Objective:To correlate the utility of the Fundamentals of Laparoscopic Surgery(FLS)manual skills program with the Objective Structured Assessment of Technical Skills(OSATS)global rating scale in evaluating operative p...Objective:To correlate the utility of the Fundamentals of Laparoscopic Surgery(FLS)manual skills program with the Objective Structured Assessment of Technical Skills(OSATS)global rating scale in evaluating operative performance.Methods:The Asian Urological Surgery Training and Educational Group(AUSTEG)Laparoscopic Upper Tract Surgery Course implemented and validated the FLS program for its usage in laparoscopic surgical training.Delegates’basic laparoscopic skills were assessed using three different training models(peg transfer,precision cutting,and intra-corporeal suturing).They also performed live porcine laparoscopic surgery at the same workshop.Live surgery skills were assessed by blinded faculty using the OSATS rating scale.Results:From March 2016 to March 2019,a total of 81 certified urologists participated in the course,with a median of 5 years of post-residency experience.Although differences in task time did not reach statistical significance,those with more surgical experience were visibly faster at completing the peg transfer and intra-corporeal suturing FLS tasks.However,they took longer to complete the precision cutting task than participants with less experience.Overall OSATS scores correlated weakly with all three FLS tasks(peg transfer time:r=0.331,r^(2)=0.110;precision cutting time:r=0.240,r^(2)=0.058;suturing with intracorporeal knot time:r=0.451,r^(2)=0.203).Conclusion:FLS task parameters did not correlate strongly with OSATS globing rating scale performance.Although FLS task models demonstrated strong validity,it is important to assimilate the inconsistencies when benchmarking technical proficiency against real-life operative competence,as evaluated by FLS and OSATS,respectively.展开更多
Objective:Clinical education plays a key role in preparing students for patient care.Laparoscopy is one of the most important minimally invasive surgeries(MISs)wherein surgical technologists are responsible for camera...Objective:Clinical education plays a key role in preparing students for patient care.Laparoscopy is one of the most important minimally invasive surgeries(MISs)wherein surgical technologists are responsible for camera navigation and assistant surgeons are responsible for peg transfer.Therefore,it is necessary to improve the attitude of the operating room students toward these skills during their study period.The present study was conducted to determine the effect of simulating training in the fundamentals of laparoscopic surgery(FLS)on the attitude of the operating room students.Methods:This interventional study was conducted on 28 operating room students of Iran University of Medical Sciences in 2019.The census sampling method was used.The data-collection tool included the“Intrinsic motivation inventory(IMI)questionnaire.”The educational intervention was carried out in theoretical(booklet design)and practical(simulation)sections.Data analysis was carried out using descriptive and inferential analyses including the paired t-test,Mann–Whitney U test,and independent t-test.The collected data were analyzed using R and SPSS software.P-value<0.05 was considered as the significant level.Results:The mean±SD of the participants'age was 22.93±2.14 years,and the majority of them were women(67.9%).There was a significant difference in the mean scores of students'attitudes toward the FLS before and after the educational intervention(P<0.001)in all dimensions(interest,perceived competence,perceived choice,and tension).There was also a significant correlation between gender and interest dimension(P=0.005).Conclusions:The results of the present study showed that simulating the training FLS curriculum positively affects students'attitudes.Therefore,the researchers suggest that for creating a positive attitude,increasing students'interest in laparoscopic surgery,and ensuring a more effective presence in the operating room,this training should be considered in the operating room curriculum.展开更多
The Fundamentals of Combustion course is an important compulsory course for Energy and Power Engineering Majors under the background of carbon peaking.According to the characteristics of teaching and scientific resear...The Fundamentals of Combustion course is an important compulsory course for Energy and Power Engineering Majors under the background of carbon peaking.According to the characteristics of teaching and scientific research at present,combined with the characteristics of complexity,interdisciplinary and rapid technology update of this course,this paper discusses the teaching content and teaching design of this course to meet the needs of talents of production,teaching and research under the background of new engineering course.It proposes more applicable teaching methods and practical means to broaden students horizons,stimulate students autonomous learning momentum,master the professional knowledge application ability,and cultivate innovative and competitive engineering professionals to adapt to the new energy strategy.展开更多
We report the confirmation of a sub-Saturn-size exoplanet,TOI-1194 b,with a mass of about 0.456+0.055-0.051M_(J),and a very low mass companion star with a mass of about 96.5±1.5 MJ,TOI-1251 B.Exoplanet candidates...We report the confirmation of a sub-Saturn-size exoplanet,TOI-1194 b,with a mass of about 0.456+0.055-0.051M_(J),and a very low mass companion star with a mass of about 96.5±1.5 MJ,TOI-1251 B.Exoplanet candidates provided by the Transiting Exoplanet Survey Satellite(TESS)are suitable for further follow-up observations by ground-based telescopes with small and medium apertures.The analysis is performed based on data from several telescopes worldwide,including telescopes in the Sino-German multiband photometric campaign,which aimed at confirming TESS Objects of Interest(TOIs)using ground-based small-aperture and medium-aperture telescopes,especially for long-period targets.TOI-1194 b is confirmed based on the consistent periodic transit depths from the multiband photometric data.We measure an orbital period of 2.310644±0.000001 days,the radius is 0.767+0.045-0.041RJ and the amplitude of the RV curve is 69.4_(-7.3)^(+7.9)m s^(-1).TOI-1251 B is confirmed based on the multiband photometric and high-resolution spectroscopic data,whose orbital period is 5.963054+0.000002-0.000001days,radius is 0.947+0.035-0.033 R_(J) and amplitude of the RV curve is 9849_(-40)^(+42)ms^(-1).展开更多
As a key material for lithium metal batteries(LMBs),lithium metal is one of the most promising anode materials to break the bottleneck of battery energy density and a commonly used active material for reference electr...As a key material for lithium metal batteries(LMBs),lithium metal is one of the most promising anode materials to break the bottleneck of battery energy density and a commonly used active material for reference electrodes.Although lithium anodes are regarded as the holy grail of lithium batteries,decades of exploration have not led to the successful commercialization of LMBs,due mainly to the challenges related to the inherent properties of lithium metal.To pave the way for further investigation,herein,a comprehensive review focusing on the fundamental science of lithium are provided.Firstly,the natures of lithium atoms and their isotopes,lithium clusters and lithium crystals are revisited,especially their structural and energetic properties.Subsequently,the electrochemical properties of lithium metal are reviewed.Numerous important concepts and scientific questions,including the electronic structure of lithium,influence of high pressure and low temperature on the properties of lithium,factors influencing lithium deposition,generation of lithium dendrites,and electrode potential of lithium in different electrolytes,are explained and analyzed in detail.Approaches to improve the performance of lithium anodes and thoughtfulness about the electrode potential in lithium battery research are proposed.展开更多
The structural parameters of a galaxy can be used to gain insight into its formation and evolution history.In this paper,we strive to compare the Milky Way’s structural parameters to other,primarily edge-on,spiral ga...The structural parameters of a galaxy can be used to gain insight into its formation and evolution history.In this paper,we strive to compare the Milky Way’s structural parameters to other,primarily edge-on,spiral galaxies in order to determine how our Galaxy measures up to the Local Universe.For our comparison,we use the galaxy structural parameters gathered from a variety of literature sources in the optical and near-infrared wave bands.We compare the scale length,scale height,and disk flatness for both the thin and thick disks,the thick-to-thin disk mass ratio,the bulge-to-total luminosity ratio,and the mean pitch angle of the Milky Way’s spiral arms to those in other galaxies.We conclude that many of the Milky Way’s structural parameters are largely ordinary and typical of spiral galaxies in the Local Universe,though the Galaxy’s thick disk appears to be appreciably thinner and less extended than expected from zoom-in cosmological simulations of Milky Way-mass galaxies with a significant contribution of galaxy mergers involving satellite galaxies.展开更多
A corotation radius is a key characteristic of disk galaxies that is essential to determine the angular speed of the spiral structureΩ_p,and therefore understand its nature.In the literature,there are plenty of metho...A corotation radius is a key characteristic of disk galaxies that is essential to determine the angular speed of the spiral structureΩ_p,and therefore understand its nature.In the literature,there are plenty of methods to estimate this value,but do these measurements have any consistency?In this work,we collected a data set of corotation radius measurements for 547 galaxies,300 of which had at least two values.An initial analysis reveals that most objects have rather inconsistent corotation radius positions.Moreover,a significant fraction of galactic disks is distinguished by a large error coverage and almost uniform distribution of measurements.These findings do not have any relation to spiral type,Hubble classification,or presence of a bar.Among other reasons,obtained results could be explained by the transient nature of spirals in a considerable part of galaxies.We have made our collected data sample publicly available,and have demonstrated on one example how it could be useful for future research by investigating a winding time value for a sample of galaxies with possible multiple spiral arm patterns.展开更多
Ion cyclotron resonance heating(ICRH)stands out as a widely utilized and cost-effective auxiliary method for plasma heating,bearing significant importance in achieving high-performance discharges in p-^(11)B plasmas.I...Ion cyclotron resonance heating(ICRH)stands out as a widely utilized and cost-effective auxiliary method for plasma heating,bearing significant importance in achieving high-performance discharges in p-^(11)B plasmas.In light of the specific context of p-^(11)B plasma in the EHL-2 device,we conducted a comprehensive scan of the fundamental physical parameters of the antenna using the full-wave simulation program TORIC.Our preliminary result indicated that for p-^(11)B plasma,optimal ion heating parameters include a frequency of 40 MHz,with a high toroidal mode number like N_(?)=28 to heat the majority H ions.In addition,we discussed the impact of concentration of minority ion species on ion cyclotron resonance heating when^(11)B serves as the heavy minority species.The significant difference in charge-to-mass ratio between boron and hydrogen ions results in a considerable distance between the hybrid resonance layer and the tow inverted cyclotron resonance layer,necessitating a quite low boron ion concentration to achieve effective minority heating.We also considered another method of direct heating of hydrogen ions in the presence of boron ion minority.It is found that at appropriate boron ion concentrations(X(^(11)B)~17%),the position of the hybrid resonance layer approaches that of the hydrogen ion cyclotron resonance layer,thereby altering the polarization at this position and significantly enhancing hydrogen ion fundamental absorption.展开更多
Underground hydrogen storage is critical for renewable energy integration and sustainability.Saline aquifers and depleted oil and gas reservoirs represent viable large-scale hydrogen storage solutions due to their cap...Underground hydrogen storage is critical for renewable energy integration and sustainability.Saline aquifers and depleted oil and gas reservoirs represent viable large-scale hydrogen storage solutions due to their capacity and availability.This paper provides a comparative analysis of the current status of hydrogen storage in various environments.Additionally,it assesses the geological compatibility,capacity,and security of these storage environments with minimal leakage and degradation.An in-depth analysis was also conducted on the economic and environmental issues that impact the hydrogen storage.In addition,the capacity of these structures was also clarified,and it is similar to storing carbon dioxide,except for the cushion gas that is injected with hydrogen to provide pressure when withdrawing from the store to increase demand.This research also discusses the pros and cons of hydrogen storage in saline aquifers and depleted oil and gas reservoirs.Advantages include numerous storage sites,compatibility with existing infrastructure,and the possibility to repurpose declining oil and gas assets.Specifically,it was identified that depleted gas reservoirs are better for hydrogen gas storage than depleted oil reservoirs because hydrogen gas may interact with the oil.The saline aquifers rank third because of uncertainty,limited capacity,construction and injection costs.The properties that affect the hydrogen injection process were also discussed in terms of solid,fluid,and solid-fluid properties.In all structures,successful implementation requires characterizing sites,monitoring and managing risks,and designing efficient storage methods.The findings expand hydrogen storage technology and enable a renewable energy-based energy system.展开更多
The results of seventeen years of speckle interferometric monitoring of seven objects(Chara 122Aa,GJ 3010,HIP1987,GJ 3076,HIP 11253,HIP 11352,and HIP 14929)are presented.Observational data were obtained at the 6 m Big...The results of seventeen years of speckle interferometric monitoring of seven objects(Chara 122Aa,GJ 3010,HIP1987,GJ 3076,HIP 11253,HIP 11352,and HIP 14929)are presented.Observational data were obtained at the 6 m Big Telescope Alt-azimuthal Special Astrophysical Observatory of the Russian Academy of Science(BTA SAO RAS)from 2007 to the present.Analysis of previously published and new measurements made it possible to construct completely new orbits for Chara 122Aa,HIP 11253,and HIP 14929.The orbit of GJ 3076 cannot be constructed accurately due to the large influence of the weights assigned to the measurements.The resulting orbital solutions are classified based on a grading scheme suggested by W.I.Hartkopf,B.D.Mason and C.E.Worley;most orbits are“definitive”(Grade 1).The mass sums and masses of components calculated by two independent methods using Hipparcos and Gaia DR2 and DR3 parallaxes were compared for the objects under study.展开更多
Recent studies indicate that some Galactic open clusters(OCs)exhibit extended main-sequence turnoff(eMSTO)in their color–magnitude diagrams(CMDs).However,the number of Galactic OCs with eMSTO structures detected so f...Recent studies indicate that some Galactic open clusters(OCs)exhibit extended main-sequence turnoff(eMSTO)in their color–magnitude diagrams(CMDs).However,the number of Galactic OCs with eMSTO structures detected so far is limited,and the reasons for their formation are still unclear.This work identifies 26 Galactic OCs with undiscovered eMSTOs and investigates the causes of these features.Stellar population types and fundamental parameters of cluster samples are acquired using CMD fitting methods.Among them,the results of 11 OCs are reliable as the observed CMDs are well-reproduced.We propose the crucial role of stellar binarity and confirm the importance of stellar rotation in reproducing eMSTO morphologies.The results also show that the impact of age spread is important,as it can adequately explain the structure of young OCs and fit the observed CMDs of intermediate-age OCs better.展开更多
In recent years, international private law scholars have argued for the radiating effect of fundamental rights on international private law by introducing constitutional theory. However,there remains a lack of systema...In recent years, international private law scholars have argued for the radiating effect of fundamental rights on international private law by introducing constitutional theory. However,there remains a lack of systematic research on how fundamental rights should be integrated into judicial practices concerning foreign-related civil and commercial cases. Throughout the development of international private law, public policy has served as a historical carrier of substantive values for judicial entities and has consistently played a crucial role in value review. In cases of international private law where conflicts arise with the values of fundamental rights, public policy indirectly excludes the legal choice outcomes to safeguard the human rights values inherent in fundamental rights from infringement.However, due to limitations imposed by the degree of connection and relative conditions, traditional paths of public policy have certain constraints and cannot provide comprehensive protection for fundamental rights. Therefore, there is a need for judges to shift their logical paradigms, transcend bilateral choice-of-law models, and introduce a direct intervention path for fundamental rights. This direct intervention path utilizes the logical analysis framework of the protection scope,intervention, and justification of fundamental rights. It can effectively balance conflicting legal interests and maximize the protection of the fundamental rights of the parties involved.展开更多
Although the standard model provides a suitable pattern based on observable experimental data, it cannot explain dark matter, gravitation, the structural nature of the fundamental particles, and charges. In this paper...Although the standard model provides a suitable pattern based on observable experimental data, it cannot explain dark matter, gravitation, the structural nature of the fundamental particles, and charges. In this paper, a new theory about the nature of charges, particles and proposed structures for atoms were presented. This theory explains how an ideal quantum fluid (IQF) including hypothetical dark matter or fundamental elementary particles (FEPs) can produce the building blocks of matter. This theory describes quadruple blocks with two types of independent charges that can create different characteristics for these building blocks. Quadruple blocks have similarities and differences with the fundamental particles in standard model. This theory also explains the possible mechanism of creation the next generation of particles such as protons and neutrons.展开更多
The inclusion of the human rights clause in the Chi-nese Constitution is a concern and expression of the spirit of the Con-stitution,which has laid the institutional regulations of the fundamen-tal law for the develop...The inclusion of the human rights clause in the Chi-nese Constitution is a concern and expression of the spirit of the Con-stitution,which has laid the institutional regulations of the fundamen-tal law for the development of human rights in China,provided the principles and value norms of the highest level of effectiveness for the legal protection of human rights,and built a profound constitutional basis for the formation and improvement of the Chinese path of human rights development.The human rights clause is not only a summariza-tion and affirmation of the historical practice of Chinese human rights development under the leadership of the Communist Party of China,but also a new starting point for the development of human rights in China under the leadership of the Communist Party of China.It marks that the development of human rights in China has entered a new era.The Party and the state have finally embarked on a path of human rights development with Chinese characteristics by formulating and implementing the Human Rights Action Plan of China,eliminating ab-solute poverty through the national poverty alleviation campaign,and promoting human rights protection through the rule of law.展开更多
According to the definition, seismology is a science that studies the processes and causes of seismic phenomena and the structure of the Earth, i.e. a scientific discipline that studies the movement of blocks of rocks...According to the definition, seismology is a science that studies the processes and causes of seismic phenomena and the structure of the Earth, i.e. a scientific discipline that studies the movement of blocks of rocks of the Earth’s crust and mantle and related phenomena. Seismology conducts research in the following areas and is designed to scientifically explain two main issues: 1) Study of the nature of seismic phenomena and the internal structure of the Earth. Why, how and where do seismic impacts occur? 2) Protecting humanity from the catastrophic consequences of seismic events. Is it possible to predict seismic impacts? Like any other scientific discipline, seismology is obliged to follow the laws of science and its fundamental principles. This article is devoted to the description of violations of the fundamental laws of science committed by seismologists in the study of seismic processes and raises the question of compliance of the stated research directions with the current level of development of sciences. Answering point No. 1, regarding the structure of the Earth, it is possible to recognize some successes of seismology, which nevertheless cause great doubts in the scientific community of geophysicists, because if the stratigraphic data of ultra-deep wells often refute [1] the conclusions made by seismologists on the structure of the Earth’s crust at shallow depth, then to assert something unambiguously about the structure of the mantle and at the present stage, seismology cannot. Answering the main questions of seismology, why seismic phenomena occur, and how earthquake energy is formed, seismologists have not had, and have not. Answering point No. 2, we can confidently say that in the matter of forecasting seismic phenomena, seismology has not advanced one iota over the past century, and as seismologists have been confused in the search for earthquake prediction algorithms, they are also confused without any hope of success. All that modern seismology can “boast” is the theory of Elastic recoil [2], the absurdity of which does not cause any doubt among the progressive part of geophysicists. But, the fact that most of the leading scientists-seismologists continue to piously believe the conclusions of the Elastic Recoil theory puts seismology in a humiliating position, because Mr. Reid’s theory is the clearest example of a false theory based on scientific incompetence of scientists, a model of brazen violation of the fundamental laws of science and the foundation of false and ignorant conclusions. Based on the results achieved, or rather on their absence, we regret to draw a sad conclusion: modern seismology is in the deepest decline, the cause of which is the incompetence of researchers as a result of their catastrophically low level of academic training, who stuff the scientific community with scientific geophysical rubbish, breeding similar ignoramuses in seismology. We understand that by asserting this, we offend most seismologists, but it is impossible to continue to tolerate this state of affairs in geophysics, because: “Amicus plato, sed magis amica est veritas.” Obviously, the time has come for a new meteorologist, Alfred Wagener [3], who will come and teach seismologists not to guess on coffee grounds, but to investigate seismic processes using the fundamental laws of science. In this article, we not only investigate the reasons for the unsatisfactory state of affairs in seismology, but also give our answers to the questions, of why earthquakes occur and how seismic energy is formed.展开更多
The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric an...The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.展开更多
It is of real and direct significance for China to cope with oil price fluctuations and ensure oil security. This paper aims to quantitatively analyze the specific contribution ratios of the complex factors influencin...It is of real and direct significance for China to cope with oil price fluctuations and ensure oil security. This paper aims to quantitatively analyze the specific contribution ratios of the complex factors influencing international crude oil prices and to establish crude oil price models to forecast long-term international crude oil prices. Six explanatory influential variables, namely Dow Jones Indexes, the Organization for Economic Cooperation and Development oil stocks, US rotary rig count, US dollar index, total open interest, which is the total number of outstanding contracts that are held by market participants at the end of each day, and geopolitical instability are specified, and the samples, from January 1990 to August 2017, are divided into six sub-periods. Moreover, the co-integration relationship among variables shows that the contribution ratios of all the variables influencing Brent crude oil prices are in accordance with the corresponding qualitative analysis. Furthermore, from September 2017 to December 2022 outside of the sample, the Vector Autoregressive forecasts show that annually averaged Brent crude oil prices for 2017-2022 would be $53.0, $61.3, $74.4, $90.0, $105.5, and $120.7 per barrel, respectively. The Vector Error Correction forecasts show that annual average Brent crude oil prices for 2017-2022 would be $53.0, $56.5, $58.5, $60.7, $63.0 and $65.4 per barrel, respectively.展开更多
Water-induced landslides in hydropower reservoirs pose a great threat to both project operation and human life.This paper examines three large reservoirs in Sichuan Province,China.Field surveys,site monitoring data an...Water-induced landslides in hydropower reservoirs pose a great threat to both project operation and human life.This paper examines three large reservoirs in Sichuan Province,China.Field surveys,site monitoring data analyses and numerical simulations are used to analyze the spatial distribution and failure mechanisms of water-induced landslides in reservoir areas.First,the general rules of landslide development in the reservoir area are summarized.The first rule is that most of the landslides have rear edge elevations of 100e500 m above the normal water level of the reservoir,with volumes in the range of 106 e107 m 3.When the volume exceeds a certain amount,the number of sites at which the landscape can withstand landslides is greatly reduced.Landslide hazards mainly occur in the middle section of the reservoir and less in the annex of the dam site and the latter half of the reservoir area.The second rule is that sedimentary rocks such as sandstone are more prone to landslide hazards than other lithologies.Then,the failure mechanism of changes in the water level that reduces the stability of the slope composed of different geomaterials is analyzed by a proposed slope stability framework that considers displacement and is discussed with the monitoring results.Permeability is an essential parameter for understanding the diametrically opposed deformation behavior of landslides experiencing filling-drawdown cycles during operation.This study seeks to provide inspiration to subsequent researchers,as well as guidance to technicians,on landslide prevention and control in reservoir areas.展开更多
Human speech indirectly represents the mental state or emotion of others.The use of Artificial Intelligence(AI)-based techniques may bring revolution in this modern era by recognizing emotion from speech.In this study...Human speech indirectly represents the mental state or emotion of others.The use of Artificial Intelligence(AI)-based techniques may bring revolution in this modern era by recognizing emotion from speech.In this study,we introduced a robust method for emotion recognition from human speech using a well-performed preprocessing technique together with the deep learning-based mixed model consisting of Long Short-Term Memory(LSTM)and Convolutional Neural Network(CNN).About 2800 audio files were extracted from the Toronto emotional speech set(TESS)database for this study.A high pass and Savitzky Golay Filter have been used to obtain noise-free as well as smooth audio data.A total of seven types of emotions;Angry,Disgust,Fear,Happy,Neutral,Pleasant-surprise,and Sad were used in this study.Energy,Fundamental frequency,and Mel Frequency Cepstral Coefficient(MFCC)have been used to extract the emotion features,and these features resulted in 97.5%accuracy in the mixed LSTM+CNN model.This mixed model is found to be performed better than the usual state-of-the-art models in emotion recognition from speech.It also indicates that this mixed model could be effectively utilized in advanced research dealing with sound processing.展开更多
文摘Objective:To correlate the utility of the Fundamentals of Laparoscopic Surgery(FLS)manual skills program with the Objective Structured Assessment of Technical Skills(OSATS)global rating scale in evaluating operative performance.Methods:The Asian Urological Surgery Training and Educational Group(AUSTEG)Laparoscopic Upper Tract Surgery Course implemented and validated the FLS program for its usage in laparoscopic surgical training.Delegates’basic laparoscopic skills were assessed using three different training models(peg transfer,precision cutting,and intra-corporeal suturing).They also performed live porcine laparoscopic surgery at the same workshop.Live surgery skills were assessed by blinded faculty using the OSATS rating scale.Results:From March 2016 to March 2019,a total of 81 certified urologists participated in the course,with a median of 5 years of post-residency experience.Although differences in task time did not reach statistical significance,those with more surgical experience were visibly faster at completing the peg transfer and intra-corporeal suturing FLS tasks.However,they took longer to complete the precision cutting task than participants with less experience.Overall OSATS scores correlated weakly with all three FLS tasks(peg transfer time:r=0.331,r^(2)=0.110;precision cutting time:r=0.240,r^(2)=0.058;suturing with intracorporeal knot time:r=0.451,r^(2)=0.203).Conclusion:FLS task parameters did not correlate strongly with OSATS globing rating scale performance.Although FLS task models demonstrated strong validity,it is important to assimilate the inconsistencies when benchmarking technical proficiency against real-life operative competence,as evaluated by FLS and OSATS,respectively.
基金supported by the Iran University of Medical Science。
文摘Objective:Clinical education plays a key role in preparing students for patient care.Laparoscopy is one of the most important minimally invasive surgeries(MISs)wherein surgical technologists are responsible for camera navigation and assistant surgeons are responsible for peg transfer.Therefore,it is necessary to improve the attitude of the operating room students toward these skills during their study period.The present study was conducted to determine the effect of simulating training in the fundamentals of laparoscopic surgery(FLS)on the attitude of the operating room students.Methods:This interventional study was conducted on 28 operating room students of Iran University of Medical Sciences in 2019.The census sampling method was used.The data-collection tool included the“Intrinsic motivation inventory(IMI)questionnaire.”The educational intervention was carried out in theoretical(booklet design)and practical(simulation)sections.Data analysis was carried out using descriptive and inferential analyses including the paired t-test,Mann–Whitney U test,and independent t-test.The collected data were analyzed using R and SPSS software.P-value<0.05 was considered as the significant level.Results:The mean±SD of the participants'age was 22.93±2.14 years,and the majority of them were women(67.9%).There was a significant difference in the mean scores of students'attitudes toward the FLS before and after the educational intervention(P<0.001)in all dimensions(interest,perceived competence,perceived choice,and tension).There was also a significant correlation between gender and interest dimension(P=0.005).Conclusions:The results of the present study showed that simulating the training FLS curriculum positively affects students'attitudes.Therefore,the researchers suggest that for creating a positive attitude,increasing students'interest in laparoscopic surgery,and ensuring a more effective presence in the operating room,this training should be considered in the operating room curriculum.
基金Supported by Ideological and Political Teaching Reform Project of Yunnan Agricultural University in 2022(YAUKCSZJG0050)Ideological and Political Teaching Reform Project of Yunnan Agricultural University in 2023(YNAUKCSZJG2023045)First-class Course Construction Project of Yunnan Agricultural University in 2023(2023YLKC019).
文摘The Fundamentals of Combustion course is an important compulsory course for Energy and Power Engineering Majors under the background of carbon peaking.According to the characteristics of teaching and scientific research at present,combined with the characteristics of complexity,interdisciplinary and rapid technology update of this course,this paper discusses the teaching content and teaching design of this course to meet the needs of talents of production,teaching and research under the background of new engineering course.It proposes more applicable teaching methods and practical means to broaden students horizons,stimulate students autonomous learning momentum,master the professional knowledge application ability,and cultivate innovative and competitive engineering professionals to adapt to the new energy strategy.
基金supported by National Natural Science Foundation of China(NSFC,Grant Nos.U1831209 and U2031144)the research fund of Ankara University(BAP)through the project 18A0759001。
文摘We report the confirmation of a sub-Saturn-size exoplanet,TOI-1194 b,with a mass of about 0.456+0.055-0.051M_(J),and a very low mass companion star with a mass of about 96.5±1.5 MJ,TOI-1251 B.Exoplanet candidates provided by the Transiting Exoplanet Survey Satellite(TESS)are suitable for further follow-up observations by ground-based telescopes with small and medium apertures.The analysis is performed based on data from several telescopes worldwide,including telescopes in the Sino-German multiband photometric campaign,which aimed at confirming TESS Objects of Interest(TOIs)using ground-based small-aperture and medium-aperture telescopes,especially for long-period targets.TOI-1194 b is confirmed based on the consistent periodic transit depths from the multiband photometric data.We measure an orbital period of 2.310644±0.000001 days,the radius is 0.767+0.045-0.041RJ and the amplitude of the RV curve is 69.4_(-7.3)^(+7.9)m s^(-1).TOI-1251 B is confirmed based on the multiband photometric and high-resolution spectroscopic data,whose orbital period is 5.963054+0.000002-0.000001days,radius is 0.947+0.035-0.033 R_(J) and amplitude of the RV curve is 9849_(-40)^(+42)ms^(-1).
基金gratitude to the National Natural Science Foundation of China(No.22279070,U21A20170,22279071 and 52206263)the Ministry of Science and Technology of China(No.2019YFA0705703 and 2019YFE0100200)The authors thank Joint Work Plan for Research Projects under the Clean Vehicles Consortium at U.S.and China-Clean Energy Research Center(CERCCVC2.0,2016-2020)。
文摘As a key material for lithium metal batteries(LMBs),lithium metal is one of the most promising anode materials to break the bottleneck of battery energy density and a commonly used active material for reference electrodes.Although lithium anodes are regarded as the holy grail of lithium batteries,decades of exploration have not led to the successful commercialization of LMBs,due mainly to the challenges related to the inherent properties of lithium metal.To pave the way for further investigation,herein,a comprehensive review focusing on the fundamental science of lithium are provided.Firstly,the natures of lithium atoms and their isotopes,lithium clusters and lithium crystals are revisited,especially their structural and energetic properties.Subsequently,the electrochemical properties of lithium metal are reviewed.Numerous important concepts and scientific questions,including the electronic structure of lithium,influence of high pressure and low temperature on the properties of lithium,factors influencing lithium deposition,generation of lithium dendrites,and electrode potential of lithium in different electrolytes,are explained and analyzed in detail.Approaches to improve the performance of lithium anodes and thoughtfulness about the electrode potential in lithium battery research are proposed.
文摘The structural parameters of a galaxy can be used to gain insight into its formation and evolution history.In this paper,we strive to compare the Milky Way’s structural parameters to other,primarily edge-on,spiral galaxies in order to determine how our Galaxy measures up to the Local Universe.For our comparison,we use the galaxy structural parameters gathered from a variety of literature sources in the optical and near-infrared wave bands.We compare the scale length,scale height,and disk flatness for both the thin and thick disks,the thick-to-thin disk mass ratio,the bulge-to-total luminosity ratio,and the mean pitch angle of the Milky Way’s spiral arms to those in other galaxies.We conclude that many of the Milky Way’s structural parameters are largely ordinary and typical of spiral galaxies in the Local Universe,though the Galaxy’s thick disk appears to be appreciably thinner and less extended than expected from zoom-in cosmological simulations of Milky Way-mass galaxies with a significant contribution of galaxy mergers involving satellite galaxies.
基金support from“BASIS”Foundation for the Development of Theoretical Physics and Mathematics(grant No.23-2-2-6-1)。
文摘A corotation radius is a key characteristic of disk galaxies that is essential to determine the angular speed of the spiral structureΩ_p,and therefore understand its nature.In the literature,there are plenty of methods to estimate this value,but do these measurements have any consistency?In this work,we collected a data set of corotation radius measurements for 547 galaxies,300 of which had at least two values.An initial analysis reveals that most objects have rather inconsistent corotation radius positions.Moreover,a significant fraction of galactic disks is distinguished by a large error coverage and almost uniform distribution of measurements.These findings do not have any relation to spiral type,Hubble classification,or presence of a bar.Among other reasons,obtained results could be explained by the transient nature of spirals in a considerable part of galaxies.We have made our collected data sample publicly available,and have demonstrated on one example how it could be useful for future research by investigating a winding time value for a sample of galaxies with possible multiple spiral arm patterns.
基金supported by Shenzhen Municipal Collaborative Innovation Technology Program-International Science and Technology(S&T)Cooperation Project(No.GJHZ20220913142609017)Shenzhen Science and Technology Innovation Commission Key Technical Project(No.JSGG20210713091539014)+1 种基金Ling Chuang Research Project of China National Nuclear Corporationthe“Fourteen Five-Year Plan”Basic Technological Research Project(No.JSZL2022XXXX001)。
文摘Ion cyclotron resonance heating(ICRH)stands out as a widely utilized and cost-effective auxiliary method for plasma heating,bearing significant importance in achieving high-performance discharges in p-^(11)B plasmas.In light of the specific context of p-^(11)B plasma in the EHL-2 device,we conducted a comprehensive scan of the fundamental physical parameters of the antenna using the full-wave simulation program TORIC.Our preliminary result indicated that for p-^(11)B plasma,optimal ion heating parameters include a frequency of 40 MHz,with a high toroidal mode number like N_(?)=28 to heat the majority H ions.In addition,we discussed the impact of concentration of minority ion species on ion cyclotron resonance heating when^(11)B serves as the heavy minority species.The significant difference in charge-to-mass ratio between boron and hydrogen ions results in a considerable distance between the hybrid resonance layer and the tow inverted cyclotron resonance layer,necessitating a quite low boron ion concentration to achieve effective minority heating.We also considered another method of direct heating of hydrogen ions in the presence of boron ion minority.It is found that at appropriate boron ion concentrations(X(^(11)B)~17%),the position of the hybrid resonance layer approaches that of the hydrogen ion cyclotron resonance layer,thereby altering the polarization at this position and significantly enhancing hydrogen ion fundamental absorption.
文摘Underground hydrogen storage is critical for renewable energy integration and sustainability.Saline aquifers and depleted oil and gas reservoirs represent viable large-scale hydrogen storage solutions due to their capacity and availability.This paper provides a comparative analysis of the current status of hydrogen storage in various environments.Additionally,it assesses the geological compatibility,capacity,and security of these storage environments with minimal leakage and degradation.An in-depth analysis was also conducted on the economic and environmental issues that impact the hydrogen storage.In addition,the capacity of these structures was also clarified,and it is similar to storing carbon dioxide,except for the cushion gas that is injected with hydrogen to provide pressure when withdrawing from the store to increase demand.This research also discusses the pros and cons of hydrogen storage in saline aquifers and depleted oil and gas reservoirs.Advantages include numerous storage sites,compatibility with existing infrastructure,and the possibility to repurpose declining oil and gas assets.Specifically,it was identified that depleted gas reservoirs are better for hydrogen gas storage than depleted oil reservoirs because hydrogen gas may interact with the oil.The saline aquifers rank third because of uncertainty,limited capacity,construction and injection costs.The properties that affect the hydrogen injection process were also discussed in terms of solid,fluid,and solid-fluid properties.In all structures,successful implementation requires characterizing sites,monitoring and managing risks,and designing efficient storage methods.The findings expand hydrogen storage technology and enable a renewable energy-based energy system.
基金the financial support of grant No.075-15-2022-262(13.MNPMU.21.0003)of the Ministry of Science and Higher Education of the Russian Federation。
文摘The results of seventeen years of speckle interferometric monitoring of seven objects(Chara 122Aa,GJ 3010,HIP1987,GJ 3076,HIP 11253,HIP 11352,and HIP 14929)are presented.Observational data were obtained at the 6 m Big Telescope Alt-azimuthal Special Astrophysical Observatory of the Russian Academy of Science(BTA SAO RAS)from 2007 to the present.Analysis of previously published and new measurements made it possible to construct completely new orbits for Chara 122Aa,HIP 11253,and HIP 14929.The orbit of GJ 3076 cannot be constructed accurately due to the large influence of the weights assigned to the measurements.The resulting orbital solutions are classified based on a grading scheme suggested by W.I.Hartkopf,B.D.Mason and C.E.Worley;most orbits are“definitive”(Grade 1).The mass sums and masses of components calculated by two independent methods using Hipparcos and Gaia DR2 and DR3 parallaxes were compared for the objects under study.
基金supported by Yunnan Academician Workstation of Wang Jingxiu(202005AF150025)China Manned Space Project(NO.CMSCSST-2021-A08)+1 种基金Guanghe project(ghfund202302019167)the Natural Science Foundation of Yunnan Province(No.202201BC070003)。
文摘Recent studies indicate that some Galactic open clusters(OCs)exhibit extended main-sequence turnoff(eMSTO)in their color–magnitude diagrams(CMDs).However,the number of Galactic OCs with eMSTO structures detected so far is limited,and the reasons for their formation are still unclear.This work identifies 26 Galactic OCs with undiscovered eMSTOs and investigates the causes of these features.Stellar population types and fundamental parameters of cluster samples are acquired using CMD fitting methods.Among them,the results of 11 OCs are reliable as the observed CMDs are well-reproduced.We propose the crucial role of stellar binarity and confirm the importance of stellar rotation in reproducing eMSTO morphologies.The results also show that the impact of age spread is important,as it can adequately explain the structure of young OCs and fit the observed CMDs of intermediate-age OCs better.
基金a phasedresearch result of the Ministerial-level Project on the Construction of the Rule of Law and Legal Theory Research of the Ministry of Justice (Project Approval Number 22SFB5061)the project of the National Social Science Fund of China in Jiangsu Province (Project Approval Number 22HQB3)。
文摘In recent years, international private law scholars have argued for the radiating effect of fundamental rights on international private law by introducing constitutional theory. However,there remains a lack of systematic research on how fundamental rights should be integrated into judicial practices concerning foreign-related civil and commercial cases. Throughout the development of international private law, public policy has served as a historical carrier of substantive values for judicial entities and has consistently played a crucial role in value review. In cases of international private law where conflicts arise with the values of fundamental rights, public policy indirectly excludes the legal choice outcomes to safeguard the human rights values inherent in fundamental rights from infringement.However, due to limitations imposed by the degree of connection and relative conditions, traditional paths of public policy have certain constraints and cannot provide comprehensive protection for fundamental rights. Therefore, there is a need for judges to shift their logical paradigms, transcend bilateral choice-of-law models, and introduce a direct intervention path for fundamental rights. This direct intervention path utilizes the logical analysis framework of the protection scope,intervention, and justification of fundamental rights. It can effectively balance conflicting legal interests and maximize the protection of the fundamental rights of the parties involved.
文摘Although the standard model provides a suitable pattern based on observable experimental data, it cannot explain dark matter, gravitation, the structural nature of the fundamental particles, and charges. In this paper, a new theory about the nature of charges, particles and proposed structures for atoms were presented. This theory explains how an ideal quantum fluid (IQF) including hypothetical dark matter or fundamental elementary particles (FEPs) can produce the building blocks of matter. This theory describes quadruple blocks with two types of independent charges that can create different characteristics for these building blocks. Quadruple blocks have similarities and differences with the fundamental particles in standard model. This theory also explains the possible mechanism of creation the next generation of particles such as protons and neutrons.
基金the Research on Building a Theoretical System of Constitutional Supervision with Chinese Char-acteristics(Project Approval Number 23JDZ025)a major research project of the Ministry of Education in Philosophy and Social Sciences.
文摘The inclusion of the human rights clause in the Chi-nese Constitution is a concern and expression of the spirit of the Con-stitution,which has laid the institutional regulations of the fundamen-tal law for the development of human rights in China,provided the principles and value norms of the highest level of effectiveness for the legal protection of human rights,and built a profound constitutional basis for the formation and improvement of the Chinese path of human rights development.The human rights clause is not only a summariza-tion and affirmation of the historical practice of Chinese human rights development under the leadership of the Communist Party of China,but also a new starting point for the development of human rights in China under the leadership of the Communist Party of China.It marks that the development of human rights in China has entered a new era.The Party and the state have finally embarked on a path of human rights development with Chinese characteristics by formulating and implementing the Human Rights Action Plan of China,eliminating ab-solute poverty through the national poverty alleviation campaign,and promoting human rights protection through the rule of law.
文摘According to the definition, seismology is a science that studies the processes and causes of seismic phenomena and the structure of the Earth, i.e. a scientific discipline that studies the movement of blocks of rocks of the Earth’s crust and mantle and related phenomena. Seismology conducts research in the following areas and is designed to scientifically explain two main issues: 1) Study of the nature of seismic phenomena and the internal structure of the Earth. Why, how and where do seismic impacts occur? 2) Protecting humanity from the catastrophic consequences of seismic events. Is it possible to predict seismic impacts? Like any other scientific discipline, seismology is obliged to follow the laws of science and its fundamental principles. This article is devoted to the description of violations of the fundamental laws of science committed by seismologists in the study of seismic processes and raises the question of compliance of the stated research directions with the current level of development of sciences. Answering point No. 1, regarding the structure of the Earth, it is possible to recognize some successes of seismology, which nevertheless cause great doubts in the scientific community of geophysicists, because if the stratigraphic data of ultra-deep wells often refute [1] the conclusions made by seismologists on the structure of the Earth’s crust at shallow depth, then to assert something unambiguously about the structure of the mantle and at the present stage, seismology cannot. Answering the main questions of seismology, why seismic phenomena occur, and how earthquake energy is formed, seismologists have not had, and have not. Answering point No. 2, we can confidently say that in the matter of forecasting seismic phenomena, seismology has not advanced one iota over the past century, and as seismologists have been confused in the search for earthquake prediction algorithms, they are also confused without any hope of success. All that modern seismology can “boast” is the theory of Elastic recoil [2], the absurdity of which does not cause any doubt among the progressive part of geophysicists. But, the fact that most of the leading scientists-seismologists continue to piously believe the conclusions of the Elastic Recoil theory puts seismology in a humiliating position, because Mr. Reid’s theory is the clearest example of a false theory based on scientific incompetence of scientists, a model of brazen violation of the fundamental laws of science and the foundation of false and ignorant conclusions. Based on the results achieved, or rather on their absence, we regret to draw a sad conclusion: modern seismology is in the deepest decline, the cause of which is the incompetence of researchers as a result of their catastrophically low level of academic training, who stuff the scientific community with scientific geophysical rubbish, breeding similar ignoramuses in seismology. We understand that by asserting this, we offend most seismologists, but it is impossible to continue to tolerate this state of affairs in geophysics, because: “Amicus plato, sed magis amica est veritas.” Obviously, the time has come for a new meteorologist, Alfred Wagener [3], who will come and teach seismologists not to guess on coffee grounds, but to investigate seismic processes using the fundamental laws of science. In this article, we not only investigate the reasons for the unsatisfactory state of affairs in seismology, but also give our answers to the questions, of why earthquakes occur and how seismic energy is formed.
文摘The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.
基金supported by the National Science Foundation of China(NSFC No.41271551/71201157)the National Key Research and Development Program(2016YFA0602700)
文摘It is of real and direct significance for China to cope with oil price fluctuations and ensure oil security. This paper aims to quantitatively analyze the specific contribution ratios of the complex factors influencing international crude oil prices and to establish crude oil price models to forecast long-term international crude oil prices. Six explanatory influential variables, namely Dow Jones Indexes, the Organization for Economic Cooperation and Development oil stocks, US rotary rig count, US dollar index, total open interest, which is the total number of outstanding contracts that are held by market participants at the end of each day, and geopolitical instability are specified, and the samples, from January 1990 to August 2017, are divided into six sub-periods. Moreover, the co-integration relationship among variables shows that the contribution ratios of all the variables influencing Brent crude oil prices are in accordance with the corresponding qualitative analysis. Furthermore, from September 2017 to December 2022 outside of the sample, the Vector Autoregressive forecasts show that annually averaged Brent crude oil prices for 2017-2022 would be $53.0, $61.3, $74.4, $90.0, $105.5, and $120.7 per barrel, respectively. The Vector Error Correction forecasts show that annual average Brent crude oil prices for 2017-2022 would be $53.0, $56.5, $58.5, $60.7, $63.0 and $65.4 per barrel, respectively.
基金We gratefully acknowledge the support of the National Key R&D Program of China(Grant No.2017YFC1501102)the National Nat-ural Science Foundation of China(Grant No.41977229)the Sichuan Youth Science and Technology Innovation Research Team Project(Grant No.2020JDTD0006).
文摘Water-induced landslides in hydropower reservoirs pose a great threat to both project operation and human life.This paper examines three large reservoirs in Sichuan Province,China.Field surveys,site monitoring data analyses and numerical simulations are used to analyze the spatial distribution and failure mechanisms of water-induced landslides in reservoir areas.First,the general rules of landslide development in the reservoir area are summarized.The first rule is that most of the landslides have rear edge elevations of 100e500 m above the normal water level of the reservoir,with volumes in the range of 106 e107 m 3.When the volume exceeds a certain amount,the number of sites at which the landscape can withstand landslides is greatly reduced.Landslide hazards mainly occur in the middle section of the reservoir and less in the annex of the dam site and the latter half of the reservoir area.The second rule is that sedimentary rocks such as sandstone are more prone to landslide hazards than other lithologies.Then,the failure mechanism of changes in the water level that reduces the stability of the slope composed of different geomaterials is analyzed by a proposed slope stability framework that considers displacement and is discussed with the monitoring results.Permeability is an essential parameter for understanding the diametrically opposed deformation behavior of landslides experiencing filling-drawdown cycles during operation.This study seeks to provide inspiration to subsequent researchers,as well as guidance to technicians,on landslide prevention and control in reservoir areas.
文摘Human speech indirectly represents the mental state or emotion of others.The use of Artificial Intelligence(AI)-based techniques may bring revolution in this modern era by recognizing emotion from speech.In this study,we introduced a robust method for emotion recognition from human speech using a well-performed preprocessing technique together with the deep learning-based mixed model consisting of Long Short-Term Memory(LSTM)and Convolutional Neural Network(CNN).About 2800 audio files were extracted from the Toronto emotional speech set(TESS)database for this study.A high pass and Savitzky Golay Filter have been used to obtain noise-free as well as smooth audio data.A total of seven types of emotions;Angry,Disgust,Fear,Happy,Neutral,Pleasant-surprise,and Sad were used in this study.Energy,Fundamental frequency,and Mel Frequency Cepstral Coefficient(MFCC)have been used to extract the emotion features,and these features resulted in 97.5%accuracy in the mixed LSTM+CNN model.This mixed model is found to be performed better than the usual state-of-the-art models in emotion recognition from speech.It also indicates that this mixed model could be effectively utilized in advanced research dealing with sound processing.