期刊文献+
共找到108篇文章
< 1 2 6 >
每页显示 20 50 100
Functionally graded structure of a nitride-strengthened Mg_(2)Si-based hybrid composite
1
作者 Jeongho Yang Woongbeom Heogh +15 位作者 Hogi Ju Sukhyun Kang Tae-Sik Jang Hyun-Do Jung Mohammad Jahazi Seung Chul Han Seong Je Park Hyoung Seop Kim Susmita Bose Amit Bandyopadhyay Martin Byung-Guk Jun Young Won Kim Dae-kyeom Kim Rigoberto CAdvincula Clodualdo Aranas Jr Sang Hoon Kim 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1239-1256,共18页
The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in orde... The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in order to provide ultimate wear resistance based on the laser-irradiation-induced inclusion of N_(2) gas during laser powder bed fusion.This is substantialized based on both the thermal diffusion-and chemical reactionbased metallurgy of the Mg_(2)Si–SiC/nitride hybrid composite.This study also proposes a functional platform for systematically modulating a functionally graded structure and modeling build-direction-dependent architectonics during additive manufacturing.This strategy enables the development of a compositional gradient from the center to the edge of each melt pool of the Mg_(2)Si–SiC/nitride hybrid composite.Consequently,the coefficient of friction of the hybrid composite exhibits a 309.3%decrease to–1.67 compared to–0.54 for the conventional nonreinforced Mg_(2)Si structure,while the tensile strength exhibits a 171.3%increase to 831.5 MPa compared to 485.3 MPa for the conventional structure.This outstanding mechanical behavior is due to the(1)the complementary and synergistic reinforcement effects of the SiC and nitride compounds,each of which possesses an intrinsically high hardness,and(2)the strong adhesion of these compounds to the Mg_(2)Si matrix despite their small sizes and low concentrations. 展开更多
关键词 Laser powder bed fusion Mg_(2)Si-SiC/nitride hybrid composite Both the thermal diffusion-and chemical reaction-based metallurgy functionally graded structure compositional gradient Wear resistance.
下载PDF
Torsional postbuckling characteristics of functionally graded graphene enhanced laminated truncated conical shell with temperature dependent material properties
2
作者 Hamad M.Hasan Saad S.Alkhfaji Sattar A.Mutlag 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第4期272-279,共8页
Buckling and postbuckling characteristics of laminated graphene-enhanced composite(GEC)truncated conical shells exposed to torsion under temperature conditions using finite element method(FEM)simulation are presented ... Buckling and postbuckling characteristics of laminated graphene-enhanced composite(GEC)truncated conical shells exposed to torsion under temperature conditions using finite element method(FEM)simulation are presented in this study.In the thickness direction,the GEC layers of the conical shell are ordered in a piece-wise arrangement of functionally graded(FG)distribution,with each layer containing a variable volume fraction for graphene reinforcement.To calculate the properties of temperaturedependent material of GEC layers,the extended Halpin-Tsai micromechanical framework is used.The FEM model is verified via comparing the current results obtained with the theoretical estimates for homogeneous,laminated cylindrical,and conical shells,the FEM model is validated.The computational results show that a piece-wise FG graphene volume fraction distribution can improve the torque of critical buckling and torsional postbuckling strength.Also,the geometric parameters have a critical impact on the stability of the conical shell.However,a temperature rise can reduce the crucial torsional buckling torque as well as the GEC laminated truncated conical shell’s postbuckling strength. 展开更多
关键词 Torsional postbuckling Graphene enhanced composite functionally graded graphene Finite element method Conical shell
下载PDF
Nonlinear vibration of functionally graded graphene platelet-reinforced composite truncated conical shell using first-order shear deformation theory 被引量:6
3
作者 Shaowu YANG Yuxin HAO +2 位作者 Wei ZHANG Li YANG Lingtao LIU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第7期981-998,共18页
In this study,the first-order shear deformation theory(FSDT)is used to establish a nonlinear dynamic model for a conical shell truncated by a functionally graded graphene platelet-reinforced composite(FG-GPLRC).The vi... In this study,the first-order shear deformation theory(FSDT)is used to establish a nonlinear dynamic model for a conical shell truncated by a functionally graded graphene platelet-reinforced composite(FG-GPLRC).The vibration analyses of the FG-GPLRC truncated conical shell are presented.Considering the graphene platelets(GPLs)of the FG-GPLRC truncated conical shell with three different distribution patterns,the modified Halpin-Tsai model is used to calculate the effective Young’s modulus.Hamilton’s principle,the FSDT,and the von-Karman type nonlinear geometric relationships are used to derive a system of partial differential governing equations of the FG-GPLRC truncated conical shell.The Galerkin method is used to obtain the ordinary differential equations of the truncated conical shell.Then,the analytical nonlinear frequencies of the FG-GPLRC truncated conical shell are solved by the harmonic balance method.The effects of the weight fraction and distribution pattern of the GPLs,the ratio of the length to the radius as well as the ratio of the radius to the thickness of the FG-GPLRC truncated conical shell on the nonlinear natural frequency characteristics are discussed.This study culminates in the discovery of the periodic motion and chaotic motion of the FG-GPLRC truncated conical shell. 展开更多
关键词 nonlinear free vibration harmonic balance method functionally graded graphene platelet-reinforced composite(FG-GPLRC) truncated conical shell chaos
下载PDF
Nonlinear stability of advanced sandwich cylindrical shells comprising porous functionally graded material and carbon nanotube reinforced composite layers under elevated temperature 被引量:1
4
作者 H.V.TUNG L.T.N.TRANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第9期1327-1348,共22页
The nonlinear stability of sandwich cylindrical shells comprising porous functionally graded material(FGM) and carbon nanotube reinforced composite(CNTRC)layers subjected to uniform temperature rise is investigated. T... The nonlinear stability of sandwich cylindrical shells comprising porous functionally graded material(FGM) and carbon nanotube reinforced composite(CNTRC)layers subjected to uniform temperature rise is investigated. Two sandwich models corresponding to CNTRC and FGM face sheets are proposed. Carbon nanotubes(CNTs) in the CNTRC layer are embedded into a matrix according to functionally graded distributions. The effects of porosity in the FGM and the temperature dependence of properties of all constituent materials are considered. The effective properties of the porous FGM and CNTRC are determined by using the modified and extended versions of a linear mixture rule, respectively. The basic equations governing the stability problem of thin sandwich cylindrical shells are established within the framework of the Donnell shell theory including the von K’arm’an-Donnell nonlinearity. These equations are solved by using the multi-term analytical solutions and the Galerkin method for simply supported shells.The critical buckling temperatures and postbuckling paths are determined through an iteration procedure. The study reveals that the sandwich shell model with a CNTRC core layer and relatively thin porous FGM face sheets can have the best capacity of thermal load carrying. In addition, unlike the cases of mechanical loads, porosities have beneficial effects on the nonlinear stability of sandwich shells under the thermal load. It is suggested that an appropriate combination of advantages of FGM and CNTRC can result in optimal efficiency for advanced sandwich structures. 展开更多
关键词 carbon nanotube reinforced composite(CNTRC) porous functionally graded material(FGM) thermal instability cylindrical shell advanced sandwich model
下载PDF
The effect of initial geometric imperfection on the nonlinear resonance of functionally graded carbon nanotube-reinforced composite rectangular plates
5
作者 R.GHOLAMI R.ANSARI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第9期1219-1238,共20页
The purpose of the present study is to examine the impact of initial geometric imperfection on the nonlinear dynamical characteristics of functionally graded carbon nanotube-reinforced composite(FG-CNTRC) rectangular ... The purpose of the present study is to examine the impact of initial geometric imperfection on the nonlinear dynamical characteristics of functionally graded carbon nanotube-reinforced composite(FG-CNTRC) rectangular plates under a harmonic excitation transverse load. The considered plate is assumed to be made of matrix and single-walled carbon nanotubes(SWCNTs). The rule of mixture is employed to calculate the effective material properties of the plate. Within the framework of the parabolic shear deformation plate theory with taking the influence of transverse shear deformation and rotary inertia into account, Hamilton’s principle is utilized to derive the geometrically nonlinear mathematical formulation including the governing equations and corresponding boundary conditions of initially imperfect FG-CNTRC plates. Afterwards, with the aid of an efficient multistep numerical solution methodology, the frequency-amplitude and forcing-amplitude curves of initially imperfect FG-CNTRC rectangular plates with various edge conditions are provided, demonstrating the influence of initial imperfection,geometrical parameters, and edge conditions. It is displayed that an increase in the initial geometric imperfection intensifies the softening-type behavior of system, while no softening behavior can be found in the frequency-amplitude curve of a perfect plate. 展开更多
关键词 nonlinear dynamical characteristics imperfect functionally graded carbon nanotube-reinforced composite(FG-CNTRC) rectangular plate geometric imperfection sensitivity
下载PDF
Vibration characteristics of piezoelectric functionally graded carbon nanotube-reinforced composite doubly-curved shells
6
作者 V.V.THAM H.Q.TRANT T.M.TU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第6期819-840,共22页
This paper presents an analytical solution for the free vibration behavior of functionally graded carbon nanotube-reinforced composite(FG-CNTRC) doubly curved shallow shells with integrated piezoelectric layers. Here,... This paper presents an analytical solution for the free vibration behavior of functionally graded carbon nanotube-reinforced composite(FG-CNTRC) doubly curved shallow shells with integrated piezoelectric layers. Here, the linear distribution of electric potential across the thickness of the piezoelectric layer and five different types of carbon nanotube(CNT) distributions through the thickness direction are considered. Based on the four-variable shear deformation refined shell theory, governing equations are obtained by applying Hamilton's principle. Navier's solution for the shell panels with the simply supported boundary condition at all four edges is derived. Several numerical examples validate the accuracy of the presented solution. New parametric studies regarding the effects of different material properties, shell geometric parameters, and electrical boundary conditions on the free vibration responses of the hybrid panels are investigated and discussed in detail. 展开更多
关键词 free vibration four-variable shear deformation refined theory functionally graded carbon nanotube-reinforced composite(FG-CNTRC) piezoelectric material
下载PDF
Functionally graded Al_2O_3-ZrO_2 composite prepared by centrifugal slip casting and its mechanical properties
7
作者 HAYAKAWA Motozo HARA Yasuyuki +1 位作者 LI Xiao-dong ONDA Tetsuhiko 《材料与冶金学报》 CAS 2006年第4期296-299,共4页
Compositionally graded composite of alumina-20%zirconia (volume fraction) was fabricated by using centrifugal casting incorporated with relatively thin slip. An EPMA analysis exhibited a nearly linear variation of the... Compositionally graded composite of alumina-20%zirconia (volume fraction) was fabricated by using centrifugal casting incorporated with relatively thin slip. An EPMA analysis exhibited a nearly linear variation of the alumina/zirconia ratio along the centrifugal direction; zirconia tended to accumulate in the bottom section, while alumina in the top section. Such a graded structure exhibited a considerably higher flexural strength when the alumina rich surface was subjected to a tensile stress than compositionally uniform composite of the same average composition. Fracture toughness measurement across the specimen thickness by indentation method revealed that the crack lengths along the vertical and horizontal directions were different. The anisotropy of the fracture toughness was accounted for by the variation of the residual stress across the specimen thickness. 展开更多
关键词 AL2O3-ZRO2 复合材料 离心滑动铸件 弯曲强度
下载PDF
Fabrication and Microstructure of W/Cu Functionally Graded Material 被引量:2
8
作者 Yunhan Ling, Jiangtao Li, Zhangjian Zhou, Changchun Ge Laboratory of Special Ceramics & Powder Metallurgy, University of Science and Technology Beijing, Beijing 100083, China 《Journal of University of Science and Technology Beijing》 CSCD 2001年第3期198-202,共5页
W/Cu functionally gradient material (FGM) has excellent mechanical properties since it can effectively relax interlayer thermal stresses caused by the mismatch between their thermal expansion coefficients. W/Cu FGM co... W/Cu functionally gradient material (FGM) has excellent mechanical properties since it can effectively relax interlayer thermal stresses caused by the mismatch between their thermal expansion coefficients. W/Cu FGM combines the advantages of tungsten such as high melting point and service strength, with heat conductivity and plasticity of copper at room temperature. Thus it demonstrates satisfactory heat corrosion and thermal shock resistance and will be a promising candidate as divertor component in thermonuclear device. Owing to the dramatic difference of melting point between tungsten and copper, conventional processes meet great difficulties in fabricating this kind of FGMs. A new approach termed graded sintering under ultra-high pressure (GSUHP) is proposed, with which a near 96% relative density of W/Cu FGM that contains a full distribution spectrum (0-100%W) has been successfully fabricated. Suitable amount of transition metals (such as nickel, zirconium, vanadium) is employed as additives to activate tungsten's sintering, enhance phase wettability and bonding strength between W and Cu. Densification effects of different layer of FGM were investigated. Microstructure morphology and interface elements distribution were observed and analyzed. The thermal shock performance of W/Cu FGM was also preliminarily tested. 展开更多
关键词 TUNGSTEN COPPER SINTERING functionally graded material compositE
下载PDF
Isogeometric nonlocal strain gradient quasi-three-dimensional plate model for thermal postbuckling of porous functionally graded microplates with central cutout with different shapes 被引量:2
9
作者 Rui SONG S.SAHMANI B.SAFAEI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第6期771-786,共16页
This study presents the size-dependent nonlinear thermal postbuckling characteristics of a porous functionally graded material(PFGM) microplate with a central cutout with various shapes using isogeometric numerical te... This study presents the size-dependent nonlinear thermal postbuckling characteristics of a porous functionally graded material(PFGM) microplate with a central cutout with various shapes using isogeometric numerical technique incorporating nonuniform rational B-splines. To construct the proposed non-classical plate model, the nonlocal strain gradient continuum elasticity is adopted on the basis of a hybrid quasithree-dimensional(3D) plate theory under through-thickness deformation conditions by only four variables. By taking a refined power-law function into account in conjunction with the Touloukian scheme, the temperature-porosity-dependent material properties are extracted. With the aid of the assembled isogeometric-based finite element formulations,nonlocal strain gradient thermal postbuckling curves are acquired for various boundary conditions as well as geometrical and material parameters. It is portrayed that for both size dependency types, by going deeper in the thermal postbuckling domain, gaps among equilibrium curves associated with various small scale parameter values get lower, which indicates that the pronounce of size effects reduces by going deeper in the thermal postbuckling regime. Moreover, we observe that the central cutout effect on the temperature rise associated with the thermal postbuckling behavior in the presence of the effect of strain gradient size and absence of nonlocality is stronger compared with the case including nonlocality in absence of the strain gradient small scale effect. 展开更多
关键词 porosity functionally graded(FG)composite isogeometric approach quasi-three-dimensional(3D)plate theory nonlocal strain gradient elasticity
下载PDF
Nonlocal thermal buckling and postbuckling of functionally graded graphene nanoplatelet reinforced piezoelectric micro-plate 被引量:1
10
作者 Shuai WANG Jiajia MAO +1 位作者 Wei ZHANG Haoming LU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第3期341-354,共14页
This paper analyzes the nonlocal thermal buckling and postbuckling behaviors of a multi-layered graphene nanoplatelet(GPL)reinforced piezoelectric micro-plate.The GPLs are supposed to disperse as a gradient pattern in... This paper analyzes the nonlocal thermal buckling and postbuckling behaviors of a multi-layered graphene nanoplatelet(GPL)reinforced piezoelectric micro-plate.The GPLs are supposed to disperse as a gradient pattern in the composite micro-plate along its thickness.The effective material properties are calculated by the Halpin-Tsai parallel model and mixture rule for the functionally graded GPL reinforced piezoelectric(FG-GRP)micro-plate.Governing equations for the nonlocal thermal buckling and postbuckling behaviors of the FG-GRP micro-plate are obtained by the first-order shear deformation theory,the von Kármán nonlinear theory,and the minimum potential energy principle.The differential quadrature(DQ)method and iterative method are introduced to numerically analyze the effects of the external electric voltage,the distribution pattern and characteristic of GPLs,and the nonlocal parameter on the critical buckling behaviors and postbuckling equilibrium path of the FG-GRP micro-plate in thermal environment. 展开更多
关键词 graphene reinforced composite functionally graded(FG)plate thermal buckling thermal postbuckling nonlocal theory small-scale effect
下载PDF
Effects of an attached functionally graded layer on the electromechanical behaviors of piezoelectric semiconductor fibers 被引量:1
11
作者 Kai FANG Nian LI +3 位作者 Peng LI Zhenghua QIAN V.KOLESOV I.KUZNETSOVA 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第9期1367-1380,共14页
In this paper,we propose a specific two-layer model consisting of a functionally graded(FG)layer and a piezoelectric semiconductor(PS)layer.Based on the macroscopic theory of PS materials,the effects brought about by ... In this paper,we propose a specific two-layer model consisting of a functionally graded(FG)layer and a piezoelectric semiconductor(PS)layer.Based on the macroscopic theory of PS materials,the effects brought about by the attached FG layer on the piezotronic behaviors of homogeneous n-type PS fibers and PN junctions are investigated.The semi-analytical solutions of the electromechanical fields are obtained by expanding the displacement and carrier concentration variation into power series.Results show that the antisymmetry of the potential and electron concentration distributions in homogeneous n-type PS fibers is destroyed due to the material inhomogeneity of the attached FG layer.In addition,by creating jump discontinuities in the material properties of the FG layer,potential barriers/wells can be produced in the middle of the fiber.Similarly,the potential barrier configuration near the interface of a homogeneous PS PN junction can also be manipulated in this way,which offers a new choice for the design of PN junction based devices. 展开更多
关键词 piezoelectric semiconductor(PS) functionally graded(FG)material composite structure PN junction
下载PDF
High-temperature tribological performance of functionally graded Stellite 6/WC metal matrix composite coatings manufactured by laser-directed energy deposition
12
作者 Marta OSTOLAZA Alaitz ZABALA +3 位作者 Jon Inaki ARRIZUBIETA Iñigo LLAVORI Nagore OTEGI Aitzol LAMIKIZ 《Friction》 SCIE EI CAS CSCD 2024年第3期522-538,共17页
Wear-driven tool failure is one of the main hurdles in the industry.This issue can be addressed through surface coating with ceramic-reinforced metal matrix composites.However,the maximum ceramic content is limited by... Wear-driven tool failure is one of the main hurdles in the industry.This issue can be addressed through surface coating with ceramic-reinforced metal matrix composites.However,the maximum ceramic content is limited by cracking.In this work,the tribological behaviour of the functionally graded WC-ceramic-particlereinforced Stellite 6 coatings is studied.To that end,the wear resistance at room temperature and 400°C is investigated.Moreover,the tribological analysis is supported by crack sensitivity and hardness evaluation,which is of utmost importance in the processing of composite materials with ceramic-particle-reinforcement.Results indicate that functionally graded materials can be employed to increase the maximum admissible WC content,hence improving the tribological behaviour,most notably at high temperatures.Additionally,a shift from abrasive to oxidative wear is observed in high-temperature wear testing. 展开更多
关键词 FRICTION coating metal matrix composite functionally graded materials high temperature laserdirected energy deposition
原文传递
In-situ fabrication of Al(Zn)-Al_2O_3 graded composite using the aluminothermic reaction during hot pressing
13
作者 s.m.a.haghi s.a.sajjadi a.babakhani 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第7期832-839,共8页
In INs study, the fabrication of multilayer AI(Zn)-A1203 with different volume fractions of A1203 was investigated. A1 and ZnO powders were milled by a plaaetaxy ball mill, after which five-layer functionally graded... In INs study, the fabrication of multilayer AI(Zn)-A1203 with different volume fractions of A1203 was investigated. A1 and ZnO powders were milled by a plaaetaxy ball mill, after which five-layer functionally graded samples were produced flarough hot pressing at 580~C and 90 MPa pressure for 30 min. Formation of reinforcing A1203 particles occurred in the aluminum matrix via the aluminolkermic reaction. Determination of the ignition temperature of the aluminolkennic reaction was accomplished using differential lkermal and lkermo- gravimelric amlyses. Scaaming electron microscopy, energy dispersive spectroscopy, and X-ray diffractometery amlyses were utilized to characterize the specimens. The lkermal amlysis results showed that the ignition temperatures for the aluminolkennic reaction of layers with the highest and lowest ZnO contents were 667 and 670~C, respectively. Microslxuctural observation and chemical amlysis confirmed the fa- brication of AI(Zn)-A1203 functionally graded materials composites with precipitation of additional Zn in the matrix. Moreover, nearly dense functionally graded samples demonstrated minimum and maximum hacdness values of HV 75 and HV 130, respectively. 展开更多
关键词 metal-matrix composites functionally graded composites fllermogravimet^ic analysis powder processing SINTERING
下载PDF
Processing and characterization of B_4C/Cu graded composite as plasma facing component for fusion reactors
14
作者 Yunhan Ling +2 位作者 Changchun Ge 《Journal of University of Science and Technology Beijing》 CSCD 2003年第1期39-43,共5页
A new approach for fabricating B4C/Cu graded composite by rapid self-resistance sintering under ultra-high pressure was presented, by which a near dense B4C/Cu graded composite with a compositional spectrum of 0-100% ... A new approach for fabricating B4C/Cu graded composite by rapid self-resistance sintering under ultra-high pressure was presented, by which a near dense B4C/Cu graded composite with a compositional spectrum of 0-100% was successfully fabricated. Plasma relevant performances of sintered B4C/Cu composite were preliminarily characterized, it is found that its chemical sputtering yield is 70% lower than that of SMF800 nuclear graphite under 2.7keV D+ irradiation, and almost no damages after 66 shots of in situ plasma discharge in HL-1 Tokamak facility, which indicates B4C/Cu plasma facing component has a good physical and chemical sputtering resistance performance compared with nuclear graphite. 展开更多
关键词 boron carbide plasma facing component (PFC) functionally graded material (FGM) compositE
下载PDF
Theoretical analysis on bending behavior of functionally graded composite beam crack-controlled by ultrahigh toughness cementitious composites 被引量:18
15
作者 XU ShiLang LI QingHua 《Science China(Technological Sciences)》 SCIE EI CAS 2009年第2期363-378,共16页
Ultrahigh toughness cementitious composites (UHTCC) obviously show strain hardening property under tensile or bending loading. The failure pattern of the UHTCC components exhibits multiple fine cracks under uniaxial t... Ultrahigh toughness cementitious composites (UHTCC) obviously show strain hardening property under tensile or bending loading. The failure pattern of the UHTCC components exhibits multiple fine cracks under uniaxial tensile loading with prominent tensile strain capacity in excess of 3%, with merely 60 μm average crack width even corresponding to the ultimate tensile strain state. The approach adopted is based on the concept of functionally-graded concrete, where part of the concrete, which surrounds the main longitudinal reinforcement in a RC (reinforced concrete) member, is strategically replaced with UHTCC with excellent crack-controlling ability. Investigations on bending behavior of functionally-graded composite beam crack controlled by UHTCC has been carried out, including theo- retical analysis, experimental research on long composite beams without web reinforcement, validation and comparison between experimental and theoretical results, and analysis on crack control. In addition to improving bearing capacity, the results indicate that functionally-graded composite beams using UHTCC has been found to be very effective in preventing corrosion-induced damage compared with RC beams. Therefore, durability and service life of the structure could be enhanced. This paper discusses the development of internal force and crack propagation during loading process, and presents analysis of the internal force in different stages, moment-curvature relationship from loading to damage and calculation of mid-span deflection and ductility index. In the end, the theoretical formulae have been validated by experimental results. 展开更多
关键词 UHTCC (ultrahigh TOUGHNESS cementitious composites) crack control functionally graded BENDING behavior theoretical analysis
原文传递
Optimization of Mechanical and Wear Properties of Functionally Graded Al6061/SiC Nanocomposites Produced by Friction Stir Processing(FSP) 被引量:2
16
作者 M.Saadatmand J.Aghazadeh Mohandesi 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2015年第5期584-590,共7页
The objective of present work is to apply the friction stir processing (FSP) to fabricate functionally graded SiC particulate reinforced Al6061 composite and investigate the effect of SiC particle mass fraction dist... The objective of present work is to apply the friction stir processing (FSP) to fabricate functionally graded SiC particulate reinforced Al6061 composite and investigate the effect of SiC particle mass fraction distribution on the mechanical properties and wear behavior ofAl6061/SiC composite. Regarding the obtained results in this work, with increasing SiC mass fraction, elongation decreased, but hardness enhanced. However, the optimized functionally graded composite with the highest tensile strength and wear resistance was achieved for composite with 10 wt% surface SiC. Also, the results showed that wear resistance and tensile strength decreased for composite with 13 wt% surface SiC, due to reinforcement particle clustering depending on high SiC mass fraction. 展开更多
关键词 functionally graded composite WEAR Mechanical properties Friction stir processing (FSP)
原文传递
The recent progress of functionally graded CNT reinforced composites and structures
17
作者 Kim Meow Liew Zhouzhou Pan Lu-Wen Zhang 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2020年第3期8-24,共17页
In the last decade,the functionally graded carbon nanotube reinforced composites(FG-CNTRCs)have attracted considerable interest due to their excellent mechanical properties,and the structures made of FG-CNTRCs have fo... In the last decade,the functionally graded carbon nanotube reinforced composites(FG-CNTRCs)have attracted considerable interest due to their excellent mechanical properties,and the structures made of FG-CNTRCs have found broad potential applications in aerospace,civil and ocean engineering,automotive industry,and smart structures.Here we review the literature regarding the mechanical analysis of bulk CNTR nanocomposites and FG-CNTRC structures,aiming to provide a clear picture of the mechanical modeling and properties of FG-CNTRCs as well as their composite structures.The review is organized as follows:(1)a brief introduction to the functionally graded materials(FGM),CNTRCs and FG-CNTRCs;(2)a literature review of the mechanical modeling methodologies and properties of bulk CNTRCs;(3)a detailed discussion on the mechanical behaviors of FG-CNTRCs;and(4)conclusions together with a suggestion of future research trends. 展开更多
关键词 functionally graded carbon NANOTUBE reinforced composite modeling methodology mechanical properties beam PLATE SHELL
原文传递
Spark Plasma Sintering of Ultrafine YSZ Reinforced Cu Matrix Functionally Graded Composite
18
作者 Jafar Mirazimi Parvin Abachi Kazem Purazrang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2016年第12期1169-1176,共8页
Copper matrix composites have received more attentions as possible candidate for thermal and electrical conductive materials to be used in electrical contact applications. In this study, five-layered Cu/YSZ (yttria-s... Copper matrix composites have received more attentions as possible candidate for thermal and electrical conductive materials to be used in electrical contact applications. In this study, five-layered Cu/YSZ (yttria-stabilized zirconia) functionally graded material (FGM) and copper matrix composite specimens containing 3 and 5 vol% YSZ particles plus pure Cu specimen were synthesized using powder metallurgy (PM) route and spark plasma sintering (SPS) consolidation process. The microstructural and some physical, mechanical features of all specimens were characterized. Microscopic examinations showed that ultrafine YSZ particles were distributed in the copper matrix almost homoge- neously. An appropriate interface was observed at each layer of FGM. The density measurement indicated that the graded structure of the composite could be well densified after the SPS process. The microhardness values of various layers of Cu/ YSZ FGM specimen were gradually altered from 56.3 (pure copper side) to 75.2 HV (Cu-5 vol% YSZ side). The increase of YSZ content resulted in a decrease in electrical conductivity. Additionally, thermal conductivity of Cu/YSZ FGM specimen [308.0 W/(m K)] was determined to be higher than that of the Cu-5 vol% YSZ composite specimen [260.7 W/ (m K)]. Accordingly, it can be concluded that the Cu/YSZ FGM can be a good candidate for the electrical applications, like sliding electrical contacts, where different material characteristics in the same component are required. 展开更多
关键词 functionally graded material (FGM) Spark plasma sintering (SPS) compositE Microstructure Interface
原文传递
A deep feed-forward neural network for damage detection in functionally graded carbon nanotube-reinforced composite plates using modal kinetic energy
19
作者 Huy Q.LE Tam T.TRUONG +1 位作者 D.DINH-CONG T.NGUYEN-THOI 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2021年第6期1453-1479,共27页
This paper proposes a new Deep Feed-forward Neural Network(DFNN)approach for damage detection in functionally graded carbon nanotube-reinforced composite(FG-CNTRC)plates.In the proposed approach,the DFNN model is deve... This paper proposes a new Deep Feed-forward Neural Network(DFNN)approach for damage detection in functionally graded carbon nanotube-reinforced composite(FG-CNTRC)plates.In the proposed approach,the DFNN model is developed based on a data set containing 20000 samples of damage scenarios,obtained via finite element(FE)simulation,of the FG-CNTRC plates.The elemental modal kinetic energy(MKE)values,calculated from natural frequencies and translational nodal displacements of the structures,are utilized as input of the DFNN model while the damage locations and corresponding severities are considered as output.The state-of-the art Exponential Linear Units(ELU)activation function and the Adamax algorithm are employed to train the DFNN model.Additionally,in order to enhance the performance of the DFNN model,the mini-batch and early-stopping techniques are applied to the training process.A trial-and-error procedure is implemented to determine suitable parameters of the network such as the number of hidden layers and the number of neurons in each layer.The accuracy and capability of the proposed DFNN model are illustrated through two distinct configurations of the CNT-fibers constituting the FG-CNTRC plates including uniform distribution(UD)and functionally graded-V distribution(FG-VD).Furthermore,the performance and stability of the DFNN model with the consideration of noise effects on the input data are also investigated.Obtained results indicate that the proposed DFNN model is able to give sufficiently accurate damage detection outcomes for the FG-CNTRC plates for both cases of noise-free and noise-influenced data. 展开更多
关键词 damage detection deep feed-forward neural networks functionally graded carbon nanotube-reinforced composite plates modal kinetic energy
原文传递
基于改进Reddy型三阶剪切变形理论的弹性地基上FG-CNTRC板屈曲无网格分析
20
作者 许建文 严世涛 +1 位作者 彭林欣 陈卫 《计算力学学报》 CAS CSCD 北大核心 2024年第3期572-581,共10页
针对含碳纳米管转向的Pasternak地基上功能梯度碳纳米管增强复合材料FG-CNTRC(functionally graded carbon nanotube-reinforced composite)板的屈曲问题,提出了一种基于改进Reddy型三阶剪切变形理论TSDT(third-order shear deformation... 针对含碳纳米管转向的Pasternak地基上功能梯度碳纳米管增强复合材料FG-CNTRC(functionally graded carbon nanotube-reinforced composite)板的屈曲问题,提出了一种基于改进Reddy型三阶剪切变形理论TSDT(third-order shear deformation theory)和移动最小二乘近似MLS(moving-least square)的无网格分析模型。该模型避免了无网格法第二类边界条件的施加困难问题,且能够满足中厚/厚板的自由表面条件,无需额外引入剪切修正因子。基于最小势能原理推导了弹性地基上FG-CNTRC板的无网格屈曲控制方程,采用完全转换法处理本质边界条件。通过基准算例验证了本文方法的收敛性及有效性,讨论了碳纳米管的转向角、体积分数、分布形式、地基系数、宽厚比和边界条件等对FG-CNTRC板临界屈曲荷载的影响。 展开更多
关键词 改进Reddy型三阶剪切变形理论 功能梯度碳纳米管增强复合材料板 PASTERNAK地基 临界屈曲荷载 移动最小二乘近似
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部