Recently, plant construction throughout the world, including nuclear power plant construction, has grown significantly. The scale of Korea’s nuclear power plant construction in particular, has increased gradually sin...Recently, plant construction throughout the world, including nuclear power plant construction, has grown significantly. The scale of Korea’s nuclear power plant construction in particular, has increased gradually since it won a contract for a nuclear power plant construction project in the United Arab Emirates in 2009. However, time and monetary resources have been lost in some nuclear power plant construction sites due to lack of risk management ability. The need to prevent losses at nuclear power plant construction sites has become more urgent because it demands professional skills and large-scale resources. Therefore, in this study, the Analytic Hierarchy Process (AHP) and Fuzzy Analytic Hierarchy Process (FAHP) were applied in order to make comparisons between decision-making methods, to assess the potential risks at nuclear power plant construction sites. To suggest the appropriate choice between two decision-making methods, a survey was carried out. From the results, the importance and the priority of 24 risk factors, classified by process, cost, safety, and quality, were analyzed. The FAHP was identified as a suitable method for risk assessment of nuclear power plant construction, compared with risk assessment using the AHP. These risk factors will be able to serve as baseline data for risk management in nuclear power plant construction projects.展开更多
Geographic Information System (GIS) software was used to create a watershed vulnerability model for Bernalillo County, New Mexico. Watershed vulnerability was investigated as a function of soil erosion and infiltratio...Geographic Information System (GIS) software was used to create a watershed vulnerability model for Bernalillo County, New Mexico. Watershed vulnerability was investigated as a function of soil erosion and infiltration criteria: precipitation, land slope, soil erodibility (K-factor), vegetation cover (NDVI), land use, drainage density, saturated hydraulic conductivity, and hydrologic soil group. Respective criteria weights were derived using a Fuzzy Analytic Hierarchy Process (FAHP) supported by expert opinion. A survey of 10 experts, representing New Mexico Institute of Mining and Technology (NMT), the New Mexico Bureau of Geology and Mineral Resources (NMBGMR), and the United States Geologic Survey (USGS), provided model input data for an integrated pair-wise comparison matrix for soil erosion and for infiltration. Individual criteria weights were determined by decomposing the respective fuzzy synthetic extent matrix using the centroid method. GIS layers were then combined based on criteria weights to produce maps of soil erosion potential and infiltration potential. A composite watershed vulnerability map was generated by equal weighting of each input map. Model results were categorized into five vulnerability categories: not vulnerable (N), slightly vulnerable (SV), moderately vulnerable (MV), highly vulnerable (HV), and extremely vulnerable (EV). The resulting FAHP/GIS model was used to generate a watershed vulnerability map of discrete areas in Bernalillo County, which may be vulnerable to stormwater run-off events and soil erosion. Such high volume run-off events can cause erosion damage to property and infrastructure. Alternatively, in areas near urban development, stormwater run-off may contribute non-point-source pollutant contamination of New Mexico’s surface water resources. The most problematic areas in Bernalillo County are present in the Eastern and Northwestern portions. However, less than 1% of the total area lies within the lowest and highest vulnerability categories with the majority centered around moderate vulnerability. The results of the model were compared with a previously published crisp AHP method. Both methods showed similar regional vulnerability trends. This MCDS/GIS approach is intended to provide support to local governments and decision makers in selection of suitable structural or nonstructural stormwater control measures.展开更多
Sale-leaseback is paid special focus on for its great application in China in recent years.By giving a detailed analysis,an analysis of the features of sale-leaseback and a study of the risks of it are given in this p...Sale-leaseback is paid special focus on for its great application in China in recent years.By giving a detailed analysis,an analysis of the features of sale-leaseback and a study of the risks of it are given in this paper.Then a quantitative analysis of commercial real estate sale-leaseback is carried out.The scientific theoretical analysis is provided in this paper for risk assessment in commercial real estate sale-leaseback mode in China.An effective approach is put forward for sale-leaseback project evaluation and prevention of risk.A useful means is given to supervise commerciai real estate sale-leaseback mode for relevant departments and a certain contribution is made to a further sound development of commercial real estate sale-leaseback mode.展开更多
In order to solve the problem that determining decision factors weights is of subjectivity in heterogeneous wireless network selection algorithm, a network selection algorithm based on extension theory and fuzzy analy...In order to solve the problem that determining decision factors weights is of subjectivity in heterogeneous wireless network selection algorithm, a network selection algorithm based on extension theory and fuzzy analytic hierarchy process (FAHP) is proposed in this paper. In addition, user and operator codetermine the optimal network using the proposed algorithm, which can give consideration to user and operator benefits. The fuzzy judgment matrix is coustructed by membership degree of decision factors which is calculated according to extension theory. The comprehensive weight of each decision factor is obtained using FAHP. Finally, the optimal network is selected through total property value ranldng of each candidate network under user preference and operator preference. The simulation results show that the proposed algorithm can select the optimal network efficiently and accurately, satisfy user preference, and implement load balance between networks.展开更多
文摘Recently, plant construction throughout the world, including nuclear power plant construction, has grown significantly. The scale of Korea’s nuclear power plant construction in particular, has increased gradually since it won a contract for a nuclear power plant construction project in the United Arab Emirates in 2009. However, time and monetary resources have been lost in some nuclear power plant construction sites due to lack of risk management ability. The need to prevent losses at nuclear power plant construction sites has become more urgent because it demands professional skills and large-scale resources. Therefore, in this study, the Analytic Hierarchy Process (AHP) and Fuzzy Analytic Hierarchy Process (FAHP) were applied in order to make comparisons between decision-making methods, to assess the potential risks at nuclear power plant construction sites. To suggest the appropriate choice between two decision-making methods, a survey was carried out. From the results, the importance and the priority of 24 risk factors, classified by process, cost, safety, and quality, were analyzed. The FAHP was identified as a suitable method for risk assessment of nuclear power plant construction, compared with risk assessment using the AHP. These risk factors will be able to serve as baseline data for risk management in nuclear power plant construction projects.
文摘Geographic Information System (GIS) software was used to create a watershed vulnerability model for Bernalillo County, New Mexico. Watershed vulnerability was investigated as a function of soil erosion and infiltration criteria: precipitation, land slope, soil erodibility (K-factor), vegetation cover (NDVI), land use, drainage density, saturated hydraulic conductivity, and hydrologic soil group. Respective criteria weights were derived using a Fuzzy Analytic Hierarchy Process (FAHP) supported by expert opinion. A survey of 10 experts, representing New Mexico Institute of Mining and Technology (NMT), the New Mexico Bureau of Geology and Mineral Resources (NMBGMR), and the United States Geologic Survey (USGS), provided model input data for an integrated pair-wise comparison matrix for soil erosion and for infiltration. Individual criteria weights were determined by decomposing the respective fuzzy synthetic extent matrix using the centroid method. GIS layers were then combined based on criteria weights to produce maps of soil erosion potential and infiltration potential. A composite watershed vulnerability map was generated by equal weighting of each input map. Model results were categorized into five vulnerability categories: not vulnerable (N), slightly vulnerable (SV), moderately vulnerable (MV), highly vulnerable (HV), and extremely vulnerable (EV). The resulting FAHP/GIS model was used to generate a watershed vulnerability map of discrete areas in Bernalillo County, which may be vulnerable to stormwater run-off events and soil erosion. Such high volume run-off events can cause erosion damage to property and infrastructure. Alternatively, in areas near urban development, stormwater run-off may contribute non-point-source pollutant contamination of New Mexico’s surface water resources. The most problematic areas in Bernalillo County are present in the Eastern and Northwestern portions. However, less than 1% of the total area lies within the lowest and highest vulnerability categories with the majority centered around moderate vulnerability. The results of the model were compared with a previously published crisp AHP method. Both methods showed similar regional vulnerability trends. This MCDS/GIS approach is intended to provide support to local governments and decision makers in selection of suitable structural or nonstructural stormwater control measures.
文摘Sale-leaseback is paid special focus on for its great application in China in recent years.By giving a detailed analysis,an analysis of the features of sale-leaseback and a study of the risks of it are given in this paper.Then a quantitative analysis of commercial real estate sale-leaseback is carried out.The scientific theoretical analysis is provided in this paper for risk assessment in commercial real estate sale-leaseback mode in China.An effective approach is put forward for sale-leaseback project evaluation and prevention of risk.A useful means is given to supervise commerciai real estate sale-leaseback mode for relevant departments and a certain contribution is made to a further sound development of commercial real estate sale-leaseback mode.
文摘In order to solve the problem that determining decision factors weights is of subjectivity in heterogeneous wireless network selection algorithm, a network selection algorithm based on extension theory and fuzzy analytic hierarchy process (FAHP) is proposed in this paper. In addition, user and operator codetermine the optimal network using the proposed algorithm, which can give consideration to user and operator benefits. The fuzzy judgment matrix is coustructed by membership degree of decision factors which is calculated according to extension theory. The comprehensive weight of each decision factor is obtained using FAHP. Finally, the optimal network is selected through total property value ranldng of each candidate network under user preference and operator preference. The simulation results show that the proposed algorithm can select the optimal network efficiently and accurately, satisfy user preference, and implement load balance between networks.