[Objective] With a strain of endophytic antagonistic bacteria with good disease control efficacy in pot as trial material,the paper was to explore the antagonistic mechanism of siderophore against Fusarium oxysporum.[...[Objective] With a strain of endophytic antagonistic bacteria with good disease control efficacy in pot as trial material,the paper was to explore the antagonistic mechanism of siderophore against Fusarium oxysporum.[Method] Whether the strain produced siderophore and its fluorescent property was judged by MSA(Modified Sugar-Aspartic acid) plate.The siderophore activity of strains in liquid MSA medium was determined through the absorbance values at particular wavelength.The inhibition effects of it siderophore against F.oxysporum under different concentrations of Fe3+ were compared.Then the strain was preliminarily identified based on morphological,physiological and biochemical characteristics [Result] The fluorescent siderophore produced by the endophytic bacteria in MSA medium had a strong inhibition effect against F.oxysporum.With the increasing concentration of Fe3+,the inhibition effect against the pathogen weakened.The preliminary analysis showed these strains belonged to Bacillus.[Conclusion] Bacillus could compete the absorption of Fe3+ by secreting siderophore to inhibit the growth of F.oxysporum.展开更多
[Objective]The aim was to provide theoretical basis for the control of cotton Fusarium wilt and cotton boll rot disease.[Method]The inhibitory activity of the extracts from three species of plants(Artemisia annual L.,...[Objective]The aim was to provide theoretical basis for the control of cotton Fusarium wilt and cotton boll rot disease.[Method]The inhibitory activity of the extracts from three species of plants(Artemisia annual L.,Artemisia capillaris Thunb.,Artemisia argyi Levl.et Vant)against Fusarium oxysporum f.sp.vasinfectum and Fusarium moniliforme were studied under the condition of laboratory.[Result]The extracts of all the three plants in Artemisia showed strong antifungal activity against the tested pathogenic ...展开更多
The oil palm (Elaeisguineensis Jacq) is used worldwide in commercial agriculture for the production of palm oil, palm kernel oil and palm wine. It produces more oil per plant than any other oil-producing crop in the w...The oil palm (Elaeisguineensis Jacq) is used worldwide in commercial agriculture for the production of palm oil, palm kernel oil and palm wine. It produces more oil per plant than any other oil-producing crop in the world. Production is constrained by several factors among which pests/diseases are of utmost importance. Vascular wilt (VW) caused by Fusarium oxysporum is the most devastating disease infecting this crop. Its soil-borne ecology has made the use of fungicides to manage this disease too expensive and inpragmatic. There is need for concerted research in the breeding and selection of wilt-tolerant progenies as an essential step in the management of Fusarium wilt disease. The study aims to assess the incidence and severity of vascular wilt among tested oil palm progenies, to evaluate the reduction in yield caused by the disease in the susceptible progenies and to identify the wilt-tolerant, high-yielding progenies. The study was carried out at Pamol Plantations Limited (PPL) in Ndian Estate (Ndian Division), in the Southwest Region of Cameroon. Three field trials were evaluated for tolerance/susceptibility to Fusarium wilt. Each trial consisted of 15 oil palm progenies replicated 4 times. Each progeny had 25 oil palm stands in each replicate. Hence, a total of 1500 oil palm stands were assessed. The experimental design was a randomized complete block (RCB) with trial codes: Trial 2001/1, planted in 2001;Trial 2001/2, planted in 2002;Trial 2001/3, planted in 2003. Each trail had an area of 12 ha, with a plant density of 143 palms·ha−1. Wilt incidence, severity, index, and yield were evaluated on 45 progenies from the 3 trails after identifying Fusarium oxysporum from oil palm plant part. Data was subjected to analysis of variance, Fischer’s least significant difference test (LSD) for mean separation. Identification of Fusarium was based on descriptive analysis. Incidence of VW in the 3 trials ranged from 1% - 39%. Also, 45% of infected plants were from progeny 676 while 1% was from progenies 689, 693, 694 and 710. Disease severity was from 0.9 in progeny 686 to 4.55 in 676. Wilt index ranged from 131 for progeny 694 and 710 to 495 for progenies 705. Out of the 45 progenies evaluated, 27 were tolerant (1 < 100) and 18 susceptible (1 ≥ 100). Within the tolerant progenies, 4 were significant (1 < 20) while 5 out of 18 were significantly susceptible (1 ≥ 185). Mean yield reduction of the susceptible progenies was 34.8% while in the tolerant progenies, it increased by 9.5% when compared to their controls. Progenies 702, 703 and 709 are recommended for planting based on the level of tolerance to Fusarium wilt disease and yield.展开更多
Endophytic bacteria colonizing the shoot-tips of banana cv. Grand Naine were isolated and tested for the antagonistic activity against the Panama wilt pathogen Fusarium oxysporum f. sp. cubense (Foc). Pre-isolation, t...Endophytic bacteria colonizing the shoot-tips of banana cv. Grand Naine were isolated and tested for the antagonistic activity against the Panama wilt pathogen Fusarium oxysporum f. sp. cubense (Foc). Pre-isolation, the suckers were given extensive disinfection treatments and the homogenate from the excised shoot-tip portion was plated on nutrient agar (NA) and trypticase soy agar (TSA). This yielded altogether 47 isolates: 26 on NA and 21 on TSA, respectively, from the 10 suckers collected during August to February. The number of bacterial isolates obtained per sucker varied from one to 15 based on colony characteristics registering up to 10 distinct species per shoot-tip based on 16S rRNA sequence analysis. The 47 isolates belonged to 19 genera and 25 species under the phylogenetic classes of Actinobacteria, α- and γ-Proteobacteria and Firmicutes. Actinobacteria constituted the predominant phylum (55% isolates) with the constituent genera of Arthrobacter, Brevibacterium, Corynebacterium, Curtobacterium, Kocuria, Kytococcus, Micrococcus, Naumanella, Rothia and Tessaracoccus spp. and an unidentified isolate belonging to the family Frankiaceae. Proteobacteria constituted the second major phylum (Brevundimonas, Enterobacter, Klebsiella, Pseudomonas, Serratia and Sphingomonas spp.) followed by Firmicutes (Bacillus and Staphylococcus spp.). Antagonistic activity of the endophytes against Foc was tested through agar plate assays (pit and spot applications on fungal lawn) employing potato dextrose agar and NA. Endophytic Pseudomonas aeruginosa (isolate GNS.13.2a) which was associated with a single sucker showed significant growth inhibition effect on Foc while Klebsiella variicola (GNS.13.3a) and Enterobacter cloacae (GNS13.4a) exhibited moderate inhibition. The study brings out considerable sucker to sucker variation in the associated cultivable endophytic bacteria in “Grand Naine” banana and identifies a few bacterial endophytes with biocontrol potential against the devastating Foc pathogen.展开更多
Apple replant disease(ARD)negatively affects plant growth and reduces yields in replanted orchards.In this study,biochar was applied to apple replant soil with Fusarium oxysporum.Our aim was to investigate whether bio...Apple replant disease(ARD)negatively affects plant growth and reduces yields in replanted orchards.In this study,biochar was applied to apple replant soil with Fusarium oxysporum.Our aim was to investigate whether biochar could promote plant growth and alleviate apple replant disease by reducing the growth of harmful soil microorganisms,changing soil microbial community structure and improving the soil environment.This experiment included five treatments:apple replant soil(CK),methyl bromide fumigation apple replant soil(FM),replant soil with biochar addition(2%),replant soil with F.oxysporum spore solution(8×10^(7)spores·mL^(-1)),and replant soil with biochar and F.oxysporum spore solution addition.Seedling biomass,the activity of antioxidant enzymes in the leaves and roots,and soil environmental variables were measured.Microbial community composition and community structure were analyzed using 16SrDNA and ITS2 gene sequencing.Biochar significantly reduced the abundance of F.oxysporum and increased soil microbial diversity and richness.Biochar also increased the soil enzyme activities(urease,invertase,neutral phosphatase,and catalase),the biomass(plant height,fresh weight,dry weight)and the activity of antioxidant enzymes(superoxide dismutase,peroxidase,and catalase).The root indexes of apple seedlings was also increased in replant soil by biochar.In sum,biochar promoted the growth of plants,improved the replant soil environment,and alleviated apple replant disease.展开更多
The article is based on the use of experimental polyploidy method, with the introduction of new introgressive hybrid forms combining several species genotype with pathogenic Verticillium dahliae Kleb. and the effects ...The article is based on the use of experimental polyploidy method, with the introduction of new introgressive hybrid forms combining several species genotype with pathogenic Verticillium dahliae Kleb. and the effects of mycotoxins separated from the Fusarium oxysporum f.sp. vasinfectum micromicette on the yield of plant seeds. New artificial complex hypertension forms based on experimental polyploidy Verticillium dahliae Kleb. and Fusarium oxysporum f.sp. vasinfectum combine the potential of resistance to mycotoxins separated from microcrystals, making a tremendous contribution to the selection of new varieties and to the effectiveness of selection as a result of the use of genetic selective research as genetic-selective genetic-selector studies.展开更多
Fusarium wilt of banana, caused by Fusarium oxysporum f. sp. cubense tropic race 4(Foc TR4), is a typical vascular and soil-borne disease which has significantly threatened the sustainable development of banana indust...Fusarium wilt of banana, caused by Fusarium oxysporum f. sp. cubense tropic race 4(Foc TR4), is a typical vascular and soil-borne disease which has significantly threatened the sustainable development of banana industry. In order to reveal the infection process and pathogenesis of Foc TR4, the young mycelia(66.7 mg/ml) of wild-type strain of Foc TR4(WT-Foc TR4) cultured for 18-20 h were lysed with enzyme mixture for protoplast formation, which consisted of 25 mg/ml driselase, 0.4 mg/ml chitinase, 15 mg/ml lysing enzyme and 1.2 mol/L potassium chloride. The resulted protoplasts of 2×10~7 cells/ml were used to test the efficiency of transformation mediated by polyethylene glycol, and up to 9 transformants per microgram of DNA were obtained. AmCyan, RFP and YFP genes were stably transferred into the WT-Foc TR4, separately, using the protoplast transformation system. The gene FoOCH1 encoding α-1, 6-mannosyltransferase in the WT-Foc TR4 was knocked out using the split-marker recombination technology. The genetic transformation and gene knockout system in this pathogen lays a foundation for the study of functional genomics and plant-pathogen interactions.展开更多
Fusarium oxysporum is the causal agent for wilt diseases of many major ornamental and horticultural crops. In this study, we plated a local cut flower grower’s soil, with a persistent history of Fusarium wilt of scen...Fusarium oxysporum is the causal agent for wilt diseases of many major ornamental and horticultural crops. In this study, we plated a local cut flower grower’s soil, with a persistent history of Fusarium wilt of scented stock, Matthiola incana but not the lettuce rotational crop. This yielded culture plates with characteristic pink to carmine red fungi, together with a mixed bacterial population, a percentage of which was visibly antagonistic to the Fusarium. Using molecular analyses via Polymerase Chain Reaction (PCR) assays, we identified that Fusarium oxysporum, Fusarium culmorum, Fusarium equiseti and Fusarium venenatum were prevalent in the soil. The co-habiting bacterial colonies that exhibited strong antagonistic activity (zone of clearance) towards the soil fungi corresponded to Bacillus subtilis, Bacillus amyloliquefaciens and Paenibacillus polymyxa species. Our results arising from an in vitro study involving Kirby-Bauer disc-diffusion agar assays, coupled with bio-imaging software techniques demonstrated that the three native soil bacteria were effective inhibitors of all Fusarium species tested, while Bacillus subtilis exhibited the highest antagonism towards the Fusarium oxysporum. Bioassay tests of micro-biocides Prestop (Gliocadium catenulatum), Serenade Max (Bacillus subtilis QST713) and commercial seaweed extract, AlgiVyt suppressed in vitro growth of Fusarium oxysporum infecting the scented stock flower to a greater extent, whilst fresh aqueous extracts of garlic (Allium sativum) and meadowsweet (Filipendula ulmaria) flowers were ineffective towards soil pathogen suppression. This scoping study offers cut flower growers additional options of tapping into populations of antagonistic bacteria found in soil persistently infected with the opportunistic soil phytopathogen Fusarium oxysporum, affecting cut flower crops, such as M. incana.展开更多
[Objective] To study the effects of different culture conditions on the Fusarium oxysporurn SchL f. sp. [Method] Based on species identification of the pathogenic organism of Fusarium oxysporum Schl. f. sp, effects of...[Objective] To study the effects of different culture conditions on the Fusarium oxysporurn SchL f. sp. [Method] Based on species identification of the pathogenic organism of Fusarium oxysporum Schl. f. sp, effects of different cultures and different nutrients on the mycelial growth and conidial production of Fusarium oxysporum SchL f. sp were studied. [Result] The mycelial growth and conidial pro- duction of Fusarium oxysporum SchL f. sp was different under different culture con- ditions. PDA medium was the most suitable medium for the mycelial growth and had the highest conidial production; and the mycelial grew the fastest on the medium with maltose as carbon source or peptone as nitrogen source, which also had the highest conidial production. [Conclusion] This study provided experimental basis for the study of Fusarium oxysporum SchL f. sp and also provided theoretical basis for the study and control of Fusarium oxysporum Schl. f. sp.展开更多
基金Supported by National Natural Science Foundation of China(30960010 )Principal Fund Key Projects of Tarim University(TDZKZD06001)~~
文摘[Objective] With a strain of endophytic antagonistic bacteria with good disease control efficacy in pot as trial material,the paper was to explore the antagonistic mechanism of siderophore against Fusarium oxysporum.[Method] Whether the strain produced siderophore and its fluorescent property was judged by MSA(Modified Sugar-Aspartic acid) plate.The siderophore activity of strains in liquid MSA medium was determined through the absorbance values at particular wavelength.The inhibition effects of it siderophore against F.oxysporum under different concentrations of Fe3+ were compared.Then the strain was preliminarily identified based on morphological,physiological and biochemical characteristics [Result] The fluorescent siderophore produced by the endophytic bacteria in MSA medium had a strong inhibition effect against F.oxysporum.With the increasing concentration of Fe3+,the inhibition effect against the pathogen weakened.The preliminary analysis showed these strains belonged to Bacillus.[Conclusion] Bacillus could compete the absorption of Fe3+ by secreting siderophore to inhibit the growth of F.oxysporum.
基金Supported by the 10th Five Years Program for Science and Technol-ogy Development of Anhui Province(01013011)Open Foundation Project of Key Lab for Food Safety of Anhui Province(las200508)~~
文摘[Objective]The aim was to provide theoretical basis for the control of cotton Fusarium wilt and cotton boll rot disease.[Method]The inhibitory activity of the extracts from three species of plants(Artemisia annual L.,Artemisia capillaris Thunb.,Artemisia argyi Levl.et Vant)against Fusarium oxysporum f.sp.vasinfectum and Fusarium moniliforme were studied under the condition of laboratory.[Result]The extracts of all the three plants in Artemisia showed strong antifungal activity against the tested pathogenic ...
文摘The oil palm (Elaeisguineensis Jacq) is used worldwide in commercial agriculture for the production of palm oil, palm kernel oil and palm wine. It produces more oil per plant than any other oil-producing crop in the world. Production is constrained by several factors among which pests/diseases are of utmost importance. Vascular wilt (VW) caused by Fusarium oxysporum is the most devastating disease infecting this crop. Its soil-borne ecology has made the use of fungicides to manage this disease too expensive and inpragmatic. There is need for concerted research in the breeding and selection of wilt-tolerant progenies as an essential step in the management of Fusarium wilt disease. The study aims to assess the incidence and severity of vascular wilt among tested oil palm progenies, to evaluate the reduction in yield caused by the disease in the susceptible progenies and to identify the wilt-tolerant, high-yielding progenies. The study was carried out at Pamol Plantations Limited (PPL) in Ndian Estate (Ndian Division), in the Southwest Region of Cameroon. Three field trials were evaluated for tolerance/susceptibility to Fusarium wilt. Each trial consisted of 15 oil palm progenies replicated 4 times. Each progeny had 25 oil palm stands in each replicate. Hence, a total of 1500 oil palm stands were assessed. The experimental design was a randomized complete block (RCB) with trial codes: Trial 2001/1, planted in 2001;Trial 2001/2, planted in 2002;Trial 2001/3, planted in 2003. Each trail had an area of 12 ha, with a plant density of 143 palms·ha−1. Wilt incidence, severity, index, and yield were evaluated on 45 progenies from the 3 trails after identifying Fusarium oxysporum from oil palm plant part. Data was subjected to analysis of variance, Fischer’s least significant difference test (LSD) for mean separation. Identification of Fusarium was based on descriptive analysis. Incidence of VW in the 3 trials ranged from 1% - 39%. Also, 45% of infected plants were from progeny 676 while 1% was from progenies 689, 693, 694 and 710. Disease severity was from 0.9 in progeny 686 to 4.55 in 676. Wilt index ranged from 131 for progeny 694 and 710 to 495 for progenies 705. Out of the 45 progenies evaluated, 27 were tolerant (1 < 100) and 18 susceptible (1 ≥ 100). Within the tolerant progenies, 4 were significant (1 < 20) while 5 out of 18 were significantly susceptible (1 ≥ 185). Mean yield reduction of the susceptible progenies was 34.8% while in the tolerant progenies, it increased by 9.5% when compared to their controls. Progenies 702, 703 and 709 are recommended for planting based on the level of tolerance to Fusarium wilt disease and yield.
文摘Endophytic bacteria colonizing the shoot-tips of banana cv. Grand Naine were isolated and tested for the antagonistic activity against the Panama wilt pathogen Fusarium oxysporum f. sp. cubense (Foc). Pre-isolation, the suckers were given extensive disinfection treatments and the homogenate from the excised shoot-tip portion was plated on nutrient agar (NA) and trypticase soy agar (TSA). This yielded altogether 47 isolates: 26 on NA and 21 on TSA, respectively, from the 10 suckers collected during August to February. The number of bacterial isolates obtained per sucker varied from one to 15 based on colony characteristics registering up to 10 distinct species per shoot-tip based on 16S rRNA sequence analysis. The 47 isolates belonged to 19 genera and 25 species under the phylogenetic classes of Actinobacteria, α- and γ-Proteobacteria and Firmicutes. Actinobacteria constituted the predominant phylum (55% isolates) with the constituent genera of Arthrobacter, Brevibacterium, Corynebacterium, Curtobacterium, Kocuria, Kytococcus, Micrococcus, Naumanella, Rothia and Tessaracoccus spp. and an unidentified isolate belonging to the family Frankiaceae. Proteobacteria constituted the second major phylum (Brevundimonas, Enterobacter, Klebsiella, Pseudomonas, Serratia and Sphingomonas spp.) followed by Firmicutes (Bacillus and Staphylococcus spp.). Antagonistic activity of the endophytes against Foc was tested through agar plate assays (pit and spot applications on fungal lawn) employing potato dextrose agar and NA. Endophytic Pseudomonas aeruginosa (isolate GNS.13.2a) which was associated with a single sucker showed significant growth inhibition effect on Foc while Klebsiella variicola (GNS.13.3a) and Enterobacter cloacae (GNS13.4a) exhibited moderate inhibition. The study brings out considerable sucker to sucker variation in the associated cultivable endophytic bacteria in “Grand Naine” banana and identifies a few bacterial endophytes with biocontrol potential against the devastating Foc pathogen.
基金supported by the earmarked fund for National Natural Science Foundation of China(Grant No.31801816)National Modern Agro-industry Technology Research System(Grant No.CARS-27)Taishan scholar funded project(Grant No.TS20190923)。
文摘Apple replant disease(ARD)negatively affects plant growth and reduces yields in replanted orchards.In this study,biochar was applied to apple replant soil with Fusarium oxysporum.Our aim was to investigate whether biochar could promote plant growth and alleviate apple replant disease by reducing the growth of harmful soil microorganisms,changing soil microbial community structure and improving the soil environment.This experiment included five treatments:apple replant soil(CK),methyl bromide fumigation apple replant soil(FM),replant soil with biochar addition(2%),replant soil with F.oxysporum spore solution(8×10^(7)spores·mL^(-1)),and replant soil with biochar and F.oxysporum spore solution addition.Seedling biomass,the activity of antioxidant enzymes in the leaves and roots,and soil environmental variables were measured.Microbial community composition and community structure were analyzed using 16SrDNA and ITS2 gene sequencing.Biochar significantly reduced the abundance of F.oxysporum and increased soil microbial diversity and richness.Biochar also increased the soil enzyme activities(urease,invertase,neutral phosphatase,and catalase),the biomass(plant height,fresh weight,dry weight)and the activity of antioxidant enzymes(superoxide dismutase,peroxidase,and catalase).The root indexes of apple seedlings was also increased in replant soil by biochar.In sum,biochar promoted the growth of plants,improved the replant soil environment,and alleviated apple replant disease.
文摘The article is based on the use of experimental polyploidy method, with the introduction of new introgressive hybrid forms combining several species genotype with pathogenic Verticillium dahliae Kleb. and the effects of mycotoxins separated from the Fusarium oxysporum f.sp. vasinfectum micromicette on the yield of plant seeds. New artificial complex hypertension forms based on experimental polyploidy Verticillium dahliae Kleb. and Fusarium oxysporum f.sp. vasinfectum combine the potential of resistance to mycotoxins separated from microcrystals, making a tremendous contribution to the selection of new varieties and to the effectiveness of selection as a result of the use of genetic selective research as genetic-selective genetic-selector studies.
基金Supported by Yunnan Science and Technology Innovation Talent Program(2015HA034)National Natural Science Foundation of China(NSFC31560505)
文摘Fusarium wilt of banana, caused by Fusarium oxysporum f. sp. cubense tropic race 4(Foc TR4), is a typical vascular and soil-borne disease which has significantly threatened the sustainable development of banana industry. In order to reveal the infection process and pathogenesis of Foc TR4, the young mycelia(66.7 mg/ml) of wild-type strain of Foc TR4(WT-Foc TR4) cultured for 18-20 h were lysed with enzyme mixture for protoplast formation, which consisted of 25 mg/ml driselase, 0.4 mg/ml chitinase, 15 mg/ml lysing enzyme and 1.2 mol/L potassium chloride. The resulted protoplasts of 2×10~7 cells/ml were used to test the efficiency of transformation mediated by polyethylene glycol, and up to 9 transformants per microgram of DNA were obtained. AmCyan, RFP and YFP genes were stably transferred into the WT-Foc TR4, separately, using the protoplast transformation system. The gene FoOCH1 encoding α-1, 6-mannosyltransferase in the WT-Foc TR4 was knocked out using the split-marker recombination technology. The genetic transformation and gene knockout system in this pathogen lays a foundation for the study of functional genomics and plant-pathogen interactions.
文摘Fusarium oxysporum is the causal agent for wilt diseases of many major ornamental and horticultural crops. In this study, we plated a local cut flower grower’s soil, with a persistent history of Fusarium wilt of scented stock, Matthiola incana but not the lettuce rotational crop. This yielded culture plates with characteristic pink to carmine red fungi, together with a mixed bacterial population, a percentage of which was visibly antagonistic to the Fusarium. Using molecular analyses via Polymerase Chain Reaction (PCR) assays, we identified that Fusarium oxysporum, Fusarium culmorum, Fusarium equiseti and Fusarium venenatum were prevalent in the soil. The co-habiting bacterial colonies that exhibited strong antagonistic activity (zone of clearance) towards the soil fungi corresponded to Bacillus subtilis, Bacillus amyloliquefaciens and Paenibacillus polymyxa species. Our results arising from an in vitro study involving Kirby-Bauer disc-diffusion agar assays, coupled with bio-imaging software techniques demonstrated that the three native soil bacteria were effective inhibitors of all Fusarium species tested, while Bacillus subtilis exhibited the highest antagonism towards the Fusarium oxysporum. Bioassay tests of micro-biocides Prestop (Gliocadium catenulatum), Serenade Max (Bacillus subtilis QST713) and commercial seaweed extract, AlgiVyt suppressed in vitro growth of Fusarium oxysporum infecting the scented stock flower to a greater extent, whilst fresh aqueous extracts of garlic (Allium sativum) and meadowsweet (Filipendula ulmaria) flowers were ineffective towards soil pathogen suppression. This scoping study offers cut flower growers additional options of tapping into populations of antagonistic bacteria found in soil persistently infected with the opportunistic soil phytopathogen Fusarium oxysporum, affecting cut flower crops, such as M. incana.
文摘[Objective] To study the effects of different culture conditions on the Fusarium oxysporurn SchL f. sp. [Method] Based on species identification of the pathogenic organism of Fusarium oxysporum Schl. f. sp, effects of different cultures and different nutrients on the mycelial growth and conidial production of Fusarium oxysporum SchL f. sp were studied. [Result] The mycelial growth and conidial pro- duction of Fusarium oxysporum SchL f. sp was different under different culture con- ditions. PDA medium was the most suitable medium for the mycelial growth and had the highest conidial production; and the mycelial grew the fastest on the medium with maltose as carbon source or peptone as nitrogen source, which also had the highest conidial production. [Conclusion] This study provided experimental basis for the study of Fusarium oxysporum SchL f. sp and also provided theoretical basis for the study and control of Fusarium oxysporum Schl. f. sp.