The physical model describing the Yin-Yang balance in the tai-chi diagram via the melting and freezing processes in a rotating device presented in parts 1 and 2 is further developed for the contemporary tai-chi diagra...The physical model describing the Yin-Yang balance in the tai-chi diagram via the melting and freezing processes in a rotating device presented in parts 1 and 2 is further developed for the contemporary tai-chi diagram and in the yuan-chi diagram. The contemporary tai-chi diagram shown in Fig.1 is a simplification form of the ancient tai-chi diagram presented in Reference [2]. There are two semi-circles forming the interface curve between the yin and yang in the contemporary tai-chi diagram. By knowing the location of the interface between the yin and yang in the contemporary tai-chi diagram, the requirement for the simulation model is to find the condition to match the interface location. The simplification changes not only the structure but also the physical insight of the ancient tai-chi diagram, which will be described in the present study.The yuan-chi diagram shown in Fig.2 is the combination of the Master Chen’s tai-chi diagram presented in References [1,2] and the contemporary tai-chi diagram.展开更多
The particle paths of the Lagrangian flow field simulate very well the interface curve of the Yin-Yang balance in the ancient Tal-Chi diagram. There are four forms called the "four states" in the Tai-Chi diagram. Of...The particle paths of the Lagrangian flow field simulate very well the interface curve of the Yin-Yang balance in the ancient Tal-Chi diagram. There are four forms called the "four states" in the Tai-Chi diagram. Of the four states, under Yang are the Major Yang and the Minor Yin, and under Yin are the Major Yin and the Minor Yang. The present study provides the proper positions of the four states in the ancient Tal-Chi diagram. The Fu Xi's Eight Trigrams Chart located along the ancient Tai-Chi diagram is also developed in the present study. The interface curve of Yin-Yang in the ancient Tai-Chi diagram has never been described mathematically. It can now be formulated by the equations describing the particle paths in the Lagrangian flow field.展开更多
基金The present work is being supported by the Natural Sciences and Engineering Research Council of Canada under Grant No. OGP0007929.
文摘The physical model describing the Yin-Yang balance in the tai-chi diagram via the melting and freezing processes in a rotating device presented in parts 1 and 2 is further developed for the contemporary tai-chi diagram and in the yuan-chi diagram. The contemporary tai-chi diagram shown in Fig.1 is a simplification form of the ancient tai-chi diagram presented in Reference [2]. There are two semi-circles forming the interface curve between the yin and yang in the contemporary tai-chi diagram. By knowing the location of the interface between the yin and yang in the contemporary tai-chi diagram, the requirement for the simulation model is to find the condition to match the interface location. The simplification changes not only the structure but also the physical insight of the ancient tai-chi diagram, which will be described in the present study.The yuan-chi diagram shown in Fig.2 is the combination of the Master Chen’s tai-chi diagram presented in References [1,2] and the contemporary tai-chi diagram.
文摘The particle paths of the Lagrangian flow field simulate very well the interface curve of the Yin-Yang balance in the ancient Tal-Chi diagram. There are four forms called the "four states" in the Tai-Chi diagram. Of the four states, under Yang are the Major Yang and the Minor Yin, and under Yin are the Major Yin and the Minor Yang. The present study provides the proper positions of the four states in the ancient Tal-Chi diagram. The Fu Xi's Eight Trigrams Chart located along the ancient Tai-Chi diagram is also developed in the present study. The interface curve of Yin-Yang in the ancient Tai-Chi diagram has never been described mathematically. It can now be formulated by the equations describing the particle paths in the Lagrangian flow field.