,Grant No. 2010CB951801)
文摘Vegetation population dynamics play an essential role in shaping the structure and function of terrestrial ecosystems. However, large uncertainties remain in the parameterizations of population dynamics in current Dynamic Global Vegetation Models (DGVMs). In this study, the global distribution and probability density functions of tree population densities in the revised Community Land Model-Dynamic Global Vegetation Model (CLM-DGVM) were evaluated, and the impacts of population densities on ecosystem characteristics were investigated. The results showed that the model predicted unrealistically high population density with small individual size of tree PFTs (Plant Punetional Types) in boreal forests, as well as peripheral areas of tropical and temperate forests. Such biases then led to the underestimation of forest carbon storage and incorrect carbon allocation among plant leaves, stems and root pools, and hence predicted shorter time scales for the building/recovering of mature forests. These results imply that further improvements in the parameterizations of population dynamics in the model are needed in order for the model to correctly represent the response of ecosystems to climate change.
基金supported by the Daejin University grants in 2010
文摘In this article, we prove the Hyers-Ulam-Rassias stability of the following Cauchy-Jensen functional inequality:‖f (x) + f (y) + 2f (z) + 2f (w)‖ ≤‖ 2f x + y2 + z + w ‖(0.1)This is applied to investigate isomorphisms between C*-algebras, Lie C*-algebras and JC*-algebras, and derivations on C*-algebras, Lie C*-algebras and JC*-algebras, associated with the Cauchy-Jensen functional equation 2f (x + y/2 + z + w) = f(x) + f(y) + 2f(z) + 2f(w).
基金the Deanship of Scientific Research at King Khalid University for funding this work through the Big Research Group Project under grant number(R.G.P2/16/40).
文摘In this paper,a discrete Lotka-Volterra predator-prey model is proposed that considers mixed functional responses of Holling types I and III.The equilibrium points of the model are obtained,and their stability is tested.The dynamical behavior of this model is studied according to the change of the control parameters.We find that the complex dynamical behavior extends from a stable state to chaotic attractors.Finally,the analytical results are clarified by some numerical simulations.