为解决气动调节阀控制过程中出现的超调大、精度低等问题,本文采用BP神经网络整定出较优的PID(Proportional Integral Derivative)控制参数,对Smith预估控制器以及模糊控制器进行设计,实现了基于BP神经网络的Smith-Fuzzy-PID控制方法。...为解决气动调节阀控制过程中出现的超调大、精度低等问题,本文采用BP神经网络整定出较优的PID(Proportional Integral Derivative)控制参数,对Smith预估控制器以及模糊控制器进行设计,实现了基于BP神经网络的Smith-Fuzzy-PID控制方法。搭建了实验平台,通过阶跃响应实验来对控制方法进行验证,验证结果表明,提出的方法调节过程无超调,调节时间仅为1.9 s,定位精度在±0.5%以内,有效提高了系统的稳定性,实现了气动调节阀的快速精准定位。展开更多
This paper presents the design and performance analysis of Differential Evolution(DE)algorithm based Proportional-Integral-Derivative(PID)controller for temperature control of Continuous Stirred Tank Reactor(CSTR)plan...This paper presents the design and performance analysis of Differential Evolution(DE)algorithm based Proportional-Integral-Derivative(PID)controller for temperature control of Continuous Stirred Tank Reactor(CSTR)plant in che-mical industries.The proposed work deals about the design of Differential Evolu-tion(DE)algorithm in order to improve the performance of CSTR.In this,the process is controlled by controlling the temperature of the liquid through manip-ulation of the coolantflow rate with the help of modified Model Reference Adap-tive Controller(MRAC).The transient response of temperature process is improved by using PID Controller,Differential Evolution Algorithm based PID and fuzzy based DE controller.Finally,the temperature response is compared with experimental results of CSTR.展开更多
The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant...The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant model has been used to validate the ANFIS combined FOPID control scheme.In the pro-posed adaptive control structure,the intelligent ANFIS was designed such that it will dynamically adjust the fractional order factors(λandµ)of the FOPID(also known as PIλDµ)controller to achieve better control performance.When the plant experiences uncertainties like external load disturbances or sudden changes in the input parameters,the stability and robustness of the system can be achieved effec-tively with the proposed control scheme.Also,a modified structure of the FOPID controller has been used in the present system to enhance the dynamic perfor-mance of the controller.An extensive MATLAB software simulation study was made to verify the usefulness of the proposed control scheme.The study has been carried out under different operating conditions such as external disturbances and sudden changes in input parameters.The results obtained using the ANFIS-FOPID control scheme are also compared to the classical fractional order PIλDµand conventional PID control schemes to validate the advantages of the control-lers.The simulation results confirm the effectiveness of the ANFIS combined FOPID controller for the chosen plant model.Also,the proposed control scheme outperformed traditional control methods in various performance metrics such as rise time,settling time and error criteria.展开更多
An optimal PID controller with incomplete derivation is proposed based on fuzzy inference and the geneticalgorithm, which is called the fuzzy-GA PID controller with incomplete derivation. It consists of the off-line p...An optimal PID controller with incomplete derivation is proposed based on fuzzy inference and the geneticalgorithm, which is called the fuzzy-GA PID controller with incomplete derivation. It consists of the off-line part andthe on-line part. In the off-line part, by taking the overshoot, rise time, and settling time of system unit step re-sponse as the performance indexes and by using the genetic algorithm, a group of optimal PID parameters K*p , Ti* ,and Tj are obtained, which are used as the initial values for the on-line tuning of PID parameters. In the on-linepart, based on K; , Ti* , and T*d and according to the current system error e and its time derivative, a dedicatedprogram is written, which is used to optimize and adjust the PID parameters on line through a fuzzy inference mech-anism to ensure that the system response has optimal dynamic and steady-state performance. The controller has beenused to control the D. C. motor of the intelligent bionic artificial leg designed by the authors. The result of computersimulation shows that this kind of optimal PID controller has excellent control performance and robust performance.展开更多
This work proposes to design a fuzzy proportional-integral derivative (FPID) controller for dual-sensor cardiac pacemaker systems, which can automatically control the heart rate to accurately track a desired preset pr...This work proposes to design a fuzzy proportional-integral derivative (FPID) controller for dual-sensor cardiac pacemaker systems, which can automatically control the heart rate to accurately track a desired preset profile. The combination of fuzzy logic and conventional PID control approaches is adopted for the controller design based on dual-sensors. This controller offers good adaptation of the heart rate to the physiological needs of the patient under different states (rest and walk). Through comparing with the conventional fuzzy control algorithm, FPID provides a more suitable control strategy to determine a pacing rate in order to achieve a closer match between actual heart rate and a desired profile. To assist the heartbeat recovery, the stimuli with adjustable pacing rate is generated by the pacemaker according to the FPID controller, such actual heart rate may track the preset heart rate faithfully. Simulation results confirm that this proposed control design is effective for heartbeat recovery and maintenance. This study will be helpful not only for the analysis and treatment of bradycardias but also for improving the performance of medical devices.展开更多
Based on the ant colony system (ACS) algorithm and fuzzy logic control, a new design method for optimal fuzzy PID controller was proposed. In this method, the ACS algorithm was used to optimize the input/output scal...Based on the ant colony system (ACS) algorithm and fuzzy logic control, a new design method for optimal fuzzy PID controller was proposed. In this method, the ACS algorithm was used to optimize the input/output scaling factors of fuzzy PID controller to generate the optimal fuzzy control rules and optimal real-time control action on a given controlled object. The designed controller, called the Fuzzy-ACS PID controller, was used to control the CIP-Ⅰ intelligent leg. The simulation experiments demonstrate that this controller has good control performance. Compared with other three optimal PID controllers designed respectively by using the differential evolution algorithm, the real-coded genetic algorithm, and the simulated annealing, it was verified that the Fuzzy-ACS PID controller has better control performance. Furthermore, the simulation results also verify that the proposed ACS algorithm has quick convergence speed, small solution variation, good dynamic convergence behavior, and high computation efficiency in searching for the optimal input/output scaling factors.展开更多
The principle of electric braking system is analyzed and an anti-skid braking system based on the slip rate control is proposed.The fuzzy-PID controller with parameter self-adjustment feature is designed for the anti-...The principle of electric braking system is analyzed and an anti-skid braking system based on the slip rate control is proposed.The fuzzy-PID controller with parameter self-adjustment feature is designed for the anti-skid braking system.The dynamic model of aircraft ground braking is established in the simulation environment of MATLAB/SIMULINK,and simulation results of dry runway and wet runway are presented.The results show that the fuzzy-PID controller with parameter self-adjustment feature for the electric anti-skid braking system keeps working in the state of stability and the brake efficiencies are increased to 93%on dry runway and 82%on wet runway respectively.展开更多
Asymmetric stereoscopic video coding can take advantage of binocular suppression in human vision by representing one of the two views in lower quality.This paper proposes a bit allocation strategy for asymmetric stere...Asymmetric stereoscopic video coding can take advantage of binocular suppression in human vision by representing one of the two views in lower quality.This paper proposes a bit allocation strategy for asymmetric stereoscopic video coding.In order to improve the accuracy of bit allocation and rate control in the left view,a proportionalintegral-derivative controller is adopted.Meanwhile,to control the quality fluctuation between consecutive frames of the left view,a quality controller is adopted.Besides,a fuzzy controller is proposed to control the variation in quality between the left and right views by comparing the PSNR disparity of two views with a fixed threshold,which is used to quantize the binocular psycho-visual redundancy and adjust the quantization parameter (QP) of the right view correspondingly.The proposed algorithm has been implemented in H.264/AVC video codec,and the experimental results show its effectiveness in rate control while keeping a good quality for the left view,and fewer bits are allocated for the right view so that the overall bit rate is saved by 7.2% at most without the loss of subjective visual quality for stereoscopic video.展开更多
The analytical structure of a class of typical Takagi Sugeno (TS) fuzzy controllers is revealed in this paper.The TS fuzzy controllers consist of three or more trapezoidal input fuzzy sets, Zadeh fuzzy logic AND opera...The analytical structure of a class of typical Takagi Sugeno (TS) fuzzy controllers is revealed in this paper.The TS fuzzy controllers consist of three or more trapezoidal input fuzzy sets, Zadeh fuzzy logic AND operator,fuzzy rules with linear consequent, and the centriod defuzzifier. The TS fuzzy controllers are proved to be accurately nonlinear PID controllers with gains continuously changing with process output. The analytical expressions of the variable gains of the TS fuzzy controllers are derived and their mathematical characteristics including the bounds and geometrical shape of the gain variation are analyzed. The resulting explicit structures show that the TS fuzzy controllers are inherently nonlinear PID gain scheduling controllers with variable gains in different regions of input space.展开更多
This paper aims at Takagi - Sugeno (TS) fuzzy controllers as gain scheduling (GS) schemes of PID controllers. A TS fuzzy controller employs arbitrary input fuzzy sets, product or Zadeh fuzzy logic AND, TS fuzzy rules ...This paper aims at Takagi - Sugeno (TS) fuzzy controllers as gain scheduling (GS) schemes of PID controllers. A TS fuzzy controller employs arbitrary input fuzzy sets, product or Zadeh fuzzy logic AND, TS fuzzy rules with linear consequent, and the generalized defuzzifler containing the popular centrold defuzzifler as a special case. We first establish the relationship between the TS fuzzy controller and the linear PID controller. The TS ftizzy controller is accurately a nonlinear PID controller with gains continuously changing with Its process output. Then we point out that the TS fuzzy controller is closely related to the traditional gain scheduler. The gains of the TS ftizzy controller are determined by three two - Input - one - output fuzzy systems with singleton output fuzzy sets. Finally, as a demonstration, a simple TS fuzzy controller employing two linear input fuzzy sets, Zadeh fuzzy logic AND, and the popular centrold defuzzifler is designed to be the gain scheduler for the PID controller.展开更多
With penetration growing of renewable energy sources which integrated into power system have caused problems on grid stability. Electric Vehicles (EV) are one of the renewable energy sources that can bring significant...With penetration growing of renewable energy sources which integrated into power system have caused problems on grid stability. Electric Vehicles (EV) are one of the renewable energy sources that can bring significant impacts to power system during their charging and discharging operations. This article established a model of single machine infinite bus (SMIB) power system considering EV as a case study of load disturbance for power system oscillation. The objective of this research is to enhance stability and overcome the drawbacks of traditional control algorithms such as power system stabilizer (PSS), PID controller and fuzzy logic controller (FLC). The implementation’s effect of FLC parallel with PID controller (Fuzzy-PID) has been shown in this paper. The speed deviation (?ω) and electrical power (Pe) are the important factors to be taken into consideration without EV (only change in mechanical torque), EV with change in the mechanical torque and sudden plug-in EV. The obtained result by nonlinear simulation using Matlab/Simulink of a SMIB power system with EV has shown the effectiveness of using (Fuzzy-PID) against all disturbances.展开更多
The fuzzy switched PID controller which combines fuzzy PD and conventional PI controller is proposed for ship track-keeping autopilot In this paper. By using rudder angle, the whole voyage is divided into two operatin...The fuzzy switched PID controller which combines fuzzy PD and conventional PI controller is proposed for ship track-keeping autopilot In this paper. By using rudder angle, the whole voyage is divided into two operating regimes which named transient operating regime and steady operating regime respectively. The fuzzy PD controller is employed in transient operating regime for increasing response, reducing overshoot and shorting transition time. And conventional PI controller is used to improve the stable accuracy in steady operating regime. The global controller is achieved by fuzzy blending of all local controllers. Routh stability criterion is utilized to obtain the stability condition of closed-loop system. The simulation results show the effectiveness of proposed method.展开更多
In this paper a PID Fuzzy-Neural controller (FNC) is designed as an Active Queue Management (AQM) in internet routers to improve the performance of Fuzzy Proportional Integral (FPI) controller for congestion avoidance...In this paper a PID Fuzzy-Neural controller (FNC) is designed as an Active Queue Management (AQM) in internet routers to improve the performance of Fuzzy Proportional Integral (FPI) controller for congestion avoidance in computer networks. A combination of fuzzy logic and neural network can generate a fuzzy neural controller which in association with a neural network emulator can improve the output response of the controlled system. This combination uses the neural network training ability to adjust the membership functions of a PID like fuzzy neural controller. The goal of the controller is to force the controlled system to follow a reference model with required transient specifications of minimum overshoot, minimum rise time and minimum steady state error. The fuzzy membership functions were tuned using the propagated error between the plant outputs and the desired ones. To propagate the error from the plant outputs to the controller, a neural network is used as a channel to the error. This neural network uses the back propagation algorithm as a learning technique. Firstly the parameters of PID of Fuzzy-Neural controller are selected by trial and error method, but to get the best controller parameters the Particle Swarm Optimization (PSO) is used as an optimization method for tuning the PID parameters. From the obtained results, it is noted that the PID Fuzzy-Neural controller provides good tracking performance under different circumstances for congestion avoidance in computer networks.展开更多
文摘为解决气动调节阀控制过程中出现的超调大、精度低等问题,本文采用BP神经网络整定出较优的PID(Proportional Integral Derivative)控制参数,对Smith预估控制器以及模糊控制器进行设计,实现了基于BP神经网络的Smith-Fuzzy-PID控制方法。搭建了实验平台,通过阶跃响应实验来对控制方法进行验证,验证结果表明,提出的方法调节过程无超调,调节时间仅为1.9 s,定位精度在±0.5%以内,有效提高了系统的稳定性,实现了气动调节阀的快速精准定位。
文摘This paper presents the design and performance analysis of Differential Evolution(DE)algorithm based Proportional-Integral-Derivative(PID)controller for temperature control of Continuous Stirred Tank Reactor(CSTR)plant in che-mical industries.The proposed work deals about the design of Differential Evolu-tion(DE)algorithm in order to improve the performance of CSTR.In this,the process is controlled by controlling the temperature of the liquid through manip-ulation of the coolantflow rate with the help of modified Model Reference Adap-tive Controller(MRAC).The transient response of temperature process is improved by using PID Controller,Differential Evolution Algorithm based PID and fuzzy based DE controller.Finally,the temperature response is compared with experimental results of CSTR.
基金The author extends their appreciation to the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project number(IFPSAU-2021/01/18128).
文摘The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant model has been used to validate the ANFIS combined FOPID control scheme.In the pro-posed adaptive control structure,the intelligent ANFIS was designed such that it will dynamically adjust the fractional order factors(λandµ)of the FOPID(also known as PIλDµ)controller to achieve better control performance.When the plant experiences uncertainties like external load disturbances or sudden changes in the input parameters,the stability and robustness of the system can be achieved effec-tively with the proposed control scheme.Also,a modified structure of the FOPID controller has been used in the present system to enhance the dynamic perfor-mance of the controller.An extensive MATLAB software simulation study was made to verify the usefulness of the proposed control scheme.The study has been carried out under different operating conditions such as external disturbances and sudden changes in input parameters.The results obtained using the ANFIS-FOPID control scheme are also compared to the classical fractional order PIλDµand conventional PID control schemes to validate the advantages of the control-lers.The simulation results confirm the effectiveness of the ANFIS combined FOPID controller for the chosen plant model.Also,the proposed control scheme outperformed traditional control methods in various performance metrics such as rise time,settling time and error criteria.
基金Project (50275150) supported by the National Natural Science Foundation of ChinaProject (RL200002) supported by the Foundation of the Robotics Laboratory, Chinese Academy of Sciences
文摘An optimal PID controller with incomplete derivation is proposed based on fuzzy inference and the geneticalgorithm, which is called the fuzzy-GA PID controller with incomplete derivation. It consists of the off-line part andthe on-line part. In the off-line part, by taking the overshoot, rise time, and settling time of system unit step re-sponse as the performance indexes and by using the genetic algorithm, a group of optimal PID parameters K*p , Ti* ,and Tj are obtained, which are used as the initial values for the on-line tuning of PID parameters. In the on-linepart, based on K; , Ti* , and T*d and according to the current system error e and its time derivative, a dedicatedprogram is written, which is used to optimize and adjust the PID parameters on line through a fuzzy inference mech-anism to ensure that the system response has optimal dynamic and steady-state performance. The controller has beenused to control the D. C. motor of the intelligent bionic artificial leg designed by the authors. The result of computersimulation shows that this kind of optimal PID controller has excellent control performance and robust performance.
文摘This work proposes to design a fuzzy proportional-integral derivative (FPID) controller for dual-sensor cardiac pacemaker systems, which can automatically control the heart rate to accurately track a desired preset profile. The combination of fuzzy logic and conventional PID control approaches is adopted for the controller design based on dual-sensors. This controller offers good adaptation of the heart rate to the physiological needs of the patient under different states (rest and walk). Through comparing with the conventional fuzzy control algorithm, FPID provides a more suitable control strategy to determine a pacing rate in order to achieve a closer match between actual heart rate and a desired profile. To assist the heartbeat recovery, the stimuli with adjustable pacing rate is generated by the pacemaker according to the FPID controller, such actual heart rate may track the preset heart rate faithfully. Simulation results confirm that this proposed control design is effective for heartbeat recovery and maintenance. This study will be helpful not only for the analysis and treatment of bradycardias but also for improving the performance of medical devices.
基金Project(50275150) supported by the National Natural Science Foundation of ChinaProject(20040533035) supported by the National Research Foundation for the Doctoral Program of Higher Education of ChinaProject(05JJ40128) supported by the Natural Science Foundation of Hunan Province, China
文摘Based on the ant colony system (ACS) algorithm and fuzzy logic control, a new design method for optimal fuzzy PID controller was proposed. In this method, the ACS algorithm was used to optimize the input/output scaling factors of fuzzy PID controller to generate the optimal fuzzy control rules and optimal real-time control action on a given controlled object. The designed controller, called the Fuzzy-ACS PID controller, was used to control the CIP-Ⅰ intelligent leg. The simulation experiments demonstrate that this controller has good control performance. Compared with other three optimal PID controllers designed respectively by using the differential evolution algorithm, the real-coded genetic algorithm, and the simulated annealing, it was verified that the Fuzzy-ACS PID controller has better control performance. Furthermore, the simulation results also verify that the proposed ACS algorithm has quick convergence speed, small solution variation, good dynamic convergence behavior, and high computation efficiency in searching for the optimal input/output scaling factors.
基金Supported by the National Natural Science Foundation of China(51105197,51305198,11372129)the Project Funded by the Priority Academic Program Department of Jiangsu Higher Education Instructions
文摘The principle of electric braking system is analyzed and an anti-skid braking system based on the slip rate control is proposed.The fuzzy-PID controller with parameter self-adjustment feature is designed for the anti-skid braking system.The dynamic model of aircraft ground braking is established in the simulation environment of MATLAB/SIMULINK,and simulation results of dry runway and wet runway are presented.The results show that the fuzzy-PID controller with parameter self-adjustment feature for the electric anti-skid braking system keeps working in the state of stability and the brake efficiencies are increased to 93%on dry runway and 82%on wet runway respectively.
基金Supported by National Natural Science Foundation of China(No.60972054)National High Technology Research and Development Program of China("863"Program,No.2009AA011507)
文摘Asymmetric stereoscopic video coding can take advantage of binocular suppression in human vision by representing one of the two views in lower quality.This paper proposes a bit allocation strategy for asymmetric stereoscopic video coding.In order to improve the accuracy of bit allocation and rate control in the left view,a proportionalintegral-derivative controller is adopted.Meanwhile,to control the quality fluctuation between consecutive frames of the left view,a quality controller is adopted.Besides,a fuzzy controller is proposed to control the variation in quality between the left and right views by comparing the PSNR disparity of two views with a fixed threshold,which is used to quantize the binocular psycho-visual redundancy and adjust the quantization parameter (QP) of the right view correspondingly.The proposed algorithm has been implemented in H.264/AVC video codec,and the experimental results show its effectiveness in rate control while keeping a good quality for the left view,and fewer bits are allocated for the right view so that the overall bit rate is saved by 7.2% at most without the loss of subjective visual quality for stereoscopic video.
基金Supported by the National Science Foundation(Grant No.69874038)
文摘The analytical structure of a class of typical Takagi Sugeno (TS) fuzzy controllers is revealed in this paper.The TS fuzzy controllers consist of three or more trapezoidal input fuzzy sets, Zadeh fuzzy logic AND operator,fuzzy rules with linear consequent, and the centriod defuzzifier. The TS fuzzy controllers are proved to be accurately nonlinear PID controllers with gains continuously changing with process output. The analytical expressions of the variable gains of the TS fuzzy controllers are derived and their mathematical characteristics including the bounds and geometrical shape of the gain variation are analyzed. The resulting explicit structures show that the TS fuzzy controllers are inherently nonlinear PID gain scheduling controllers with variable gains in different regions of input space.
文摘This paper aims at Takagi - Sugeno (TS) fuzzy controllers as gain scheduling (GS) schemes of PID controllers. A TS fuzzy controller employs arbitrary input fuzzy sets, product or Zadeh fuzzy logic AND, TS fuzzy rules with linear consequent, and the generalized defuzzifler containing the popular centrold defuzzifler as a special case. We first establish the relationship between the TS fuzzy controller and the linear PID controller. The TS ftizzy controller is accurately a nonlinear PID controller with gains continuously changing with Its process output. Then we point out that the TS fuzzy controller is closely related to the traditional gain scheduler. The gains of the TS ftizzy controller are determined by three two - Input - one - output fuzzy systems with singleton output fuzzy sets. Finally, as a demonstration, a simple TS fuzzy controller employing two linear input fuzzy sets, Zadeh fuzzy logic AND, and the popular centrold defuzzifler is designed to be the gain scheduler for the PID controller.
文摘With penetration growing of renewable energy sources which integrated into power system have caused problems on grid stability. Electric Vehicles (EV) are one of the renewable energy sources that can bring significant impacts to power system during their charging and discharging operations. This article established a model of single machine infinite bus (SMIB) power system considering EV as a case study of load disturbance for power system oscillation. The objective of this research is to enhance stability and overcome the drawbacks of traditional control algorithms such as power system stabilizer (PSS), PID controller and fuzzy logic controller (FLC). The implementation’s effect of FLC parallel with PID controller (Fuzzy-PID) has been shown in this paper. The speed deviation (?ω) and electrical power (Pe) are the important factors to be taken into consideration without EV (only change in mechanical torque), EV with change in the mechanical torque and sudden plug-in EV. The obtained result by nonlinear simulation using Matlab/Simulink of a SMIB power system with EV has shown the effectiveness of using (Fuzzy-PID) against all disturbances.
文摘The fuzzy switched PID controller which combines fuzzy PD and conventional PI controller is proposed for ship track-keeping autopilot In this paper. By using rudder angle, the whole voyage is divided into two operating regimes which named transient operating regime and steady operating regime respectively. The fuzzy PD controller is employed in transient operating regime for increasing response, reducing overshoot and shorting transition time. And conventional PI controller is used to improve the stable accuracy in steady operating regime. The global controller is achieved by fuzzy blending of all local controllers. Routh stability criterion is utilized to obtain the stability condition of closed-loop system. The simulation results show the effectiveness of proposed method.
文摘In this paper a PID Fuzzy-Neural controller (FNC) is designed as an Active Queue Management (AQM) in internet routers to improve the performance of Fuzzy Proportional Integral (FPI) controller for congestion avoidance in computer networks. A combination of fuzzy logic and neural network can generate a fuzzy neural controller which in association with a neural network emulator can improve the output response of the controlled system. This combination uses the neural network training ability to adjust the membership functions of a PID like fuzzy neural controller. The goal of the controller is to force the controlled system to follow a reference model with required transient specifications of minimum overshoot, minimum rise time and minimum steady state error. The fuzzy membership functions were tuned using the propagated error between the plant outputs and the desired ones. To propagate the error from the plant outputs to the controller, a neural network is used as a channel to the error. This neural network uses the back propagation algorithm as a learning technique. Firstly the parameters of PID of Fuzzy-Neural controller are selected by trial and error method, but to get the best controller parameters the Particle Swarm Optimization (PSO) is used as an optimization method for tuning the PID parameters. From the obtained results, it is noted that the PID Fuzzy-Neural controller provides good tracking performance under different circumstances for congestion avoidance in computer networks.
文摘挖掘机执行机构轨迹的精确控制是实现其智能化、无人化发展的基础。针对泵控/阀控相耦合的负载敏感(Load Sensitive,LS)系统挖掘机,提出了一种自适应的模糊PID控制方法(Fuzzy-PID)以实现LS挖掘机执行机构位姿的精确控制。该方法不依赖离线计算,可实现作业过程中PID参数的整定。建立LS挖掘机联合仿真模型对Fuzzy-PID的控制性能进行验证,结果表明,Fuzzy-PID控制精度更高,与PID相比,其均方根误差(Root Mean Square Error,RMSE)减少了23.85%。进一步,通过发动机转速及斗杆运行速度验证了Fuzzy-PID稳定性和响应性。研究结果可为负载敏感系统液压挖掘机智能化升级提供理论指导及工程应用价值。