期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
A Fixed Suppressed Rate Selection Method for Suppressed Fuzzy C-Means Clustering Algorithm 被引量:2
1
作者 Jiulun Fan Jing Li 《Applied Mathematics》 2014年第8期1275-1283,共9页
Suppressed fuzzy c-means (S-FCM) clustering algorithm with the intention of combining the higher speed of hard c-means clustering algorithm and the better classification performance of fuzzy c-means clustering algorit... Suppressed fuzzy c-means (S-FCM) clustering algorithm with the intention of combining the higher speed of hard c-means clustering algorithm and the better classification performance of fuzzy c-means clustering algorithm had been studied by many researchers and applied in many fields. In the algorithm, how to select the suppressed rate is a key step. In this paper, we give a method to select the fixed suppressed rate by the structure of the data itself. The experimental results show that the proposed method is a suitable way to select the suppressed rate in suppressed fuzzy c-means clustering algorithm. 展开更多
关键词 HARD c-means clustering algorithm fuzzy c-means clustering algorithm Suppressed fuzzy c-means clustering algorithm Suppressed RATE
下载PDF
Hybrid Clustering Using Firefly Optimization and Fuzzy C-Means Algorithm
2
作者 Krishnamoorthi Murugasamy Kalamani Murugasamy 《Circuits and Systems》 2016年第9期2339-2348,共10页
Classifying the data into a meaningful group is one of the fundamental ways of understanding and learning the valuable information. High-quality clustering methods are necessary for the valuable and efficient analysis... Classifying the data into a meaningful group is one of the fundamental ways of understanding and learning the valuable information. High-quality clustering methods are necessary for the valuable and efficient analysis of the increasing data. The Firefly Algorithm (FA) is one of the bio-inspired algorithms and it is recently used to solve the clustering problems. In this paper, Hybrid F-Firefly algorithm is developed by combining the Fuzzy C-Means (FCM) with FA to improve the clustering accuracy with global optimum solution. The Hybrid F-Firefly algorithm is developed by incorporating FCM operator at the end of each iteration in FA algorithm. This proposed algorithm is designed to utilize the goodness of existing algorithm and to enhance the original FA algorithm by solving the shortcomings in the FCM algorithm like the trapping in local optima and sensitive to initial seed points. In this research work, the Hybrid F-Firefly algorithm is implemented and experimentally tested for various performance measures under six different benchmark datasets. From the experimental results, it is observed that the Hybrid F-Firefly algorithm significantly improves the intra-cluster distance when compared with the existing algorithms like K-means, FCM and FA algorithm. 展开更多
关键词 clustering OPTIMIZATION K-MEANS fuzzy c-means Firefly algorithm F-Firefly
下载PDF
CONSIDERING NEIGHBORHOOD INFORMATION IN IMAGE FUZZY CLUSTERING 被引量:2
3
作者 Huang Ning Zhu Minhui Zhang Shourong(The Nat. Key Lab of Microwave Imaging Tech, Inst. of Electronics, CAS, Beijing 100080) 《Journal of Electronics(China)》 2002年第3期307-310,共4页
Fuzzy C-means clustering algorithm is a classical non-supervised classification method.For image classification, fuzzy C-means clustering algorithm makes decisions on a pixel-by-pixel basis and does not take advantage... Fuzzy C-means clustering algorithm is a classical non-supervised classification method.For image classification, fuzzy C-means clustering algorithm makes decisions on a pixel-by-pixel basis and does not take advantage of spatial information, regardless of the pixels' correlation. In this letter, a novel fuzzy C-means clustering algorithm is introduced, which is based on image's neighborhood system. During classification procedure, the novel algorithm regards all pixels'fuzzy membership as a random field. The neighboring pixels' fuzzy membership information is used for the algorithm's iteration procedure. As a result, the algorithm gives a more smooth classification result and cuts down the computation time. 展开更多
关键词 Remote sensing clustering fuzzy c-means clustering algorithm
下载PDF
Substation clustering based on improved KFCM algorithm with adaptive optimal clustering number selection 被引量:1
4
作者 Yanhui Xu Yihao Gao +4 位作者 Yundan Cheng Yuhang Sun Xuesong Li Xianxian Pan Hao Yu 《Global Energy Interconnection》 EI CSCD 2023年第4期505-516,共12页
The premise and basis of load modeling are substation load composition inquiries and cluster analyses.However,the traditional kernel fuzzy C-means(KFCM)algorithm is limited by artificial clustering number selection an... The premise and basis of load modeling are substation load composition inquiries and cluster analyses.However,the traditional kernel fuzzy C-means(KFCM)algorithm is limited by artificial clustering number selection and its convergence to local optimal solutions.To overcome these limitations,an improved KFCM algorithm with adaptive optimal clustering number selection is proposed in this paper.This algorithm optimizes the KFCM algorithm by combining the powerful global search ability of genetic algorithm and the robust local search ability of simulated annealing algorithm.The improved KFCM algorithm adaptively determines the ideal number of clusters using the clustering evaluation index ratio.Compared with the traditional KFCM algorithm,the enhanced KFCM algorithm has robust clustering and comprehensive abilities,enabling the efficient convergence to the global optimal solution. 展开更多
关键词 Load substation clustering Simulated annealing genetic algorithm Kernel fuzzy c-means algorithm clustering evaluation
下载PDF
Agent Based Segmentation of the MRI Brain Using a Robust C-Means Algorithm
5
作者 Hanane Barrah Abdeljabbar Cherkaoui Driss Sarsri 《Journal of Computer and Communications》 2016年第10期13-21,共9页
In the last decade, the MRI (Magnetic Resonance Imaging) image segmentation has become one of the most active research fields in the medical imaging domain. Because of the fuzzy nature of the MRI images, many research... In the last decade, the MRI (Magnetic Resonance Imaging) image segmentation has become one of the most active research fields in the medical imaging domain. Because of the fuzzy nature of the MRI images, many researchers have adopted the fuzzy clustering approach to segment them. In this work, a fast and robust multi-agent system (MAS) for MRI segmentation of the brain is proposed. This system gets its robustness from a robust c-means algorithm (RFCM) and obtains its fastness from the beneficial properties of agents, such as autonomy, social ability and reactivity. To show the efficiency of the proposed method, we test it on a normal brain brought from the BrainWeb Simulated Brain Database. The experimental results are valuable in both robustness to noise and running times standpoints. 展开更多
关键词 Agents and MAS MR Images fuzzy clustering c-means algorithm Image Segmentation
下载PDF
A NEW UNSUPERVISED CLASSIFICATION ALGORITHM FOR POLARIMETRIC SAR IMAGES BASED ON FUZZY SET THEORY 被引量:2
6
作者 Fu Yusheng Xie Yan Pi Yiming Hou Yinming 《Journal of Electronics(China)》 2006年第4期598-601,共4页
In this letter, a new method is proposed for unsupervised classification of terrain types and man-made objects using POLarimetric Synthetic Aperture Radar (POLSAR) data. This technique is a combi-nation of the usage o... In this letter, a new method is proposed for unsupervised classification of terrain types and man-made objects using POLarimetric Synthetic Aperture Radar (POLSAR) data. This technique is a combi-nation of the usage of polarimetric information of SAR images and the unsupervised classification method based on fuzzy set theory. Image quantization and image enhancement are used to preprocess the POLSAR data. Then the polarimetric information and Fuzzy C-Means (FCM) clustering algorithm are used to classify the preprocessed images. The advantages of this algorithm are the automated classification, its high classifica-tion accuracy, fast convergence and high stability. The effectiveness of this algorithm is demonstrated by ex-periments using SIR-C/X-SAR (Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar) data. 展开更多
关键词 Radar polarimetry Synthetic Aperture Radar (SAR) fuzzy set theory Unsupervised classification Image quantization Image enhancement fuzzy c-means (FCM) clustering algorithm Membership function
下载PDF
Clustering: from Clusters to Knowledge
7
作者 Peter Grabusts 《Computer Technology and Application》 2013年第6期284-290,共7页
Data analysis and automatic processing is often interpreted as knowledge acquisition. In many cases it is necessary to somehow classify data or find regularities in them. Results obtained in the search of regularities... Data analysis and automatic processing is often interpreted as knowledge acquisition. In many cases it is necessary to somehow classify data or find regularities in them. Results obtained in the search of regularities in intelligent data analyzing applications are mostly represented with the help of IF-THEN rules. With the help of these rules the following tasks are solved: prediction, classification, pattern recognition and others. Using different approaches---clustering algorithms, neural network methods, fuzzy rule processing methods--we can extract rules that in an understandable language characterize the data. This allows interpreting the data, finding relationships in the data and extracting new rules that characterize them. Knowledge acquisition in this paper is defined as the process of extracting knowledge from numerical data in the form of rules. Extraction of rules in this context is based on clustering methods K-means and fuzzy C-means. With the assistance of K-means, clustering algorithm rules are derived from trained neural networks. Fuzzy C-means is used in fuzzy rule based design method. Rule extraction methodology is demonstrated in the Fisher's Iris flower data set samples. The effectiveness of the extracted rules is evaluated. Clustering and rule extraction methodology can be widely used in evaluating and analyzing various economic and financial processes. 展开更多
关键词 Data analysis clustering algorithms K-MEANS fuzzy c-means rule extraction.
下载PDF
Interactive Protein Data Clustering
8
作者 Terje Kristensen Vemund Jakobsen 《Computer Technology and Application》 2011年第10期818-827,共10页
In this paper, the authors present three different algorithms for data clustering. These are Self-Organizing Map (SOM), Neural Gas (NG) and Fuzzy C-Means (FCM) algorithms. SOM and NG algorithms are based on comp... In this paper, the authors present three different algorithms for data clustering. These are Self-Organizing Map (SOM), Neural Gas (NG) and Fuzzy C-Means (FCM) algorithms. SOM and NG algorithms are based on competitive leaming. An important property of these algorithms is that they preserve the topological structure of data. This means that data that is close in input distribution is mapped to nearby locations in the network. The FCM algorithm is an algorithm based on soft clustering which means that the different clusters are not necessarily distinct, but may overlap. This clustering method may be very useful in many biological problems, for instance in genetics, where a gene may belong to different clusters. The different algorithms are compared in terms of their visualization of the clustering of proteomic data. 展开更多
关键词 DATAMINING self-organizing map neural gas fuzzy c-means algorithm and protein clustering.
下载PDF
基于模糊C均值聚类和Canny算子的红外图像边缘识别与缺陷定量检测 被引量:25
9
作者 唐庆菊 刘俊岩 +2 位作者 王扬 刘元林 梅晨 《红外与激光工程》 EI CSCD 北大核心 2016年第9期274-278,共5页
针对脉冲红外热成像检测缺陷构件时,红外图像噪声较大、边缘信息模糊等特点,提出了一种基于模糊C均值聚类和Canny算子相结合的边缘检测新方法。该方法首先对输入的红外图像进行整体灰度变换,采用模糊C均值聚类对图像进行区域分割、提取... 针对脉冲红外热成像检测缺陷构件时,红外图像噪声较大、边缘信息模糊等特点,提出了一种基于模糊C均值聚类和Canny算子相结合的边缘检测新方法。该方法首先对输入的红外图像进行整体灰度变换,采用模糊C均值聚类对图像进行区域分割、提取和二值化;再将各个区域进行叠加,使红外图像的边缘变得连续;最后,采用Canny算子对处理后的图像进行边缘检测,实现缺陷的识别。在图像边缘检测基础上,分析了图像定位缺陷位置与实际缺陷位置之间的相对误差,并运用物像关系,实现缺陷几何尺寸的定量检测。结果表明:该方法对缺陷边缘识别完整清晰,具有较高的定位精度和抗噪能力,有利于缺陷的识别与定量检测。 展开更多
关键词 红外图像 边缘检测 模糊C均值聚类 canny算子 定量检测
下载PDF
Abnormal State Detection of OLTC Based on Improved Fuzzy C-means Clustering
10
作者 Hongwei Li Lilong Dou +3 位作者 Shuaibing Li Yongqiang Kang Xingzu Yang Haiying Dong 《Chinese Journal of Electrical Engineering》 CSCD 2023年第1期129-141,共13页
An accurate extraction of vibration signal characteristics of an on-load tap changer(OLTC)during contact switching can effectively help detect its abnormal state.Therefore,an improved fuzzy C-means clustering method f... An accurate extraction of vibration signal characteristics of an on-load tap changer(OLTC)during contact switching can effectively help detect its abnormal state.Therefore,an improved fuzzy C-means clustering method for abnormal state detection of the OLTC contact is proposed.First,the wavelet packet and singular spectrum analysis are used to denoise the vibration signal generated by the moving and static contacts of the OLTC.Then,the Hilbert-Huang transform that is optimized by the ensemble empirical mode decomposition(EEMD)is used to decompose the vibration signal and extract the boundary spectrum features.Finally,the gray wolf algorithm-based fuzzy C-means clustering is used to denoise the signal and determine the abnormal states of the OLTC contact.An analysis of the experimental data shows that the proposed secondary denoising method has a better denoising effect compared to the single denoising method.The EEMD can improve the modal aliasing effect,and the improved fuzzy C-means clustering can effectively identify the abnormal state of the OLTC contacts.The analysis results of field measured data further verify the effectiveness of the proposed method and provide a reference for the abnormal state detection of the OLTC. 展开更多
关键词 On-load tap changer singular spectrum analysis Hilbert-Huang transform gray wolf optimization algorithm fuzzy c-means clustering
原文传递
Research of Improved Fuzzy c-means Algorithm Based on a New Metric Norm 被引量:2
11
作者 毛力 宋益春 +2 位作者 李引 杨弘 肖炜 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第1期51-55,共5页
For the question that fuzzy c-means(FCM)clustering algorithm has the disadvantages of being too sensitive to the initial cluster centers and easily trapped in local optima,this paper introduces a new metric norm in FC... For the question that fuzzy c-means(FCM)clustering algorithm has the disadvantages of being too sensitive to the initial cluster centers and easily trapped in local optima,this paper introduces a new metric norm in FCM and particle swarm optimization(PSO)clustering algorithm,and proposes a parallel optimization algorithm using an improved fuzzy c-means method combined with particle swarm optimization(AF-APSO).The experiment shows that the AF-APSO can avoid local optima,and get the best fitness and clustering performance significantly. 展开更多
关键词 fuzzy c-means(FCM) particle swarm optimization(PSO) clustering algorithm new metric norm
原文传递
Integrated parallel forecasting model based on modified fuzzy time series and SVM 被引量:1
12
作者 Yong Shuai Tailiang Song Jianping Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第4期766-775,共10页
A dynamic parallel forecasting model is proposed, which is based on the problem of current forecasting models and their combined model. According to the process of the model, the fuzzy C-means clustering algorithm is ... A dynamic parallel forecasting model is proposed, which is based on the problem of current forecasting models and their combined model. According to the process of the model, the fuzzy C-means clustering algorithm is improved in outliers operation and distance in the clusters and among the clusters. Firstly, the input data sets are optimized and their coherence is ensured, the region scale algorithm is modified and non-isometric multi scale region fuzzy time series model is built. At the same time, the particle swarm optimization algorithm about the particle speed, location and inertia weight value is improved, this method is used to optimize the parameters of support vector machine, construct the combined forecast model, build the dynamic parallel forecast model, and calculate the dynamic weight values and regard the product of the weight value and forecast value to be the final forecast values. At last, the example shows the improved forecast model is effective and accurate. 展开更多
关键词 fuzzy c-means clustering fuzzy time series interval partitioning support vector machine particle swarm optimization algorithm parallel forecasting
下载PDF
Improved Kernel Possibilistic Fuzzy Clustering Algorithm Based on Invasive Weed Optimization 被引量:1
13
作者 赵小强 周金虎 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第2期164-170,共7页
Fuzzy c-means(FCM) clustering algorithm is sensitive to noise points and outlier data, and the possibilistic fuzzy c-means(PFCM) clustering algorithm overcomes the problem well, but PFCM clustering algorithm has some ... Fuzzy c-means(FCM) clustering algorithm is sensitive to noise points and outlier data, and the possibilistic fuzzy c-means(PFCM) clustering algorithm overcomes the problem well, but PFCM clustering algorithm has some problems: it is still sensitive to initial clustering centers and the clustering results are not good when the tested datasets with noise are very unequal. An improved kernel possibilistic fuzzy c-means algorithm based on invasive weed optimization(IWO-KPFCM) is proposed in this paper. This algorithm first uses invasive weed optimization(IWO) algorithm to seek the optimal solution as the initial clustering centers, and introduces kernel method to make the input data from the sample space map into the high-dimensional feature space. Then, the sample variance is introduced in the objection function to measure the compact degree of data. Finally, the improved algorithm is used to cluster data. The simulation results of the University of California-Irvine(UCI) data sets and artificial data sets show that the proposed algorithm has stronger ability to resist noise, higher cluster accuracy and faster convergence speed than the PFCM algorithm. 展开更多
关键词 data mining clustering algorithm possibilistic fuzzy c-means(PFCM) kernel possibilistic fuzzy c-means algorithm based on invasiv
原文传递
Advanced Fuzzy C-Means Algorithm Based on Local Density and Distance 被引量:1
14
作者 Shaochun PANG Yijie +1 位作者 SHAO Sen JIANG Keyuan 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第5期636-642,共7页
This paper presents an advanced fuzzy C-means(FCM) clustering algorithm to overcome the weakness of the traditional FCM algorithm, including the instability of random selecting of initial center and the limitation of ... This paper presents an advanced fuzzy C-means(FCM) clustering algorithm to overcome the weakness of the traditional FCM algorithm, including the instability of random selecting of initial center and the limitation of the data separation or the size of clusters. The advanced FCM algorithm combines the distance with density and improves the objective function so that the performance of the algorithm can be improved. The experimental results show that the proposed FCM algorithm requires fewer iterations yet provides higher accuracy than the traditional FCM algorithm. The advanced algorithm is applied to the influence of stars' box-office data, and the classification accuracy of the first class stars achieves 92.625%. 展开更多
关键词 objective function clustering center fuzzy c-means (FCM) clustering algorithm degree of member-ship
原文传递
Fuzzy identification of nonlinear dynamic system based on selection of important input variables 被引量:1
15
作者 LYU Jinfeng LIU Fucai REN Yaxue 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第3期737-747,共11页
Input variables selection(IVS) is proved to be pivotal in nonlinear dynamic system modeling. In order to optimize the model of the nonlinear dynamic system, a fuzzy modeling method for determining the premise structur... Input variables selection(IVS) is proved to be pivotal in nonlinear dynamic system modeling. In order to optimize the model of the nonlinear dynamic system, a fuzzy modeling method for determining the premise structure by selecting important inputs of the system is studied. Firstly, a simplified two stage fuzzy curves method is proposed, which is employed to sort all possible inputs by their relevance with outputs, select the important input variables of the system and identify the structure.Secondly, in order to reduce the complexity of the model, the standard fuzzy c-means clustering algorithm and the recursive least squares algorithm are used to identify the premise parameters and conclusion parameters, respectively. Then, the effectiveness of IVS is verified by two well-known issues. Finally, the proposed identification method is applied to a realistic variable load pneumatic system. The simulation experiments indi cate that the IVS method in this paper has a positive influence on the approximation performance of the Takagi-Sugeno(T-S) fuzzy modeling. 展开更多
关键词 Takagi-Sugeno(T-S)fuzzy modeling input variable selection(IVS) fuzzy identification fuzzy c-means clustering algorithm
下载PDF
Employment Quality EvaluationModel Based on Hybrid Intelligent Algorithm
16
作者 Xianhui Gu Xiaokan Wang Shuang Liang 《Computers, Materials & Continua》 SCIE EI 2023年第1期131-139,共9页
In order to solve the defect of large error in current employment quality evaluation,an employment quality evaluation model based on grey correlation degree method and fuzzy C-means(FCM)is proposed.Firstly,it analyzes... In order to solve the defect of large error in current employment quality evaluation,an employment quality evaluation model based on grey correlation degree method and fuzzy C-means(FCM)is proposed.Firstly,it analyzes the related research work of employment quality evaluation,establishes the employment quality evaluation index system,collects the index data,and normalizes the index data;Then,the weight value of employment quality evaluation index is determined by Grey relational analysis method,and some unimportant indexes are removed;Finally,the employment quality evaluation model is established by using fuzzy cluster analysis algorithm,and compared with other employment quality evaluation models.The test results show that the employment quality evaluation accuracy of the design model exceeds 93%,the employment quality evaluation error can meet the requirements of practical application,and the employment quality evaluation effect is much better than the comparison model.The comparison test verifies the superiority of the model. 展开更多
关键词 Employment quality fuzzy c-means clustering algorithm grey correlation analysis method evaluation model index system comparative test
下载PDF
基于模糊信息聚类算法的变电站作业信息分析
17
作者 贺威 訾泉 +2 位作者 徐峰 巩明涛 倪慧明 《电气自动化》 2024年第1期56-59,共4页
为了提高变电站作业信息的计算能力,构建了一种新型的模糊信息聚类算法模型。将变电站作业信息按电力属性数据信息进行分类,将变电站信息共享调度的主要特征量进行组合或者集中分配以处理;构建变电站作业信息分析应用系统,实现变电站作... 为了提高变电站作业信息的计算能力,构建了一种新型的模糊信息聚类算法模型。将变电站作业信息按电力属性数据信息进行分类,将变电站信息共享调度的主要特征量进行组合或者集中分配以处理;构建变电站作业信息分析应用系统,实现变电站作业路在超出标准时的信息报警和录像回传;通过带宽方式进行信息传达,提高了变电站作业路参数和线路的信息分析。最后在35 kV变电站作业路进行试验,算法识别精度为97.3%。该技术为变电站作业智能监控技术奠定了基础。 展开更多
关键词 变电站作业 模糊信息聚类算法模型 信息分析 信息报警
下载PDF
基于并行免疫遗传算法基因表达数据的动态模糊聚类 被引量:8
18
作者 郑明 刘桂霞 +3 位作者 周春光 王晗 郑小红 李艳文 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2009年第1期63-68,共6页
提出一种改进的并行免疫遗传算法,通过在群体规模上引入"岛"的概念,实现了可变的群体规模;通过在适应度函数内引入免疫算子,避免了算法过早收敛.因此,解决了寻优算法中局部收敛的困扰,提高了获得全局最优解的几率.把此算法应... 提出一种改进的并行免疫遗传算法,通过在群体规模上引入"岛"的概念,实现了可变的群体规模;通过在适应度函数内引入免疫算子,避免了算法过早收敛.因此,解决了寻优算法中局部收敛的困扰,提高了获得全局最优解的几率.把此算法应用于斯坦福大学酵母细胞周期表达数据库的数据进行共表达聚类,并将实验结果与Spellman按照功能基因组学进行聚类所得结果进行了对比,证明了所给算法在功能基因组学聚类上的有效性. 展开更多
关键词 动态模糊聚类 并行免疫遗传算法 免疫算子 岛屿
下载PDF
基于动态优选元胞遗传模糊聚类的使用可靠性区域粒度确定方法 被引量:5
19
作者 揭丽琳 刘卫东 +1 位作者 滕沙沙 孙政 《计算机集成制造系统》 EI CSCD 北大核心 2018年第8期1929-1945,共17页
为了进行使用可靠性区域粒度划分研究,在分析空调使用可靠性影响因素的基础上,以其使用可靠性同类区域差异最小为目标,建立了使用可靠性基于工作环境和用户使用习惯两类影响因素的多变量高维聚类模型,提出求解该模型的一种动态优选元胞... 为了进行使用可靠性区域粒度划分研究,在分析空调使用可靠性影响因素的基础上,以其使用可靠性同类区域差异最小为目标,建立了使用可靠性基于工作环境和用户使用习惯两类影响因素的多变量高维聚类模型,提出求解该模型的一种动态优选元胞遗传模糊聚类算法。该算法在经典元胞遗传算法和模糊C-均值算法的基础上引入信息熵理论和优选策略,并采用动态交叉和两阶段变异算子,因此集成了模糊C-均值收敛速度快和元胞遗传算法在解决复杂问题时多样性好、全局搜索能力强的特点。通过6个标准测试数据集的测试结果,证明新算法相对于模糊C-均值、遗传模糊聚类算法和粒子群模糊聚类算法具有更高的聚类精度和稳定性,尤其适合处理高维复杂数据的聚类问题。最后运用该算法求解模型,并评价不同粒度层次下聚类结果的有效性,进而确定使用可靠性最优区域粒度划分方案,表明算法能有效解决相关的实际工程问题。 展开更多
关键词 空调使用可靠性 聚类算法 元胞遗传算法 模糊C-均值 粒度评价
下载PDF
基于梯度算子的蚁群图像分割算法研究 被引量:7
20
作者 薛琴 陈玮 罗俊奇 《计算机工程与设计》 CSCD 北大核心 2007年第23期5660-5663,共4页
提出了一种基于梯度算子的改进蚁群图像分割算法,解决了用传统分割方法很难将目标与背景灰度值相似图割的难题。该算法基于经典的梯度算子图像分割,从聚类的角度出发,综合像素的灰度、梯度特征进行特征分割。蚁群是一种具有离散性、并... 提出了一种基于梯度算子的改进蚁群图像分割算法,解决了用传统分割方法很难将目标与背景灰度值相似图割的难题。该算法基于经典的梯度算子图像分割,从聚类的角度出发,综合像素的灰度、梯度特征进行特征分割。蚁群是一种具有离散性、并行性、鲁棒性和模糊聚类能力的进化方法,通过设置不同的蚁群、聚类中心、启发式引导函数和激素来解决蚁群算法循环次数多,计算量大的模糊聚类问题。实验证明,该改进蚁群算法可以快速准确的分割出背景标灰度值极其相似图片的目标图像,是一种有效的图像分割方法。 展开更多
关键词 梯度算子 蚁群算法 图像分割 模糊聚类 特征提取
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部