An improved electrochemiluminescence polymerase chain reaction (ECL-PCR) method was developed and applied to detect Fusarium wilt. Briefly, the internal transcribed spacer (ITS) sequence of Fusarium oxysporumf, sp...An improved electrochemiluminescence polymerase chain reaction (ECL-PCR) method was developed and applied to detect Fusarium wilt. Briefly, the internal transcribed spacer (ITS) sequence of Fusarium oxysporumf, sp Cubense (FOC) was amplified by PCR. Two universal fragments, which were complimentary to Ru(bpy)3^2+ (TBR) labeled probe and Biotin labeled probe, respectively, were connected to the tail of primers so that all the PCR products got universal sequences. Then biotin labeled probes and TBR labeled probes were hybridized with the PCR products at the same time. Through the specific interaction between biotin and streptavidin, the PCR products were captured by streptavidin coated magnetic bead and then detected by ECL assay. The experiment results showed that the healthy banana samples and infected ones can be discriminated by this ECL-PCR method. This improved ECL-PCR approach is useful in Fusarium wilt detection due to its high sensitivity, simplicity and stability.展开更多
Fusarium species were reported to produce biofilms.Biofilms are superficial societies of microbes bounded and endangered by being situated or taking place outside a cell or cells.The most destructive fungal diseases c...Fusarium species were reported to produce biofilms.Biofilms are superficial societies of microbes bounded and endangered by being situated or taking place outside a cell or cells.The most destructive fungal diseases caused by phytopathogens are as a result of biofilms formation.Fusarium wilt of banana(Panama disease)is caused by a soil-borne pathogen called Fusarium oxysporum f.sp.cubense.Fusarium oxysporum occurs in a form of a species complex(FOSC)which encompasses a crowd of strains.Horizontal genetic factor transfer may donate to the observed assortment in pathogenic strains,while sexual reproduction is unknown in the FOSC.Fusarium wilt is a notorious disease on several crops worldwide.Yield loss caused by this pathogen is huge,and significant to destroy crop yields annually,thereby affecting the producer countries in various continents of the world.The disease is also resistant to various synthetic chemical fungicides.However,excessive use of synthetic fungicides during disease control could be lethal to humans,animals,and plants.This calls for alternative eco-friendly management of this disease by targeting the biofilms formation and finally suppressing this devastating phytopathogen.In this review,we,therefore,described the damage caused by Fusarium wilt disease,the concept of filamentous fungal biofilms,classical control strategies,sustainable disease control strategies using essential oils,and prevention and control of vegetables Fusarium wilt diseases.展开更多
[Objective] This study was conducted to screen a synergistic biological fungicide complex to control Fusarium wilt, reducing the use of chemical pesticides. [Method] The inhibitory effects of Bacil us subtilis DJ-6 an...[Objective] This study was conducted to screen a synergistic biological fungicide complex to control Fusarium wilt, reducing the use of chemical pesticides. [Method] The inhibitory effects of Bacil us subtilis DJ-6 and pyraclostrobin alone or in combination at five ratios against Fusarium oxysporum were detected by mea-suring mycelium growth rate in laboratory tests. The growth promotion and disease control effect of combined or single use of 20% pyraclostrobin and 2 ×1011 cfu/g B. subtilis DJ-6 WP at 1∶1 000, 1∶2 000 and 1∶3 000 dilutions were detected in field trials. [Result] The EC50 values of combined use of B. subtilis DJ-6 and pyra-clostrobin at ratios of 1∶1, 1∶2, 1∶3, 1∶4 and 1∶5 against F. oxysporum were 5.311 5, 4.008 6, 3.570 6, 3.350 9 and 3.218 9 μg/ml, with the synergistic ratios (SR) of 2.28, 1.77, 1.53, 1.64, 1.11, among which the synergetic effect at 1∶1 was the best. The fungicidal activity of pyraclostrobin was greater than that of B. subtilis DJ-6 in laboratory tests. Field trials revealed that al the 1∶1 000, 1∶2 000 and 1∶3 000 dilu-tions of 20% pyraclostrobin·2×1011 cfu/g B. subtilis DJ-6 WP in combination, 1∶1 000 dilution of 1 ×1012 cfu/g B. subtilis DJ-6 WP and 1∶2 000 dilution of 250 g/L pyra-clostrobin EC promoted the growth of strawberry by increasing plant height, leaf petiole, leaf blade area and stem diameter. Among them, the treatments with 1∶1 000 and 1∶2 000 of 20% pyraclostrobin · 2×1011 cfu/g B. subtilis DJ-6 WP in combina-tion had better effects than other treatments. The control effects of al the treat-ments were measured 30 and 80 d after fungicide application. The control effects of 1∶1 000 dilution of 20% pyraclostrobin and 2×1011 cfu/g B. subtilis DJ-6 in combina-tion were up to 100% and 93.11%, which were higher than those in al other treat-ments. The second highest control effects were found in the treatment with 1∶ 2 000 dilution of 20% pyraclostrobin and 2×1011 cfu/g B. subtilis DJ-6 in combination, they were 92.49% and 86.49%, higher than those in other treatments except the 1∶1 000 dilution of 20% pyraclostrobin and 2 ×1011 cfu/g B. subtilis DJ-6 in combination. The control effects of 1∶3 000 dilution of 20% pyraclostrobin and 2×1011 cfu/g B. subtilis DJ-6 in combination were 82.61% and 72.42%, higher than those in treatment with 1∶1 000 dilution of 1×1012 cfu/g B. subtilis DJ-6 WP, but lower than those in treat-ment with 1∶2 000 dilution of 25% pyraclostrobin EC. [Conclusion] Al the results re-vealed that the combination use of 20% pyraclostrobin and 2 ×1011 cfu/g B. subtilis DJ-6 WP at 1∶1 000 to 1∶2 000 dilution had better control effect against strawberry Fusarium wilt.展开更多
Molecular identification on diploid and tetraploid watermelon breeding lines which were resistant to Fusarium wilt was carried out with the published dCAPS marker "4451_fon" which was closely linked with resistance ...Molecular identification on diploid and tetraploid watermelon breeding lines which were resistant to Fusarium wilt was carried out with the published dCAPS marker "4451_fon" which was closely linked with resistance gene of Fusarium wilt race 1. The results showed that all the diploid and tetraploid lines expressed as re- sistant genotype, which were defined as Fusarium wilt-resistant materials. The re- sults were consistent with that of artificial inoculation identification. Molecular identifi- cation results also indicated that the resistant lines were homozygote, and the Fusarium wilt-resistant gene would not separate or lose during the future self- crossed purification. Therefore, resistance selection would not be necessary in their progeny populations. The study results thought that dCAPS marker "4451_fon" could be applied on molecular marker assisted selection for Fusarium wilt resistance breeding in watermelon to increase breeding selection efficiency and accelerate breeding progress.展开更多
[Objective] This study aimed to isolate and purify the antifungal protein against Fusarium oxysporum f. sp niveum (FON) from Bacillus subtilis XG-I. [Method] The crude protein was obtained by using fractional precip...[Objective] This study aimed to isolate and purify the antifungal protein against Fusarium oxysporum f. sp niveum (FON) from Bacillus subtilis XG-I. [Method] The crude protein was obtained by using fractional precipitation with am- monium sulfate, then chromatography using both DEAE-Sepharose FF anion ex- change and Sephacryl S-100 gel filtration columns was adopted for further purifica- tion of the protein, followed by MALDI-TOF-MS analysis of the structure of the at- tained protein which was antagonistic to FON. [Result] The result from MALDI-TOF- MS analysis suggested that the antifungal protein extracted from strain XG-1 was highly homologous to the flagellin (gi114278900) deriving from B. subtilis, with a pro- tein score of 248 and a coverage rate of 63%. It was thus speculated that this an- tagonistic protein was a kind of flagellin with a molecular mass of 30.6 kD. [Conclusion] The results from this study provide theoretical basis for clarifying the mechanisms of the action of strain XG-1 as well as important references for the preven- tion and control of watermelon Fusarium wilt.展开更多
[ Objective ] The study aimed to explore a new way for the control of Tomato Fusarium Wilt. [ Method ] Different solvents were used to prepare the ex-tracts of marigold, and the inhibitory effects of different extract...[ Objective ] The study aimed to explore a new way for the control of Tomato Fusarium Wilt. [ Method ] Different solvents were used to prepare the ex-tracts of marigold, and the inhibitory effects of different extraction solvents and different extraction parts of marigold against Tomato Fusar/um Wilt were compared. [ Result ] Among different solvent extracts of marigold, chloroform extracts had the strongest inhibitory effects against the growth of the pathogen; among the chloro- form extracts from different parts of marigold, root extract had the most obvious inhibitory effect against the disease, followed by flower and leaf extracts, and the in- hibitory effect of stem extract was the weakest. [ Conclusion ] The active components of marigold have inhibitory effect against Tomato Fusarium Wilt, and the plant has good development prospects and application value.展开更多
This study is aimed at assessing the ability of two endophytic bacteria originally isolated from healthy oil palm roots, Pseudomonas sp. (UPMP3) and Burkholderia sp. (UPMB3) to induce resistance in susceptible Ber...This study is aimed at assessing the ability of two endophytic bacteria originally isolated from healthy oil palm roots, Pseudomonas sp. (UPMP3) and Burkholderia sp. (UPMB3) to induce resistance in susceptible Berangan banana against Fusarium oxysporum race 4 (FocR4). Increased accumulation of resistance-related enzymes such as peroxidase (PO), phenylalanine ammonia lyase (PAL), lignithioglycolic acid (LTGA), and pathogenesis-related (PR) proteins (ehitinase and β-1,3-glucanase) has been observed in plantlets treated with endophytic bacteria UPMP3 and UPMB3 singly or as mixture under glasshouse conditions. Pre-inoculation of banana plantlets with UPMP3 showed a significant reduction in Fusarium wilt incidence 72 d after challenged inoculation with FocR4. UPMB3 was less effective in suppressing Fusarium wilt compared to UPMP3, whereas, the mixture of both endophytes showed an intermediate effect. Based on these results, it is concluded that UPMP3 could be a promising biological control agent that can trigger resistance against Fusarium wilt in susceptible Berangan banana.展开更多
In order to clarify the main pathogens of tomato Fusarium wilt in Shanxi Province, China, morphological identification, elongation factor 1 alpha (EF-1α) sequence analysis, specific primer amplification and pathoge...In order to clarify the main pathogens of tomato Fusarium wilt in Shanxi Province, China, morphological identification, elongation factor 1 alpha (EF-1α) sequence analysis, specific primer amplification and pathogenicity tests were applied to study the isolates which were recovered from diseased plants collected from 17 different districts of Shanxi Province. The results were as follows: 1) Through morphological and molecular identification, the following 7 species of Fusarium were identified: F. oxysporum, F. solani, F. verticillioides, F. subglutinans, F. chlamydosporum, F. sporotrichioides, and F. semitectum; 2) 56 isolates of F. oxysporum were identified using specific primer amplification, among which, 29, 5 and 6 isolates were respectively identified as F. oxysporum f. sp. lycopersici physiological race 1, race 2, and race 3; 3) pathogenicity test indicated the significant pathogenicity of F. oxysporum, F. solani, F. verticillioides, and F. subglutinans to tomato plant. Therefore, among these 4 species confirmed as pathogenic to tomato in Shanxi, the highest isolation rate (53.3%) corresponded to F. oxysporum. Three physiological species, race 1, race 2, and race 3 of F. oxysporum f. sp. lycopersici are detected in Shanxi, among which race 1 is the most widespread pathogen and is also considered as the predominant race.展开更多
This review summarizes the main advances in cotton breeding for resistance to fusarium and verticillium wilt in the last fifty years in China. The topics discussed include main achievements, experiences, problems and ...This review summarizes the main advances in cotton breeding for resistance to fusarium and verticillium wilt in the last fifty years in China. The topics discussed include main achievements, experiences, problems and countermeasures for solving.展开更多
Pumpkin(Cucurbita moschata)has been widely used as cucumber(Cucumis sativus L.)rootstock to defend against Fusarium wilt(FW)and increase cucumber yields and profits.However,the resistance genes and mechanisms underlyi...Pumpkin(Cucurbita moschata)has been widely used as cucumber(Cucumis sativus L.)rootstock to defend against Fusarium wilt(FW)and increase cucumber yields and profits.However,the resistance genes and mechanisms underlying the FW tolerance in pumpkin are poorly understood.Here we analyzed the transcriptome of pumpkin inoculated with the cucumber FW causal agent Fusarium oxysporum f.sp.cucumerinum(Foc),and obtained 3152 and 4735 upregulated genes induced by Foc at 24h after Foc inoculation compared with at 0h and 24h non-inoculated control,respectively.Next,404 common differentially expressed genes(DEGs)were screened using the criterion log_(2) FPKM(fold change)≥2.In total,206 of 404 DEGs were predominantly expressed in roots,which is the first tissue that Foc contacts and invades.140 DEGs were selected and classified into four groups(pathogenesis resistance,secondary metabolism-related,transcription factor and signal binding)based on their functional descriptions.Then,29 genes having high expression levels were selected to investigate the expression patterns induced by a Foc inoculation.Among them,16 genes were significantly induced by Foc and showed high expression levels at various treatment time points.These candidate genes may act as positive regulators of FW resistance in pumpkin and provide effective resources for improving cucumber FW resistance through breeding programs.展开更多
Fusarium wilt (FW) is one of the most common cotton diseases in the world. Identification of QTLs conferring resistance to FW is key for the incorporation of resistance genes into elite cultivars. Two intraspecific ...Fusarium wilt (FW) is one of the most common cotton diseases in the world. Identification of QTLs conferring resistance to FW is key for the incorporation of resistance genes into elite cultivars. Two intraspecific (cross between Gossypium hirsuturn L.) and one interspecific (cross between Gossypium hirsutum L. and Gossypium bardence L.) F2 populations were constructed by using a highly resistant cultivar and crossing it to a susceptible cultivar with 154, 79, and 148 offsprings, respectively. Simple sequence repeats (SSR) were used to screen genomic regions closely linked to FW resistance. The results showed that five QTLs associated with FW resistance were detected in two intraspecific populations using a composite interval mapping method under four different conditions. Four of these loci located on Chr. 2/Chr. 17 neighboring markers JESPR304 or CIR305 which explained 13.1 to 45.9% of the phenotypic effect. Furthermore, JESPR304 and CIR305 were previously testified and found to be tightly linked. It is possible that these four QTLs detected under different conditions were the same resistance QTL/gene. We consider that there is the possibility of a major FW resistant gene in intraspecific populations. In the interspecific mapping populations two QTLs were detected on Chr. 9 and Chr. 12/26 which explained great phenotypic variance of 49.4 and 45.7%. As the location of QTLs for FW resistance among the intraspecific and the interspecfic populations were totally different, it is suggested that there may be different resistance mechanisms between G. bardence L. and G. hursutum L. Thus, the present research provides an opportunity to understand the genetic control of resistance to FW in Gossypium hirsutum and Gossypium bardence and to conduct MAS in breeding programs to develop FW resistant cultivars.展开更多
Fusarium wilt of banana, which is caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), is a serious soil-borne fungal disease. Now, the epigenetic molecular pathogenic basis is elusive. In this stu...Fusarium wilt of banana, which is caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), is a serious soil-borne fungal disease. Now, the epigenetic molecular pathogenic basis is elusive. In this study, with methylation-sensitive amplification polymorphism (MSAP) technique, DNA methylation was compared between the leaves inoculated with Foc TR4 and the mock-inoculated leaves at different pathogenic stages. With 25 pairs of primers, 1 144 and 1 255 fragments were amplified from the infected and mock-inoculated leaves, respectively. DNA methylation was both changed and the average methylated CCGG sequences were 34.81 and 29.26% for the infected and the mock-inoculated leaves. And DNA hypermethylation and hypomethylation were induced by pathogen infection during all pathogenic stages. Further, 69 polymorphic fragments were sequenced and 29 of them showed sequence similarity to genes with known functions. And RT-PCR results of four genes indicated that their expression patterns were consistent with their methylation patterns. Our results suggest that DNA methylation plays important roles in pathogenic response to Foc TR4 for banana.展开更多
[ Objective] This study aimed to establish an appropriate technology system for in vitro screening of Fuzarium wilt-resistant germplasm resources of red edible seed watermelon and obtain variants resistant to fusaric ...[ Objective] This study aimed to establish an appropriate technology system for in vitro screening of Fuzarium wilt-resistant germplasm resources of red edible seed watermelon and obtain variants resistant to fusaric acid, thus providing resistant materials for breeding Fusarium wilt-resistant red edible seed watermel- on. [ Method] Using Zhongxin No. 1 red edible seed watermelon advemitious buds as screening materials and fusaric acid (FA) as a stress agent, in vitro screen- ing of Fusarium wilt-resistant red edible seed watermelon clonal variants and identification of Fusarium wilt-resistance of the germplasm resources of red edible seed watermelon were performed. [ Result] The results showed that the appropriate FA for in vitro screening of Fusarium wilt-resistant red edible seed watermelon vari- ants was 15 mg/L. In vitro screening system for Fusarium wilt-resistant red edible seed watermelon variants was established preliminarily and FA-resistant regenera- ted plants were obtained. Among the 36 germplasm resources of red edible seed watermelon, there were 2 highly resistant materials, 6 moderately resistant materi- als, 11 slightly resistant materials and 17 highly susceptible materials. [ Conclusion] This study confirmed preliminarily that in vitro screening method is effective for obtaining resistant materials of red edible seed watermelon.展开更多
The variant LM1 was previously obtained using embryogenic cell suspension cultures of sweetpotato variety Lizixiang by gamma-ray induced mutation, and then its characteristics were stably inherited through six clonal ...The variant LM1 was previously obtained using embryogenic cell suspension cultures of sweetpotato variety Lizixiang by gamma-ray induced mutation, and then its characteristics were stably inherited through six clonal generations, thus this mutant was named LM1. In this study, systematic characterization of salt tolerance and Fusarium wilt resistance were performed between Lizixiang and mutant LM1. LM1 exhibited significantly higher salt tolerance compared to Lizixiang. The content of proline and activities of superoxide dismutase(SOD) and photosynthesis were significantly increased, while malonaldehyde(MDA) and H_2O_2 contents were significantly decreased compared to that of Lizixiang under salt stress. The inoculation test with Fusarium wilt showed that its Fusarium wilt resistance was also improved. The lignin, total phenolic, jasmonic acid(JA) contents and SOD activity were significantly higher, while H_2O_2 content was significantly lower in LM1 than that in Lizixiang. The expression level of salt stress-responsive and disease resistance-related genes was significantly higher in LM1 than that in Lizixiang under salt and Fusarium wilt stresses, respectively. This result provides a novel and valuable material for improving the salt tolerance and Fusarium wilt resistance of sweetpotato.展开更多
High-throughput sequencing technique was applied to analyze the microbial community structure of rhizosphere soil at different stages of watermelon fusarium wilt to find out the difference of dominant microbial commun...High-throughput sequencing technique was applied to analyze the microbial community structure of rhizosphere soil at different stages of watermelon fusarium wilt to find out the difference of dominant microbial community in rhizosphere during the occurrence of watermelon fusarium wilt.Illumina-Hiseq high-throughput sequencing platform was used to sequence 16S and ITS rDNA in rhizosphere soil.The soil was named CK1 before planting,CK2 at peak stage and CK3 at stable stage.The results showed that the soil bacterial diversity was in the order of CK1>CK3>CK2,indicating no significant difference between CK1 and CK3 and a significant difference between CK2 and CK1,CK3.At the genus level,the dominant bacteria were Mizugakiibacter(21.9299%),Rhodanobacter(5.0933%),and Lactobacillus(3.1921%).The diversity of soil fungi was in the order of CK1>CK3>CK2,all showing significant differences.At the genus level,the dominant fungus was Lysurus(54.4601%),Papulaspora(12.4252%),Acrophialophora(3.1729%).The results showed that the diversity and abundance of bacteria and fungi in rhizosphere soil decreased during the peak period of watermelon fusarium wilt.With the gradual stabilization of the disease,the diversity and abundance of bacteria and fungi in rhizosphere soil recovered to a certain extent.展开更多
The amount of phenol compounds in the soil increased after adding organic material into the soil. It was found that p-hydroxybenzoic acid, p-coumaric acid and frulic acid alleviated Fusarium wilt of cucumber, the alle...The amount of phenol compounds in the soil increased after adding organic material into the soil. It was found that p-hydroxybenzoic acid, p-coumaric acid and frulic acid alleviated Fusarium wilt of cucumber, the alleviating effect of p-hydroxybenzoic acid was the best, followed by p-coumaric acid and frulic acid. The total amount of bacterial, actinomyces and fungus in high phenol compounds treatment decreased than that of control treatment, while the microorganisms’ amount in low phenol compounds treatment increased. Phenol compounds inhibit the growth of pathogen.展开更多
Fusarium wilt caused by Fusarium oxysporum f.sp. cucumerinum (Owen) is one of the most devastating diseases in cucumber production worldwide. Recent progresses in the mechanism of resistance to Fusarium wilt in cucu...Fusarium wilt caused by Fusarium oxysporum f.sp. cucumerinum (Owen) is one of the most devastating diseases in cucumber production worldwide. Recent progresses in the mechanism of resistance to Fusarium wilt in cucumber were reviewed in this paper, including pathogenic mechanism of Fusarium oxysporum, the resistance mechanism of cucumber, the heredity of resistance, and the location of resistance genes. Following works should be the location and cloning of resistance genes with molecular biologic methods.展开更多
Fusarium wilt of banana, caused by Fusarium oxysporum f. sp. cubense tropic race 4(Foc TR4), is a typical vascular and soil-borne disease which has significantly threatened the sustainable development of banana indust...Fusarium wilt of banana, caused by Fusarium oxysporum f. sp. cubense tropic race 4(Foc TR4), is a typical vascular and soil-borne disease which has significantly threatened the sustainable development of banana industry. In order to reveal the infection process and pathogenesis of Foc TR4, the young mycelia(66.7 mg/ml) of wild-type strain of Foc TR4(WT-Foc TR4) cultured for 18-20 h were lysed with enzyme mixture for protoplast formation, which consisted of 25 mg/ml driselase, 0.4 mg/ml chitinase, 15 mg/ml lysing enzyme and 1.2 mol/L potassium chloride. The resulted protoplasts of 2×10~7 cells/ml were used to test the efficiency of transformation mediated by polyethylene glycol, and up to 9 transformants per microgram of DNA were obtained. AmCyan, RFP and YFP genes were stably transferred into the WT-Foc TR4, separately, using the protoplast transformation system. The gene FoOCH1 encoding α-1, 6-mannosyltransferase in the WT-Foc TR4 was knocked out using the split-marker recombination technology. The genetic transformation and gene knockout system in this pathogen lays a foundation for the study of functional genomics and plant-pathogen interactions.展开更多
Fusarium wilt,a disease caused by Fusarium oxysporum f.sp batatas(Fob)is an important disease in sweet potato production.Using endophytic bacteria for biological control of sweet potato diseases is one of the importan...Fusarium wilt,a disease caused by Fusarium oxysporum f.sp batatas(Fob)is an important disease in sweet potato production.Using endophytic bacteria for biological control of sweet potato diseases is one of the important ways.A Bacillus subtilis with antagonistic effect on Fusarium wilt of sweet potato was isolated from soil by confrontation culture.According to the biological characteristics,16S rDNA sequence analysis,and physiological and biochemical analysis,the Bacillus subtilis HAAS01 was named.A pot experiment was conducted for the biological control experiment of strain HAAS01,and the endogenous hormone content,antioxidant enzyme activity,soluble protein content,and related gene expressions of sweet potato plants were detected.The results showed that the HAAS01 strain could promote the production of endogenous hormones and resist the infection of plant diseases together with defensive enzymes and upregulation of related gene expressions.In summary,Bacillus subtilis HAAS01 was effective in controlling Fusarium wilt of sweet potato and has potential for application and development.展开更多
With conventional fertilization as the control, the control effects of biological fertilizer and general organic fertilizer on watermelon Fusarium wilt were studied in the paper. The results showed that applying biolo...With conventional fertilization as the control, the control effects of biological fertilizer and general organic fertilizer on watermelon Fusarium wilt were studied in the paper. The results showed that applying biological fertilizer could effectively reduce the incidence rate of watermelon Fusarium wilt and significantly improve the quality of watermelon, while application of general organic fertilizer had no obvious control effect on watermelon Fusarium wilt.展开更多
基金the National Natural Science Foundation of China(No.3060012830470494)the Natural Science Foundation of Guangdong Province(No.70058257117865).
文摘An improved electrochemiluminescence polymerase chain reaction (ECL-PCR) method was developed and applied to detect Fusarium wilt. Briefly, the internal transcribed spacer (ITS) sequence of Fusarium oxysporumf, sp Cubense (FOC) was amplified by PCR. Two universal fragments, which were complimentary to Ru(bpy)3^2+ (TBR) labeled probe and Biotin labeled probe, respectively, were connected to the tail of primers so that all the PCR products got universal sequences. Then biotin labeled probes and TBR labeled probes were hybridized with the PCR products at the same time. Through the specific interaction between biotin and streptavidin, the PCR products were captured by streptavidin coated magnetic bead and then detected by ECL assay. The experiment results showed that the healthy banana samples and infected ones can be discriminated by this ECL-PCR method. This improved ECL-PCR approach is useful in Fusarium wilt detection due to its high sensitivity, simplicity and stability.
基金the Ministry of Higher Education Malaysia for providing funds under the Long-term Research Grant Scheme(LRGS/1/2019/UPM/2/2)。
文摘Fusarium species were reported to produce biofilms.Biofilms are superficial societies of microbes bounded and endangered by being situated or taking place outside a cell or cells.The most destructive fungal diseases caused by phytopathogens are as a result of biofilms formation.Fusarium wilt of banana(Panama disease)is caused by a soil-borne pathogen called Fusarium oxysporum f.sp.cubense.Fusarium oxysporum occurs in a form of a species complex(FOSC)which encompasses a crowd of strains.Horizontal genetic factor transfer may donate to the observed assortment in pathogenic strains,while sexual reproduction is unknown in the FOSC.Fusarium wilt is a notorious disease on several crops worldwide.Yield loss caused by this pathogen is huge,and significant to destroy crop yields annually,thereby affecting the producer countries in various continents of the world.The disease is also resistant to various synthetic chemical fungicides.However,excessive use of synthetic fungicides during disease control could be lethal to humans,animals,and plants.This calls for alternative eco-friendly management of this disease by targeting the biofilms formation and finally suppressing this devastating phytopathogen.In this review,we,therefore,described the damage caused by Fusarium wilt disease,the concept of filamentous fungal biofilms,classical control strategies,sustainable disease control strategies using essential oils,and prevention and control of vegetables Fusarium wilt diseases.
基金Supported by Agricultural Science and Technology Research and Development Program of Jiangsu Province(BE2012378)Six Talent Peaks Project of Jiangsu Province(2013-NY-001)Agricultural Science and Technology Research and Development Program of Zhenjiang City(NY2014029)~~
文摘[Objective] This study was conducted to screen a synergistic biological fungicide complex to control Fusarium wilt, reducing the use of chemical pesticides. [Method] The inhibitory effects of Bacil us subtilis DJ-6 and pyraclostrobin alone or in combination at five ratios against Fusarium oxysporum were detected by mea-suring mycelium growth rate in laboratory tests. The growth promotion and disease control effect of combined or single use of 20% pyraclostrobin and 2 ×1011 cfu/g B. subtilis DJ-6 WP at 1∶1 000, 1∶2 000 and 1∶3 000 dilutions were detected in field trials. [Result] The EC50 values of combined use of B. subtilis DJ-6 and pyra-clostrobin at ratios of 1∶1, 1∶2, 1∶3, 1∶4 and 1∶5 against F. oxysporum were 5.311 5, 4.008 6, 3.570 6, 3.350 9 and 3.218 9 μg/ml, with the synergistic ratios (SR) of 2.28, 1.77, 1.53, 1.64, 1.11, among which the synergetic effect at 1∶1 was the best. The fungicidal activity of pyraclostrobin was greater than that of B. subtilis DJ-6 in laboratory tests. Field trials revealed that al the 1∶1 000, 1∶2 000 and 1∶3 000 dilu-tions of 20% pyraclostrobin·2×1011 cfu/g B. subtilis DJ-6 WP in combination, 1∶1 000 dilution of 1 ×1012 cfu/g B. subtilis DJ-6 WP and 1∶2 000 dilution of 250 g/L pyra-clostrobin EC promoted the growth of strawberry by increasing plant height, leaf petiole, leaf blade area and stem diameter. Among them, the treatments with 1∶1 000 and 1∶2 000 of 20% pyraclostrobin · 2×1011 cfu/g B. subtilis DJ-6 WP in combina-tion had better effects than other treatments. The control effects of al the treat-ments were measured 30 and 80 d after fungicide application. The control effects of 1∶1 000 dilution of 20% pyraclostrobin and 2×1011 cfu/g B. subtilis DJ-6 in combina-tion were up to 100% and 93.11%, which were higher than those in al other treat-ments. The second highest control effects were found in the treatment with 1∶ 2 000 dilution of 20% pyraclostrobin and 2×1011 cfu/g B. subtilis DJ-6 in combination, they were 92.49% and 86.49%, higher than those in other treatments except the 1∶1 000 dilution of 20% pyraclostrobin and 2 ×1011 cfu/g B. subtilis DJ-6 in combination. The control effects of 1∶3 000 dilution of 20% pyraclostrobin and 2×1011 cfu/g B. subtilis DJ-6 in combination were 82.61% and 72.42%, higher than those in treatment with 1∶1 000 dilution of 1×1012 cfu/g B. subtilis DJ-6 WP, but lower than those in treat-ment with 1∶2 000 dilution of 25% pyraclostrobin EC. [Conclusion] Al the results re-vealed that the combination use of 20% pyraclostrobin and 2 ×1011 cfu/g B. subtilis DJ-6 WP at 1∶1 000 to 1∶2 000 dilution had better control effect against strawberry Fusarium wilt.
基金Supported by"12th Five-Year Plan"of National Science and Technology Plan Project in Rural Areas Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2015-ZFRI-06)~~
文摘Molecular identification on diploid and tetraploid watermelon breeding lines which were resistant to Fusarium wilt was carried out with the published dCAPS marker "4451_fon" which was closely linked with resistance gene of Fusarium wilt race 1. The results showed that all the diploid and tetraploid lines expressed as re- sistant genotype, which were defined as Fusarium wilt-resistant materials. The re- sults were consistent with that of artificial inoculation identification. Molecular identifi- cation results also indicated that the resistant lines were homozygote, and the Fusarium wilt-resistant gene would not separate or lose during the future self- crossed purification. Therefore, resistance selection would not be necessary in their progeny populations. The study results thought that dCAPS marker "4451_fon" could be applied on molecular marker assisted selection for Fusarium wilt resistance breeding in watermelon to increase breeding selection efficiency and accelerate breeding progress.
基金Supported by the Research Fund for Mid-career and Young Scientists of Education Department of Hubei Province(Q2011130)~~
文摘[Objective] This study aimed to isolate and purify the antifungal protein against Fusarium oxysporum f. sp niveum (FON) from Bacillus subtilis XG-I. [Method] The crude protein was obtained by using fractional precipitation with am- monium sulfate, then chromatography using both DEAE-Sepharose FF anion ex- change and Sephacryl S-100 gel filtration columns was adopted for further purifica- tion of the protein, followed by MALDI-TOF-MS analysis of the structure of the at- tained protein which was antagonistic to FON. [Result] The result from MALDI-TOF- MS analysis suggested that the antifungal protein extracted from strain XG-1 was highly homologous to the flagellin (gi114278900) deriving from B. subtilis, with a pro- tein score of 248 and a coverage rate of 63%. It was thus speculated that this an- tagonistic protein was a kind of flagellin with a molecular mass of 30.6 kD. [Conclusion] The results from this study provide theoretical basis for clarifying the mechanisms of the action of strain XG-1 as well as important references for the preven- tion and control of watermelon Fusarium wilt.
基金Supported by Fund for Highly Educated People in Yulin College(07gk013)~~
文摘[ Objective ] The study aimed to explore a new way for the control of Tomato Fusarium Wilt. [ Method ] Different solvents were used to prepare the ex-tracts of marigold, and the inhibitory effects of different extraction solvents and different extraction parts of marigold against Tomato Fusar/um Wilt were compared. [ Result ] Among different solvent extracts of marigold, chloroform extracts had the strongest inhibitory effects against the growth of the pathogen; among the chloro- form extracts from different parts of marigold, root extract had the most obvious inhibitory effect against the disease, followed by flower and leaf extracts, and the in- hibitory effect of stem extract was the weakest. [ Conclusion ] The active components of marigold have inhibitory effect against Tomato Fusarium Wilt, and the plant has good development prospects and application value.
基金the Research University Grants(RUGS 91009),Malaysia,for financing this research
文摘This study is aimed at assessing the ability of two endophytic bacteria originally isolated from healthy oil palm roots, Pseudomonas sp. (UPMP3) and Burkholderia sp. (UPMB3) to induce resistance in susceptible Berangan banana against Fusarium oxysporum race 4 (FocR4). Increased accumulation of resistance-related enzymes such as peroxidase (PO), phenylalanine ammonia lyase (PAL), lignithioglycolic acid (LTGA), and pathogenesis-related (PR) proteins (ehitinase and β-1,3-glucanase) has been observed in plantlets treated with endophytic bacteria UPMP3 and UPMB3 singly or as mixture under glasshouse conditions. Pre-inoculation of banana plantlets with UPMP3 showed a significant reduction in Fusarium wilt incidence 72 d after challenged inoculation with FocR4. UPMB3 was less effective in suppressing Fusarium wilt compared to UPMP3, whereas, the mixture of both endophytes showed an intermediate effect. Based on these results, it is concluded that UPMP3 could be a promising biological control agent that can trigger resistance against Fusarium wilt in susceptible Berangan banana.
基金partially supported by the Shanxi Provincial Science and Technology Planning Project,China (20120311019-3)the Shanxi Provincial Science and Technology Foundation Platform Construction Project,China (1105-0104)the Shanxi Provincial Graduate Education Innovation Project,China (2017BY065)
文摘In order to clarify the main pathogens of tomato Fusarium wilt in Shanxi Province, China, morphological identification, elongation factor 1 alpha (EF-1α) sequence analysis, specific primer amplification and pathogenicity tests were applied to study the isolates which were recovered from diseased plants collected from 17 different districts of Shanxi Province. The results were as follows: 1) Through morphological and molecular identification, the following 7 species of Fusarium were identified: F. oxysporum, F. solani, F. verticillioides, F. subglutinans, F. chlamydosporum, F. sporotrichioides, and F. semitectum; 2) 56 isolates of F. oxysporum were identified using specific primer amplification, among which, 29, 5 and 6 isolates were respectively identified as F. oxysporum f. sp. lycopersici physiological race 1, race 2, and race 3; 3) pathogenicity test indicated the significant pathogenicity of F. oxysporum, F. solani, F. verticillioides, and F. subglutinans to tomato plant. Therefore, among these 4 species confirmed as pathogenic to tomato in Shanxi, the highest isolation rate (53.3%) corresponded to F. oxysporum. Three physiological species, race 1, race 2, and race 3 of F. oxysporum f. sp. lycopersici are detected in Shanxi, among which race 1 is the most widespread pathogen and is also considered as the predominant race.
文摘This review summarizes the main advances in cotton breeding for resistance to fusarium and verticillium wilt in the last fifty years in China. The topics discussed include main achievements, experiences, problems and countermeasures for solving.
基金supported by the National Natural Science Foundation of China(Grant No.31902015)Jiangsu Agricultural Science and Technology Innovation Fund[Grant No.CX(19)3029]+2 种基金Natural Science Foundation of Jiangsu Province(Grant Nos.BK20190887,BK20180913)the Yangzhou City’s Green and Golden Phoenix Programthe Creation of Major New Agricultural Varieties in Jiangsu Province(Grant No.PZCZ201720).
文摘Pumpkin(Cucurbita moschata)has been widely used as cucumber(Cucumis sativus L.)rootstock to defend against Fusarium wilt(FW)and increase cucumber yields and profits.However,the resistance genes and mechanisms underlying the FW tolerance in pumpkin are poorly understood.Here we analyzed the transcriptome of pumpkin inoculated with the cucumber FW causal agent Fusarium oxysporum f.sp.cucumerinum(Foc),and obtained 3152 and 4735 upregulated genes induced by Foc at 24h after Foc inoculation compared with at 0h and 24h non-inoculated control,respectively.Next,404 common differentially expressed genes(DEGs)were screened using the criterion log_(2) FPKM(fold change)≥2.In total,206 of 404 DEGs were predominantly expressed in roots,which is the first tissue that Foc contacts and invades.140 DEGs were selected and classified into four groups(pathogenesis resistance,secondary metabolism-related,transcription factor and signal binding)based on their functional descriptions.Then,29 genes having high expression levels were selected to investigate the expression patterns induced by a Foc inoculation.Among them,16 genes were significantly induced by Foc and showed high expression levels at various treatment time points.These candidate genes may act as positive regulators of FW resistance in pumpkin and provide effective resources for improving cucumber FW resistance through breeding programs.
基金supported by the Key Project of Science and Technology in Xinjiang Uyghur Autonomy (200311101),China
文摘Fusarium wilt (FW) is one of the most common cotton diseases in the world. Identification of QTLs conferring resistance to FW is key for the incorporation of resistance genes into elite cultivars. Two intraspecific (cross between Gossypium hirsuturn L.) and one interspecific (cross between Gossypium hirsutum L. and Gossypium bardence L.) F2 populations were constructed by using a highly resistant cultivar and crossing it to a susceptible cultivar with 154, 79, and 148 offsprings, respectively. Simple sequence repeats (SSR) were used to screen genomic regions closely linked to FW resistance. The results showed that five QTLs associated with FW resistance were detected in two intraspecific populations using a composite interval mapping method under four different conditions. Four of these loci located on Chr. 2/Chr. 17 neighboring markers JESPR304 or CIR305 which explained 13.1 to 45.9% of the phenotypic effect. Furthermore, JESPR304 and CIR305 were previously testified and found to be tightly linked. It is possible that these four QTLs detected under different conditions were the same resistance QTL/gene. We consider that there is the possibility of a major FW resistant gene in intraspecific populations. In the interspecific mapping populations two QTLs were detected on Chr. 9 and Chr. 12/26 which explained great phenotypic variance of 49.4 and 45.7%. As the location of QTLs for FW resistance among the intraspecific and the interspecfic populations were totally different, it is suggested that there may be different resistance mechanisms between G. bardence L. and G. hursutum L. Thus, the present research provides an opportunity to understand the genetic control of resistance to FW in Gossypium hirsutum and Gossypium bardence and to conduct MAS in breeding programs to develop FW resistant cultivars.
基金supported by the National Natural Science Foundation of China (30860149 and 31360364)the Joint Support Program from Tropical Crop Breeding Engineering Center of Ministry of Education of China+1 种基金the Crop Science National Key Disciplines of China (lhxm-2012-2)the Key Scientific Research Program from Hainan Province,China (ZDZX2013023)
文摘Fusarium wilt of banana, which is caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), is a serious soil-borne fungal disease. Now, the epigenetic molecular pathogenic basis is elusive. In this study, with methylation-sensitive amplification polymorphism (MSAP) technique, DNA methylation was compared between the leaves inoculated with Foc TR4 and the mock-inoculated leaves at different pathogenic stages. With 25 pairs of primers, 1 144 and 1 255 fragments were amplified from the infected and mock-inoculated leaves, respectively. DNA methylation was both changed and the average methylated CCGG sequences were 34.81 and 29.26% for the infected and the mock-inoculated leaves. And DNA hypermethylation and hypomethylation were induced by pathogen infection during all pathogenic stages. Further, 69 polymorphic fragments were sequenced and 29 of them showed sequence similarity to genes with known functions. And RT-PCR results of four genes indicated that their expression patterns were consistent with their methylation patterns. Our results suggest that DNA methylation plays important roles in pathogenic response to Foc TR4 for banana.
基金Supported by National Space Breeding Project of China(2006HT100113)China Agriculture Research System(CARS-26)Science and Technology Development Fund of Guangxi Academy of Agricultural Sciences(GNK2013YZ26)
文摘[ Objective] This study aimed to establish an appropriate technology system for in vitro screening of Fuzarium wilt-resistant germplasm resources of red edible seed watermelon and obtain variants resistant to fusaric acid, thus providing resistant materials for breeding Fusarium wilt-resistant red edible seed watermel- on. [ Method] Using Zhongxin No. 1 red edible seed watermelon advemitious buds as screening materials and fusaric acid (FA) as a stress agent, in vitro screen- ing of Fusarium wilt-resistant red edible seed watermelon clonal variants and identification of Fusarium wilt-resistance of the germplasm resources of red edible seed watermelon were performed. [ Result] The results showed that the appropriate FA for in vitro screening of Fusarium wilt-resistant red edible seed watermelon vari- ants was 15 mg/L. In vitro screening system for Fusarium wilt-resistant red edible seed watermelon variants was established preliminarily and FA-resistant regenera- ted plants were obtained. Among the 36 germplasm resources of red edible seed watermelon, there were 2 highly resistant materials, 6 moderately resistant materi- als, 11 slightly resistant materials and 17 highly susceptible materials. [ Conclusion] This study confirmed preliminarily that in vitro screening method is effective for obtaining resistant materials of red edible seed watermelon.
基金supported by the National Natural Science Foundation of China(31371680)the Beijing Food Crops Innovation Consortium Program,China(BAIC092016)the earmarked fund for the China Agriculture Research System(CARS-11)
文摘The variant LM1 was previously obtained using embryogenic cell suspension cultures of sweetpotato variety Lizixiang by gamma-ray induced mutation, and then its characteristics were stably inherited through six clonal generations, thus this mutant was named LM1. In this study, systematic characterization of salt tolerance and Fusarium wilt resistance were performed between Lizixiang and mutant LM1. LM1 exhibited significantly higher salt tolerance compared to Lizixiang. The content of proline and activities of superoxide dismutase(SOD) and photosynthesis were significantly increased, while malonaldehyde(MDA) and H_2O_2 contents were significantly decreased compared to that of Lizixiang under salt stress. The inoculation test with Fusarium wilt showed that its Fusarium wilt resistance was also improved. The lignin, total phenolic, jasmonic acid(JA) contents and SOD activity were significantly higher, while H_2O_2 content was significantly lower in LM1 than that in Lizixiang. The expression level of salt stress-responsive and disease resistance-related genes was significantly higher in LM1 than that in Lizixiang under salt and Fusarium wilt stresses, respectively. This result provides a novel and valuable material for improving the salt tolerance and Fusarium wilt resistance of sweetpotato.
文摘High-throughput sequencing technique was applied to analyze the microbial community structure of rhizosphere soil at different stages of watermelon fusarium wilt to find out the difference of dominant microbial community in rhizosphere during the occurrence of watermelon fusarium wilt.Illumina-Hiseq high-throughput sequencing platform was used to sequence 16S and ITS rDNA in rhizosphere soil.The soil was named CK1 before planting,CK2 at peak stage and CK3 at stable stage.The results showed that the soil bacterial diversity was in the order of CK1>CK3>CK2,indicating no significant difference between CK1 and CK3 and a significant difference between CK2 and CK1,CK3.At the genus level,the dominant bacteria were Mizugakiibacter(21.9299%),Rhodanobacter(5.0933%),and Lactobacillus(3.1921%).The diversity of soil fungi was in the order of CK1>CK3>CK2,all showing significant differences.At the genus level,the dominant fungus was Lysurus(54.4601%),Papulaspora(12.4252%),Acrophialophora(3.1729%).The results showed that the diversity and abundance of bacteria and fungi in rhizosphere soil decreased during the peak period of watermelon fusarium wilt.With the gradual stabilization of the disease,the diversity and abundance of bacteria and fungi in rhizosphere soil recovered to a certain extent.
基金supported by the National Natural Science Foundation of China(39830220)
文摘The amount of phenol compounds in the soil increased after adding organic material into the soil. It was found that p-hydroxybenzoic acid, p-coumaric acid and frulic acid alleviated Fusarium wilt of cucumber, the alleviating effect of p-hydroxybenzoic acid was the best, followed by p-coumaric acid and frulic acid. The total amount of bacterial, actinomyces and fungus in high phenol compounds treatment decreased than that of control treatment, while the microorganisms’ amount in low phenol compounds treatment increased. Phenol compounds inhibit the growth of pathogen.
文摘Fusarium wilt caused by Fusarium oxysporum f.sp. cucumerinum (Owen) is one of the most devastating diseases in cucumber production worldwide. Recent progresses in the mechanism of resistance to Fusarium wilt in cucumber were reviewed in this paper, including pathogenic mechanism of Fusarium oxysporum, the resistance mechanism of cucumber, the heredity of resistance, and the location of resistance genes. Following works should be the location and cloning of resistance genes with molecular biologic methods.
基金Supported by Yunnan Science and Technology Innovation Talent Program(2015HA034)National Natural Science Foundation of China(NSFC31560505)
文摘Fusarium wilt of banana, caused by Fusarium oxysporum f. sp. cubense tropic race 4(Foc TR4), is a typical vascular and soil-borne disease which has significantly threatened the sustainable development of banana industry. In order to reveal the infection process and pathogenesis of Foc TR4, the young mycelia(66.7 mg/ml) of wild-type strain of Foc TR4(WT-Foc TR4) cultured for 18-20 h were lysed with enzyme mixture for protoplast formation, which consisted of 25 mg/ml driselase, 0.4 mg/ml chitinase, 15 mg/ml lysing enzyme and 1.2 mol/L potassium chloride. The resulted protoplasts of 2×10~7 cells/ml were used to test the efficiency of transformation mediated by polyethylene glycol, and up to 9 transformants per microgram of DNA were obtained. AmCyan, RFP and YFP genes were stably transferred into the WT-Foc TR4, separately, using the protoplast transformation system. The gene FoOCH1 encoding α-1, 6-mannosyltransferase in the WT-Foc TR4 was knocked out using the split-marker recombination technology. The genetic transformation and gene knockout system in this pathogen lays a foundation for the study of functional genomics and plant-pathogen interactions.
基金the National Key R&D Program of China,2019YFD1001300 and 2019YFD1001305China Agriculture Research System of MOF and MARA,China.
文摘Fusarium wilt,a disease caused by Fusarium oxysporum f.sp batatas(Fob)is an important disease in sweet potato production.Using endophytic bacteria for biological control of sweet potato diseases is one of the important ways.A Bacillus subtilis with antagonistic effect on Fusarium wilt of sweet potato was isolated from soil by confrontation culture.According to the biological characteristics,16S rDNA sequence analysis,and physiological and biochemical analysis,the Bacillus subtilis HAAS01 was named.A pot experiment was conducted for the biological control experiment of strain HAAS01,and the endogenous hormone content,antioxidant enzyme activity,soluble protein content,and related gene expressions of sweet potato plants were detected.The results showed that the HAAS01 strain could promote the production of endogenous hormones and resist the infection of plant diseases together with defensive enzymes and upregulation of related gene expressions.In summary,Bacillus subtilis HAAS01 was effective in controlling Fusarium wilt of sweet potato and has potential for application and development.
基金Supported by Special Fund for Nonprofit Industry of Ministry of Agriculture(2011R20A24B02)Support Project of Science and Technology Ministry(2012BAC17B02-2-1)+1 种基金Nonprofit Agricultural Research Projects of Zhejiang Province(2010C32016)Provincial Major Science and Technology Projects(priority topics)for Agricultural Program(2008C12045-1)
文摘With conventional fertilization as the control, the control effects of biological fertilizer and general organic fertilizer on watermelon Fusarium wilt were studied in the paper. The results showed that applying biological fertilizer could effectively reduce the incidence rate of watermelon Fusarium wilt and significantly improve the quality of watermelon, while application of general organic fertilizer had no obvious control effect on watermelon Fusarium wilt.