目的研究呼出气一氧化氮(FeNO)、血清免疫球蛋白E(IgE)和基质金属蛋白酶9(MMP9)的水平与儿童哮喘急性发作之间的关系,为儿童哮喘的预防及治疗提供依据。方法选取沈阳市妇婴医院于2020年11月至2022年11月收治的98例支气管哮喘急性发作期...目的研究呼出气一氧化氮(FeNO)、血清免疫球蛋白E(IgE)和基质金属蛋白酶9(MMP9)的水平与儿童哮喘急性发作之间的关系,为儿童哮喘的预防及治疗提供依据。方法选取沈阳市妇婴医院于2020年11月至2022年11月收治的98例支气管哮喘急性发作期儿童作为急性组,按照病情程度分成轻度组(n=32)、中度组(n=38)和重度组(n=28),按照2∶1的比例选出49例同期在门诊治疗的处于支气管哮喘缓解期的儿童作为缓解组,随机选取健康体检儿童49例作为健康对照组,分别对他们进行FeNO、MMP9和血清IgE及肺功能[用力肺活量(FVC)、1秒用力呼气量(FEV_(1))、FEV_(1)/FVC%、最大呼气流量(PEF)]检测。应用Pearson相关分析探讨哮喘急性发作期FeNO、MMP9及血清IgE和肺功能之间的联系,并对三者在支气管哮喘急性发作中的预测价值进行分析。结果急性组、缓解组和对照组的年龄、性别、体重指数和病程的比较,差异无统计学意义(P>0.05)。急性组FeNO、MMP9、血清IgE分别为(59.95±12.65)ppb、(4.87±1.44)pg/ml、(330.63±74.88)IU/ml,缓解组分别为(25.23±8.23)ppb、(1.21±0.02)pg/ml、(152.23±32.12)IU/ml,均高于对照组的(12.43±4.09)ppb、(0.53±0.24)pg/ml、(126.34±57.33)IU/ml,差异具有统计学意义(P<0.05)。急性期和缓解期FVC、FEV1、FEV1/FVC%、PEF均低于对照组,差异具有统计学意义(P<0.05)。支气管哮喘急性发作中度组FeNO、MMP9、血清IgE水平分别为(49.23±6.23)ppb、(1.21±0.02)pg/ml、(282.61±59.83)IU/ml,重度组分别为(67.43±10.09)ppb、(0.53±0.24)pg/ml、(356.49±70.82)IU/ml,均高于轻度组的(34.62±10.65)ppb、(4.87±1.44)pg/ml,(189.21±14.33)IU/ml,差异具有统计学意义(P<0.05)。在轻度组中FeNO、MMP9和血清IgE水平均较低,而在中度组中这些指标均较高,其中FVC、FEV_(1)、FEV_(1)/FVC%和PEF均较低,差异具有统计学意义(P<0.05)。FeNO以及MMP9与血清IgE水平呈正相关(P<0.05),FeNO、MMP9以及血清IgE水平与FVC、FEV_(1)、FEV_(1)/FVC%、PEF均呈负相关(P<0.05)。MMP9在支气管哮喘的诊断中表现出了显著的优势,当达到最大约登指数时,对应的截断值为1.17,曲线下面积(Area under curve,AUC)为0.83,敏感度和特异性也分别达到了90.13%和86.5%。结论支气管哮喘急性发作的儿童血清中的FeNO、MMP9以及血清IgE水平显著增高,随肺部功能恶化程度加重而上升,可能与支气管哮喘急性发作患儿肺功能损害程度有关。展开更多
Cotton is a pivotal economic crop for natural textile fibers that also serves as an important source of edible oil(Long et al.2023).Cottonseed oil contains approximately14%oleic acid and 59%linoleic acid.An increase i...Cotton is a pivotal economic crop for natural textile fibers that also serves as an important source of edible oil(Long et al.2023).Cottonseed oil contains approximately14%oleic acid and 59%linoleic acid.An increase in monounsaturated fatty acids,particularly oleic acid,enhances the oxidative stability and nutritional value of edible oil(Chen et al.2021).展开更多
Background Genome editing has been considered as powerful tool in agricultural fields.However,genome editing progress in cattle has not been fast as in other mammal species,for some disadvantages including long gestat...Background Genome editing has been considered as powerful tool in agricultural fields.However,genome editing progress in cattle has not been fast as in other mammal species,for some disadvantages including long gestational periods,single pregnancy,and high raising cost.Furthermore,technically demanding methods such as microinjection and somatic cell nuclear transfer(SCNT)are needed for gene editing in cattle.In this point of view,electroporation in embryos has been risen as an alternative.Results First,editing efficiency of our electroporation methods were tested for embryos.Presence of mutation on embryo was confirmed by T7E1 assay.With first combination,mutation rates for MSTN and PRNP were 57.6%±13.7%and 54.6%±13.5%,respectively.In case of MSTN/BLG,mutation rates were 83.9%±23.6%for MSTN,84.5%±18.0%for BLG.Afterwards,the double-KO embryos were transferred to surrogates and mutation rate was identified in resultant calves by targeted deep sequencing.Thirteen recipients were transferred for MSTN/PRNP,4 calves were delivered,and one calf underwent an induction for double KO.Ten surrogates were given double-KO embryos for MSTN/BLG,and four of the six calves that were born had mutations in both genes.Conclusions These data demonstrated that production of genome edited cattle via electroporation of RNP could be effectively applied.Finally,MSTN and PRNP from beef cattle and MSTN and BLG from dairy cattle have been born and they will be valuable resources for future precision breeding.展开更多
Noncoding RNAs instruct the Cas9 nuclease to site speifillyl cleave DNA in the CRISPR/Cas9 system.Despite the high incidence of hepatocellular carcinoma(HCC),the patient's outcome is poor.As a result of the emerge...Noncoding RNAs instruct the Cas9 nuclease to site speifillyl cleave DNA in the CRISPR/Cas9 system.Despite the high incidence of hepatocellular carcinoma(HCC),the patient's outcome is poor.As a result of the emergence of therapeutic resistance in HCC patients,dlinicians have faced difficulties in treating such tumor.In addition,CRISPR/Cas9 screens were used to identify genes that improve the dlinical response of HCC patients.It is the objective of this article to summarize the current understanding of the use of the CRISPR/Cas9 system for the treatment of cancer,with a particular emphasis on HCC as part of the current state of knowledge.Thus,in order to locate recent developments in oncology research,we examined both the Scopus database and the PubMed database.The ability to selectively interfere with gene expression in combinatorial CRISPR/Cas9 screening can lead to the discovery of new effective HCC treatment regimens by combining clinically approved drugs.Drug resistance can be overcome with the help of the CRISPR/Cas9 system.HCC signature genes and resistance to treatment have been uncovered by genome-scale CRISPR activation screening although this method is not without limitations.It has been extensively examined whether CRISPR can be used as a tool for disease research and gene therapy.CRISPR and its applications to tumor research,particularly in HCC,are examined in this study through a review of the literature.展开更多
Changes in lipid metabolism have been implicated in protection against infectious diseases. In the first experiment of this study, we measured clinical lipid parameters in a murine model where the unmethylated cytidin...Changes in lipid metabolism have been implicated in protection against infectious diseases. In the first experiment of this study, we measured clinical lipid parameters in a murine model where the unmethylated cytidine phosphate guanosine (CpG) oligodinucleotide (ODN1826), a Toll-like receptor 9 (TLR9) agonist was administered in combination with D-galactosamine (GalN) that caused relatively liver-specific inflammation and toxicity. In the control mice group injected with phosphate-buffered saline (PBS) (acute psychological stress model associated with blood sampling), the serum triglyceride (TG) levels showed a rapid decrease followed by a rebound at 24 h as we have recently reported. However, such a TG rebound was impaired in the CpG/GalN- and solely CpG-treated groups of mice despite an absence of liver injury based on serum alanine aminotransferase levels in the latter group. Thus, the stress-associated serum TG rebound was abrogated by the injection of a sub-hepatotoxic CpG dose. In the second experiment, we simply measured the hepatic CD36 and SACRB1 (the gene for scavenger receptor B1 (SR-B1)) transcripts after the i.p. administration of PBS, CpG or CpG/GalN. There was a remarkable elevation of hepatic CD36 transcript expression in both the CpG- and CpG/GalN-treated mice at 8 h post-CpG injection whereas the increase in the PBS-treated mice was slower than the former two groups, suggesting that hepatic CD36 transcript expression is more pronounced in the combined stress models than under psychological stress alone. The individual mice data showed that the increase in CD36 expression was accompanied by a reduction in SCARB1 mRNA, showing reciprocal regulation between these two genes. Together with our previously reported findings, these data suggest that, in a murine model combining psychological stress with TLR-triggered hepatic inflammation, the psychological stress facilitates liver uptake of plasma TG (and its components fatty acids), but the subsequent re-esterification and/or release of TG-rich lipoproteins from the liver is impaired due to the concomitant TLR-signaling. We hypothesize that lipid metabolism during acute stress shifts toward an elevated hepatic uptake of lipids due to concomitant TLR signaling, facilitating the clearance of bacterial lipids by the liver.展开更多
H9N2 virus has been widely distributed in wild birds and poultry around the world since its first emergence in the United States of America in 1966(Gu et al.2017;Carnaccini and Perez 2020).The virus appeared in chicke...H9N2 virus has been widely distributed in wild birds and poultry around the world since its first emergence in the United States of America in 1966(Gu et al.2017;Carnaccini and Perez 2020).The virus appeared in chickens in China in the early 1990s,and over the last two decades has gradually become the dominant epidemic subtype(Sun and Liu 2015;Bi et al.2020).Although H9N2 virus infection alone cannot cause severe disease or death in poultry,H9N2 virus-infected birds experience a degree of egg production drop and can be easily infected by other pathogens,thus causing economic losses for poultry industry.展开更多
The development and maturation of the CRISPR/Cas genome editing system provides a valuable tool for plant functional genomics and genetic improvement.Currently available genome-editing tools have a limited number of t...The development and maturation of the CRISPR/Cas genome editing system provides a valuable tool for plant functional genomics and genetic improvement.Currently available genome-editing tools have a limited number of targets,restricting their application in genetic research.In this study,we developed a novel CRISPR/Cas9 plant ultra-multiplex genome editing system consisting of two template vectors,eight donor vectors,four destination vectors,and one primer-design software package.By combining the advantages of Golden Gate cloning to assemble multiple repetitive fragments and Gateway recombination to assemble large fragments and by changing the structure of the amplicons used to assemble sg RNA expression cassettes,the plant ultra-multiplex genome editing system can assemble a single binary vector targeting more than 40 genomic loci.A rice knockout vector containing 49 sg RNA expression cassettes was assembled and a high co-editing efficiency was observed.This plant ultra-multiplex genome editing system advances synthetic biology and plant genetic engineering.展开更多
Soybean is a broadly popular and extensively cultivated crop,however,many high-yield and high-quality varieties require specific growth conditions,restricting their widespread adoption.The appropriate light conditions...Soybean is a broadly popular and extensively cultivated crop,however,many high-yield and high-quality varieties require specific growth conditions,restricting their widespread adoption.The appropriate light conditions and photoperiod must be attained for these varieties to thrive in new environments.In this study,we employed CRISPR/Cas9 to design two sgRNAs aimed at knocking out the maturity-related gene E4 in a major American soybean variety called''Jack'',which belongs to maturity group MGII.E4 gene is primarily involved in the photoperiodic flowering and maturity in soybean,making it an ideal candidate for genetic manipulation.We successfully obtained 1 homozygous E4-SG1 mutant type with 1-bp insertion,and 4 homozygous E4-SG2 mutants type with 2-bp deletion,7-bp deletion,61-bp deletion,and 1-bp insertion,respectively.The homozygous e4 mutant plants contained early termination codons devoid of transgenic elements.Additionally,no potential offtarget sites of the E4 gene were detected.A comparative analysis revealed that,unlike the wild-type,the maturity time of homozygous e4 mutants was early under both short-day and long-day conditions.These mutants offer novel germplasm resources that may be used to modify the photoperiod sensitivity and maturity of soybean,enhancing its adaptability to high-latitude regions.展开更多
Genetic pest control strategies based on precise sex separation and only releasing sterile males can be accomplished by site-specific genome editing.In the current study,we showed that the mutation of single-allele Px...Genetic pest control strategies based on precise sex separation and only releasing sterile males can be accomplished by site-specific genome editing.In the current study,we showed that the mutation of single-allele Pxfl(2)d can significantly impair the normal mating behavior and testis development in male adults of the notorious cruciferous insect pest Plutella xylostella,in addition to its known functions in the ovarian development in female adults and egg hatching.Subsequent CRISPR/Cas9-based knock-in experiments revealed that site-specific integration of an exogenous green fluorescent protein(GFP)gene into autosomal Pxfl(2)d for labelling mutants could be achieved.However,this gene is not a suitable target for GFP insertion to establish a genetically stable knock-in strain because of the severe decline in reproductive capacity.We further screened for the W-chromosome-linked and Z-chromosome-linked regions to test the knock-in efficiency mediated by CRISPR/Cas9.The results verified that both types of chromosomes can be targeted for the site-specific insertion of exogenous sequences.We ultimately obtained a homozygous knock-in strain with the integration of both Cas9 and cyan fluorescent protein(CFP)expression cassettes on a Z-linked region in P.xylostella,which can also be used for early sex detection.By injecting the sgRNA targeting Pxfl(2)d alone into the eggs laid by female adults of the Z-Cas9-CFP strain,the gene editing efficiency reached 29.73%,confirming the success of expressing a functional Cas9 gene.Taken together,we demonstrated the feasibility of the knock-in of an exogenous gene to different genomic regions in P.xylostella,while the establishment of a heritable strain required the positioning of appropriate sites.This study provides an important working basis and technical support for further developing genetic strategies for insect pest control.展开更多
BACKGROUND Pancreatic ductal adenocarcinoma(PDAC)is a common cancer with increasing morbidity and mortality due to changes of social environment.AIM To evaluate the significance of serum carbohydrate antigen 19-9(CA19...BACKGROUND Pancreatic ductal adenocarcinoma(PDAC)is a common cancer with increasing morbidity and mortality due to changes of social environment.AIM To evaluate the significance of serum carbohydrate antigen 19-9(CA19-9)and tumor size changes pre-and post-neoadjuvant therapy(NAT).METHODS This retrospective study was conducted at the Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment,Chongqing University Cancer Hospital.This study specifically assessed CA19-9 levels and tumor size before and after NAT.RESULTS A total of 156 patients who completed NAT and subsequently underwent tumor resection were included in this study.The average age was 65.4±10.6 years and 72(46.2%)patients were female.Before survival analysis,we defined the post-NAT serum CA19-9 level/pre-NAT serum CA19-9 level as the CA19-9 ratio(CR).The patients were divided into three groups:CR<0.5,CR>0.5 and<1 and CR>1.With regard to tumor size measured by both computed tomography and magnetic resonance imaging,we defined the post-NAT tumor size/pre-NAT tumor size as the tumor size ratio(TR).The patients were then divided into three groups:TR<0.5,TR>0.5 and<1 and TR>1.Based on these groups divided according to CR and TR,we performed both overall survival(OS)and disease-free survival(DFS)analyses.Log-rank tests showed that both OS and DFS were significantly different among the groups according to CR and TR(P<0.05).CR and TR after NAT were associated with increased odds of achieving a complete or near-complete pathologic response.Moreover,CR(hazard ratio:1.721,95%CI:1.373-3.762;P=0.006),and TR(hazard ratio:1.435,95%CI:1.275-4.363;P=0.014)were identified as independent factors associated with OS.CONCLUSION This study demonstrated that post-NAT serum CA19-9 level/pre-NAT serum CA19-9 level and post-NAT tumor size/pre-NAT tumor size were independent factors associated with OS in patients with PDAC who received NAT and subsequent surgical resection.展开更多
BACKGROUND Hepatocellular carcinoma(HCC)is a prevalent and aggressive tumor.Sorafenib is the first-line treatment for patients with advanced HCC,but resistance to sorafenib has become a significant challenge in this t...BACKGROUND Hepatocellular carcinoma(HCC)is a prevalent and aggressive tumor.Sorafenib is the first-line treatment for patients with advanced HCC,but resistance to sorafenib has become a significant challenge in this therapy.Cancer stem cells play a crucial role in sorafenib resistance in HCC.Our previous study revealed that the long non-coding RNA(lncRNA)KIF9-AS1 is an oncogenic gene in HCC.However,the role of KIF9-AS1 in drug resistance and cancer stemness in HCC remains unclear.Herein,we aimed to investigate the function and mechanism of the lncRNA KIF9-AS1 in cancer stemness and drug resistance in HCC.AIM To describe the role of the lncRNA KIF9-AS1 in cancer stemness and drug resistance in HCC and elucidate the underlying mechanism.METHODS Tumor tissue and adjacent non-cancerous tissue samples were collected from HCC patients.Sphere formation was quantified via a tumor sphere assay.Cell viability,proliferation,and apoptosis were evaluated via Cell Counting Kit-8,flow cytometry,and colony formation assays,respectively.The interactions between the lncRNA KIF9-AS1 and its downstream targets were confirmed via RNA immunoprecipitation and coimmunoprecipitation.The tumorigenic role of KIF9-AS1 was validated in a mouse model.RESULTS Compared with that in normal controls,the expression of the lncRNA KIF9-AS1 was upregulated in HCC tissues.Knockdown of KIF9-AS1 inhibited stemness and attenuated sorafenib resistance in HCC cells.Mechanistically,N6-methyladenosine modification mediated by methyltransferase-like 3/insulin-like growth factor 2 mRNA-binding protein 1 stabilized and increased the expression of KIF9-AS1.Additionally,KIF9-AS1 increased the stability and expression of short stature homeobox 2 by promoting ubiquitin-specific peptidase 1-induced deubiquitination.Furthermore,depletion of KIF9-AS1 alleviated sorafenib resistance in a xenograft mouse model of HCC.CONCLUSION The N6-methyladenosine-modified lncRNA KIF9-AS1 promoted stemness and sorafenib resistance in HCC by upregulating short stature homeobox 2 expression.展开更多
Developing reliable and efficient anode materials is essential for the successfully practical application of sodium-ion batteries.Herein,employing a straightforward and rapid chemical vapor deposition technique,two-di...Developing reliable and efficient anode materials is essential for the successfully practical application of sodium-ion batteries.Herein,employing a straightforward and rapid chemical vapor deposition technique,two-dimensional layered ternary indium phosphorus sulfide(In_(2)P_(3)S_(9)) nanosheets are prepared.The layered structure and ternary composition of the In_(2)P_(3)S_(9) electrode result in impressive electrochemical performance,including a high reversible capacity of 704 mA h g^(-1) at 0.1 A g^(-1),an outstanding rate capability with 425 mA h g^(-1) at 5 A g^(-1),and an exceptional cycling stability with a capacity retention of88% after 350 cycles at 1 A g^(-1).Furthermore,sodium-ion full cell also affords a high capacity of 308 and114 mA h g^(-1) at 0.1 and 5 A g^(-1).Ex-situ X-ray diffraction and ex-situ high-resolution transmission electron microscopy tests are conducted to investigate the underlying Na-storage mechanism of In_(2)P_(3)S_(9).The results reveal that during the first cycle,the P-S bond is broken to form the elemental P and In_(2)S_(3),collectively contributing to a remarkably high reversible specific capacity.The excellent electrochemical energy storage results corroborate the practical application potential of In_(2)P_(3)S_(9) for sodium-ion batteries.展开更多
Background:The threat of avian influenza a subtype avian influenza A(H9N2)virus remains a significant concern,necessitating the exploration of novel antiviral agents.This study employs network pharmacology and computa...Background:The threat of avian influenza a subtype avian influenza A(H9N2)virus remains a significant concern,necessitating the exploration of novel antiviral agents.This study employs network pharmacology and computational analysis to investigate the potential of kuwanons,a natural compounds against H9N2 influenza virus.Methods:Leveraging comprehensive databases and bioinformatics tools,we elucidate the molecular mechanisms underlying Kuwanons pharmacological effects against H9N2 influenza virus.Network pharmacology identifies H9N2 influenza virus targets and compounds through integrated protein-protein interaction and Kyoto Encyclopedia of Genes and Genomes analyses.Molecular docking studies were performed to assess the binding affinities and structural interactions of Kuwanon analogues with key targets,shedding light on their potential inhibitory effects on viral replication and entry.Results:Compound-target network analysis revealed complex interactions(120 nodes,163 edges),with significant interactions and an average node degree of 2.72.Kyoto Encyclopedia of Genes and Genomes analysis revealed pathways such as Influenza A,Cytokine-cytokine receptor interaction pathway in H9N2 influenza virus.Molecular docking studies revealed that the binding free energy for the docked ligands ranged between-5.2 and-9.4 kcal/mol for the human interferon-beta crystal structure(IFNB1,Protein Data Bank:1AU1)and-5.4 and-9.6 kcal/mol for Interleukin-6(IL-6,PDB:4CNI).Conclusion:Our findings suggest that kuwanon exhibits promising antiviral activity against H9N2 influenza virus by targeting specific viral proteins,highlighting its potential as a natural therapeutic agent in combating avian influenza infections.展开更多
BACKGROUND Hepatic metastases are common and difficult to treat after colorectal cancer(CRC)surgery.The predictive value of carcinoembryonic antigen(CEA),cancer antigen(CA)125 and CA19-9 combined tests for liver metas...BACKGROUND Hepatic metastases are common and difficult to treat after colorectal cancer(CRC)surgery.The predictive value of carcinoembryonic antigen(CEA),cancer antigen(CA)125 and CA19-9 combined tests for liver metastasis is unclear.AIM To evaluate predictive value of combined tests for CEA,CA125,and CA19-9 levels in patients with liver metastases of CRC.METHODS The retrospective study included patients with CRC alone(50 cases)and patients with CRC combined with liver metastases(50 cases)who were hospitalized between January 2021 and January 2023.Serum CEA,CA125 and CA19-9 levels were compared between the two groups,and binary logistic regression was used to analyze the predictive value of the combination of these tumor markers in liver metastasis.In addition,we performed receiver operating characteristic(ROC)curve analysis to assess its diagnostic accuracy.RESULTS The results showed that the serum CEA,CA125 and CA19-9 levels in the CRC with liver metastasis group were significantly higher than those in the CRC alone group.Specifically,the average serum CEA level in the CRC with liver metastasis group was 162.03±810.01 ng/mL,while that in the CRC alone group was 5.71±9.76 ng/mL;the average serum CA125 levels were 43.47±83.52 U/mL respectively.and 13.5±19.68 U/mL;the average serum CA19-9 levels were 184.46±473.13 U/mL and 26.55±43.96 U/mL respectively.In addition,binary logistic regression analysis showed that CA125 was significant in predicting CRC liver metastasis(P<0.05).ROC curve analysis results showed that the areas under the ROC curves of CEA,CA125 and CA19-9 were 0.607,0.692 and 0.586.CONCLUSION These results suggest that combined detection of these tumor markers may help early detection and intervention of CRC liver metastasis,thereby improving patient prognosis.展开更多
文摘目的研究呼出气一氧化氮(FeNO)、血清免疫球蛋白E(IgE)和基质金属蛋白酶9(MMP9)的水平与儿童哮喘急性发作之间的关系,为儿童哮喘的预防及治疗提供依据。方法选取沈阳市妇婴医院于2020年11月至2022年11月收治的98例支气管哮喘急性发作期儿童作为急性组,按照病情程度分成轻度组(n=32)、中度组(n=38)和重度组(n=28),按照2∶1的比例选出49例同期在门诊治疗的处于支气管哮喘缓解期的儿童作为缓解组,随机选取健康体检儿童49例作为健康对照组,分别对他们进行FeNO、MMP9和血清IgE及肺功能[用力肺活量(FVC)、1秒用力呼气量(FEV_(1))、FEV_(1)/FVC%、最大呼气流量(PEF)]检测。应用Pearson相关分析探讨哮喘急性发作期FeNO、MMP9及血清IgE和肺功能之间的联系,并对三者在支气管哮喘急性发作中的预测价值进行分析。结果急性组、缓解组和对照组的年龄、性别、体重指数和病程的比较,差异无统计学意义(P>0.05)。急性组FeNO、MMP9、血清IgE分别为(59.95±12.65)ppb、(4.87±1.44)pg/ml、(330.63±74.88)IU/ml,缓解组分别为(25.23±8.23)ppb、(1.21±0.02)pg/ml、(152.23±32.12)IU/ml,均高于对照组的(12.43±4.09)ppb、(0.53±0.24)pg/ml、(126.34±57.33)IU/ml,差异具有统计学意义(P<0.05)。急性期和缓解期FVC、FEV1、FEV1/FVC%、PEF均低于对照组,差异具有统计学意义(P<0.05)。支气管哮喘急性发作中度组FeNO、MMP9、血清IgE水平分别为(49.23±6.23)ppb、(1.21±0.02)pg/ml、(282.61±59.83)IU/ml,重度组分别为(67.43±10.09)ppb、(0.53±0.24)pg/ml、(356.49±70.82)IU/ml,均高于轻度组的(34.62±10.65)ppb、(4.87±1.44)pg/ml,(189.21±14.33)IU/ml,差异具有统计学意义(P<0.05)。在轻度组中FeNO、MMP9和血清IgE水平均较低,而在中度组中这些指标均较高,其中FVC、FEV_(1)、FEV_(1)/FVC%和PEF均较低,差异具有统计学意义(P<0.05)。FeNO以及MMP9与血清IgE水平呈正相关(P<0.05),FeNO、MMP9以及血清IgE水平与FVC、FEV_(1)、FEV_(1)/FVC%、PEF均呈负相关(P<0.05)。MMP9在支气管哮喘的诊断中表现出了显著的优势,当达到最大约登指数时,对应的截断值为1.17,曲线下面积(Area under curve,AUC)为0.83,敏感度和特异性也分别达到了90.13%和86.5%。结论支气管哮喘急性发作的儿童血清中的FeNO、MMP9以及血清IgE水平显著增高,随肺部功能恶化程度加重而上升,可能与支气管哮喘急性发作患儿肺功能损害程度有关。
基金supported by the Science and Technology Innovation Talents in Universities of Henan Province,China(24HASTIT053)the National Natural Science Foundation of China(32172041)+1 种基金the Natural Science Foundation of Henan Province,China(232300421026)the Science and Technology Innovation 2030,China(2022ZD0402001-04)。
文摘Cotton is a pivotal economic crop for natural textile fibers that also serves as an important source of edible oil(Long et al.2023).Cottonseed oil contains approximately14%oleic acid and 59%linoleic acid.An increase in monounsaturated fatty acids,particularly oleic acid,enhances the oxidative stability and nutritional value of edible oil(Chen et al.2021).
基金financially supported by the National Research Foundation of Korea(NRF-2021R1A5A1033157 for SRC program:382 Comparative medicine Disease Research Center,NRF-2021R1F1A105195313)the Research Institute of Veterinary Science,the BK21 Four for Future Veterinary Medicine Leading Education and Research Center,and a Seoul National University(SNU)grant(#550e2020005)。
文摘Background Genome editing has been considered as powerful tool in agricultural fields.However,genome editing progress in cattle has not been fast as in other mammal species,for some disadvantages including long gestational periods,single pregnancy,and high raising cost.Furthermore,technically demanding methods such as microinjection and somatic cell nuclear transfer(SCNT)are needed for gene editing in cattle.In this point of view,electroporation in embryos has been risen as an alternative.Results First,editing efficiency of our electroporation methods were tested for embryos.Presence of mutation on embryo was confirmed by T7E1 assay.With first combination,mutation rates for MSTN and PRNP were 57.6%±13.7%and 54.6%±13.5%,respectively.In case of MSTN/BLG,mutation rates were 83.9%±23.6%for MSTN,84.5%±18.0%for BLG.Afterwards,the double-KO embryos were transferred to surrogates and mutation rate was identified in resultant calves by targeted deep sequencing.Thirteen recipients were transferred for MSTN/PRNP,4 calves were delivered,and one calf underwent an induction for double KO.Ten surrogates were given double-KO embryos for MSTN/BLG,and four of the six calves that were born had mutations in both genes.Conclusions These data demonstrated that production of genome edited cattle via electroporation of RNP could be effectively applied.Finally,MSTN and PRNP from beef cattle and MSTN and BLG from dairy cattle have been born and they will be valuable resources for future precision breeding.
文摘Noncoding RNAs instruct the Cas9 nuclease to site speifillyl cleave DNA in the CRISPR/Cas9 system.Despite the high incidence of hepatocellular carcinoma(HCC),the patient's outcome is poor.As a result of the emergence of therapeutic resistance in HCC patients,dlinicians have faced difficulties in treating such tumor.In addition,CRISPR/Cas9 screens were used to identify genes that improve the dlinical response of HCC patients.It is the objective of this article to summarize the current understanding of the use of the CRISPR/Cas9 system for the treatment of cancer,with a particular emphasis on HCC as part of the current state of knowledge.Thus,in order to locate recent developments in oncology research,we examined both the Scopus database and the PubMed database.The ability to selectively interfere with gene expression in combinatorial CRISPR/Cas9 screening can lead to the discovery of new effective HCC treatment regimens by combining clinically approved drugs.Drug resistance can be overcome with the help of the CRISPR/Cas9 system.HCC signature genes and resistance to treatment have been uncovered by genome-scale CRISPR activation screening although this method is not without limitations.It has been extensively examined whether CRISPR can be used as a tool for disease research and gene therapy.CRISPR and its applications to tumor research,particularly in HCC,are examined in this study through a review of the literature.
文摘Changes in lipid metabolism have been implicated in protection against infectious diseases. In the first experiment of this study, we measured clinical lipid parameters in a murine model where the unmethylated cytidine phosphate guanosine (CpG) oligodinucleotide (ODN1826), a Toll-like receptor 9 (TLR9) agonist was administered in combination with D-galactosamine (GalN) that caused relatively liver-specific inflammation and toxicity. In the control mice group injected with phosphate-buffered saline (PBS) (acute psychological stress model associated with blood sampling), the serum triglyceride (TG) levels showed a rapid decrease followed by a rebound at 24 h as we have recently reported. However, such a TG rebound was impaired in the CpG/GalN- and solely CpG-treated groups of mice despite an absence of liver injury based on serum alanine aminotransferase levels in the latter group. Thus, the stress-associated serum TG rebound was abrogated by the injection of a sub-hepatotoxic CpG dose. In the second experiment, we simply measured the hepatic CD36 and SACRB1 (the gene for scavenger receptor B1 (SR-B1)) transcripts after the i.p. administration of PBS, CpG or CpG/GalN. There was a remarkable elevation of hepatic CD36 transcript expression in both the CpG- and CpG/GalN-treated mice at 8 h post-CpG injection whereas the increase in the PBS-treated mice was slower than the former two groups, suggesting that hepatic CD36 transcript expression is more pronounced in the combined stress models than under psychological stress alone. The individual mice data showed that the increase in CD36 expression was accompanied by a reduction in SCARB1 mRNA, showing reciprocal regulation between these two genes. Together with our previously reported findings, these data suggest that, in a murine model combining psychological stress with TLR-triggered hepatic inflammation, the psychological stress facilitates liver uptake of plasma TG (and its components fatty acids), but the subsequent re-esterification and/or release of TG-rich lipoproteins from the liver is impaired due to the concomitant TLR-signaling. We hypothesize that lipid metabolism during acute stress shifts toward an elevated hepatic uptake of lipids due to concomitant TLR signaling, facilitating the clearance of bacterial lipids by the liver.
基金supported by the National Key Research and Development Program of China(2021YFD1800200 and 2021YFC2301700)the National Natural Science Foundation of China(32192451)+1 种基金the Innovation Program of the Chinese Academy of Agricultural Sciences(CAASCSLPDCP-202301)the earmarked fund for CARS41(CARS-41).
文摘H9N2 virus has been widely distributed in wild birds and poultry around the world since its first emergence in the United States of America in 1966(Gu et al.2017;Carnaccini and Perez 2020).The virus appeared in chickens in China in the early 1990s,and over the last two decades has gradually become the dominant epidemic subtype(Sun and Liu 2015;Bi et al.2020).Although H9N2 virus infection alone cannot cause severe disease or death in poultry,H9N2 virus-infected birds experience a degree of egg production drop and can be easily infected by other pathogens,thus causing economic losses for poultry industry.
基金supported by the National Natural Science Foundation of China(32001532 and 31860411)the National Key Research and Development Program of China,(2022YFF1000020)+1 种基金Hunan Seed Industry Innovation Project(2021NK1012)the Yunnan Tobacco Company Project(2020530000241009)。
文摘The development and maturation of the CRISPR/Cas genome editing system provides a valuable tool for plant functional genomics and genetic improvement.Currently available genome-editing tools have a limited number of targets,restricting their application in genetic research.In this study,we developed a novel CRISPR/Cas9 plant ultra-multiplex genome editing system consisting of two template vectors,eight donor vectors,four destination vectors,and one primer-design software package.By combining the advantages of Golden Gate cloning to assemble multiple repetitive fragments and Gateway recombination to assemble large fragments and by changing the structure of the amplicons used to assemble sg RNA expression cassettes,the plant ultra-multiplex genome editing system can assemble a single binary vector targeting more than 40 genomic loci.A rice knockout vector containing 49 sg RNA expression cassettes was assembled and a high co-editing efficiency was observed.This plant ultra-multiplex genome editing system advances synthetic biology and plant genetic engineering.
基金supported by grants from the National Key R&D Program of China (2023YFD1201300)CAAS Agricultural Science and Technology Innovation Project
文摘Soybean is a broadly popular and extensively cultivated crop,however,many high-yield and high-quality varieties require specific growth conditions,restricting their widespread adoption.The appropriate light conditions and photoperiod must be attained for these varieties to thrive in new environments.In this study,we employed CRISPR/Cas9 to design two sgRNAs aimed at knocking out the maturity-related gene E4 in a major American soybean variety called''Jack'',which belongs to maturity group MGII.E4 gene is primarily involved in the photoperiodic flowering and maturity in soybean,making it an ideal candidate for genetic manipulation.We successfully obtained 1 homozygous E4-SG1 mutant type with 1-bp insertion,and 4 homozygous E4-SG2 mutants type with 2-bp deletion,7-bp deletion,61-bp deletion,and 1-bp insertion,respectively.The homozygous e4 mutant plants contained early termination codons devoid of transgenic elements.Additionally,no potential offtarget sites of the E4 gene were detected.A comparative analysis revealed that,unlike the wild-type,the maturity time of homozygous e4 mutants was early under both short-day and long-day conditions.These mutants offer novel germplasm resources that may be used to modify the photoperiod sensitivity and maturity of soybean,enhancing its adaptability to high-latitude regions.
基金supported by the National Natural Science Foundation of China(32172503 and 32260721)the Natural Science Foundation of Fujian Province,China(2023J01069)+2 种基金the State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops,China(SKL2022001)the Innovation Fund of Fujan Agriculture and Forestry University,China(KFB23014A)the Undergraduate Training Program for Innovation and Entrepreneurship of Fujian Province,China(S202210389101).
文摘Genetic pest control strategies based on precise sex separation and only releasing sterile males can be accomplished by site-specific genome editing.In the current study,we showed that the mutation of single-allele Pxfl(2)d can significantly impair the normal mating behavior and testis development in male adults of the notorious cruciferous insect pest Plutella xylostella,in addition to its known functions in the ovarian development in female adults and egg hatching.Subsequent CRISPR/Cas9-based knock-in experiments revealed that site-specific integration of an exogenous green fluorescent protein(GFP)gene into autosomal Pxfl(2)d for labelling mutants could be achieved.However,this gene is not a suitable target for GFP insertion to establish a genetically stable knock-in strain because of the severe decline in reproductive capacity.We further screened for the W-chromosome-linked and Z-chromosome-linked regions to test the knock-in efficiency mediated by CRISPR/Cas9.The results verified that both types of chromosomes can be targeted for the site-specific insertion of exogenous sequences.We ultimately obtained a homozygous knock-in strain with the integration of both Cas9 and cyan fluorescent protein(CFP)expression cassettes on a Z-linked region in P.xylostella,which can also be used for early sex detection.By injecting the sgRNA targeting Pxfl(2)d alone into the eggs laid by female adults of the Z-Cas9-CFP strain,the gene editing efficiency reached 29.73%,confirming the success of expressing a functional Cas9 gene.Taken together,we demonstrated the feasibility of the knock-in of an exogenous gene to different genomic regions in P.xylostella,while the establishment of a heritable strain required the positioning of appropriate sites.This study provides an important working basis and technical support for further developing genetic strategies for insect pest control.
基金Natural Science Foundation of Chongqing,China,No.cstc2021jcyj-msxmX0501Chongqing Medical Scientific Research Project(Joint Project of Chongqing Health Commission and Science and Technology Bureau),No.2022QNXM074.
文摘BACKGROUND Pancreatic ductal adenocarcinoma(PDAC)is a common cancer with increasing morbidity and mortality due to changes of social environment.AIM To evaluate the significance of serum carbohydrate antigen 19-9(CA19-9)and tumor size changes pre-and post-neoadjuvant therapy(NAT).METHODS This retrospective study was conducted at the Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment,Chongqing University Cancer Hospital.This study specifically assessed CA19-9 levels and tumor size before and after NAT.RESULTS A total of 156 patients who completed NAT and subsequently underwent tumor resection were included in this study.The average age was 65.4±10.6 years and 72(46.2%)patients were female.Before survival analysis,we defined the post-NAT serum CA19-9 level/pre-NAT serum CA19-9 level as the CA19-9 ratio(CR).The patients were divided into three groups:CR<0.5,CR>0.5 and<1 and CR>1.With regard to tumor size measured by both computed tomography and magnetic resonance imaging,we defined the post-NAT tumor size/pre-NAT tumor size as the tumor size ratio(TR).The patients were then divided into three groups:TR<0.5,TR>0.5 and<1 and TR>1.Based on these groups divided according to CR and TR,we performed both overall survival(OS)and disease-free survival(DFS)analyses.Log-rank tests showed that both OS and DFS were significantly different among the groups according to CR and TR(P<0.05).CR and TR after NAT were associated with increased odds of achieving a complete or near-complete pathologic response.Moreover,CR(hazard ratio:1.721,95%CI:1.373-3.762;P=0.006),and TR(hazard ratio:1.435,95%CI:1.275-4.363;P=0.014)were identified as independent factors associated with OS.CONCLUSION This study demonstrated that post-NAT serum CA19-9 level/pre-NAT serum CA19-9 level and post-NAT tumor size/pre-NAT tumor size were independent factors associated with OS in patients with PDAC who received NAT and subsequent surgical resection.
基金Supported by the National Natural Science Foundation of China,No.82271628.
文摘BACKGROUND Hepatocellular carcinoma(HCC)is a prevalent and aggressive tumor.Sorafenib is the first-line treatment for patients with advanced HCC,but resistance to sorafenib has become a significant challenge in this therapy.Cancer stem cells play a crucial role in sorafenib resistance in HCC.Our previous study revealed that the long non-coding RNA(lncRNA)KIF9-AS1 is an oncogenic gene in HCC.However,the role of KIF9-AS1 in drug resistance and cancer stemness in HCC remains unclear.Herein,we aimed to investigate the function and mechanism of the lncRNA KIF9-AS1 in cancer stemness and drug resistance in HCC.AIM To describe the role of the lncRNA KIF9-AS1 in cancer stemness and drug resistance in HCC and elucidate the underlying mechanism.METHODS Tumor tissue and adjacent non-cancerous tissue samples were collected from HCC patients.Sphere formation was quantified via a tumor sphere assay.Cell viability,proliferation,and apoptosis were evaluated via Cell Counting Kit-8,flow cytometry,and colony formation assays,respectively.The interactions between the lncRNA KIF9-AS1 and its downstream targets were confirmed via RNA immunoprecipitation and coimmunoprecipitation.The tumorigenic role of KIF9-AS1 was validated in a mouse model.RESULTS Compared with that in normal controls,the expression of the lncRNA KIF9-AS1 was upregulated in HCC tissues.Knockdown of KIF9-AS1 inhibited stemness and attenuated sorafenib resistance in HCC cells.Mechanistically,N6-methyladenosine modification mediated by methyltransferase-like 3/insulin-like growth factor 2 mRNA-binding protein 1 stabilized and increased the expression of KIF9-AS1.Additionally,KIF9-AS1 increased the stability and expression of short stature homeobox 2 by promoting ubiquitin-specific peptidase 1-induced deubiquitination.Furthermore,depletion of KIF9-AS1 alleviated sorafenib resistance in a xenograft mouse model of HCC.CONCLUSION The N6-methyladenosine-modified lncRNA KIF9-AS1 promoted stemness and sorafenib resistance in HCC by upregulating short stature homeobox 2 expression.
基金Financial supports from the National Natural Science Foundation of China(22265018 and 21961019)the Key Project of Natural Science Foundation of Jiangxi Province(20232ACB204010)。
文摘Developing reliable and efficient anode materials is essential for the successfully practical application of sodium-ion batteries.Herein,employing a straightforward and rapid chemical vapor deposition technique,two-dimensional layered ternary indium phosphorus sulfide(In_(2)P_(3)S_(9)) nanosheets are prepared.The layered structure and ternary composition of the In_(2)P_(3)S_(9) electrode result in impressive electrochemical performance,including a high reversible capacity of 704 mA h g^(-1) at 0.1 A g^(-1),an outstanding rate capability with 425 mA h g^(-1) at 5 A g^(-1),and an exceptional cycling stability with a capacity retention of88% after 350 cycles at 1 A g^(-1).Furthermore,sodium-ion full cell also affords a high capacity of 308 and114 mA h g^(-1) at 0.1 and 5 A g^(-1).Ex-situ X-ray diffraction and ex-situ high-resolution transmission electron microscopy tests are conducted to investigate the underlying Na-storage mechanism of In_(2)P_(3)S_(9).The results reveal that during the first cycle,the P-S bond is broken to form the elemental P and In_(2)S_(3),collectively contributing to a remarkably high reversible specific capacity.The excellent electrochemical energy storage results corroborate the practical application potential of In_(2)P_(3)S_(9) for sodium-ion batteries.
文摘Background:The threat of avian influenza a subtype avian influenza A(H9N2)virus remains a significant concern,necessitating the exploration of novel antiviral agents.This study employs network pharmacology and computational analysis to investigate the potential of kuwanons,a natural compounds against H9N2 influenza virus.Methods:Leveraging comprehensive databases and bioinformatics tools,we elucidate the molecular mechanisms underlying Kuwanons pharmacological effects against H9N2 influenza virus.Network pharmacology identifies H9N2 influenza virus targets and compounds through integrated protein-protein interaction and Kyoto Encyclopedia of Genes and Genomes analyses.Molecular docking studies were performed to assess the binding affinities and structural interactions of Kuwanon analogues with key targets,shedding light on their potential inhibitory effects on viral replication and entry.Results:Compound-target network analysis revealed complex interactions(120 nodes,163 edges),with significant interactions and an average node degree of 2.72.Kyoto Encyclopedia of Genes and Genomes analysis revealed pathways such as Influenza A,Cytokine-cytokine receptor interaction pathway in H9N2 influenza virus.Molecular docking studies revealed that the binding free energy for the docked ligands ranged between-5.2 and-9.4 kcal/mol for the human interferon-beta crystal structure(IFNB1,Protein Data Bank:1AU1)and-5.4 and-9.6 kcal/mol for Interleukin-6(IL-6,PDB:4CNI).Conclusion:Our findings suggest that kuwanon exhibits promising antiviral activity against H9N2 influenza virus by targeting specific viral proteins,highlighting its potential as a natural therapeutic agent in combating avian influenza infections.
文摘BACKGROUND Hepatic metastases are common and difficult to treat after colorectal cancer(CRC)surgery.The predictive value of carcinoembryonic antigen(CEA),cancer antigen(CA)125 and CA19-9 combined tests for liver metastasis is unclear.AIM To evaluate predictive value of combined tests for CEA,CA125,and CA19-9 levels in patients with liver metastases of CRC.METHODS The retrospective study included patients with CRC alone(50 cases)and patients with CRC combined with liver metastases(50 cases)who were hospitalized between January 2021 and January 2023.Serum CEA,CA125 and CA19-9 levels were compared between the two groups,and binary logistic regression was used to analyze the predictive value of the combination of these tumor markers in liver metastasis.In addition,we performed receiver operating characteristic(ROC)curve analysis to assess its diagnostic accuracy.RESULTS The results showed that the serum CEA,CA125 and CA19-9 levels in the CRC with liver metastasis group were significantly higher than those in the CRC alone group.Specifically,the average serum CEA level in the CRC with liver metastasis group was 162.03±810.01 ng/mL,while that in the CRC alone group was 5.71±9.76 ng/mL;the average serum CA125 levels were 43.47±83.52 U/mL respectively.and 13.5±19.68 U/mL;the average serum CA19-9 levels were 184.46±473.13 U/mL and 26.55±43.96 U/mL respectively.In addition,binary logistic regression analysis showed that CA125 was significant in predicting CRC liver metastasis(P<0.05).ROC curve analysis results showed that the areas under the ROC curves of CEA,CA125 and CA19-9 were 0.607,0.692 and 0.586.CONCLUSION These results suggest that combined detection of these tumor markers may help early detection and intervention of CRC liver metastasis,thereby improving patient prognosis.