期刊文献+
共找到332篇文章
< 1 2 17 >
每页显示 20 50 100
Kernel method-based fuzzy clustering algorithm 被引量:2
1
作者 WuZhongdong GaoXinbo +1 位作者 XieWeixin YuJianping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第1期160-166,共7页
The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, d... The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, data with noise, data with mixture of heterogeneous cluster prototypes, asymmetric data, etc. Based on the Mercer kernel, FKCM clustering algorithm is derived from FCM algorithm united with kernel method. The results of experiments with the synthetic and real data show that the FKCM clustering algorithm is universality and can effectively unsupervised analyze datasets with variform structures in contrast to FCM algorithm. It is can be imagined that kernel-based clustering algorithm is one of important research direction of fuzzy clustering analysis. 展开更多
关键词 fuzzy clustering analysis kernel method fuzzy C-means clustering.
下载PDF
Face Recognition Using Fuzzy Clustering and Kernel Least Square
2
作者 Essam Al Daoud 《Journal of Computer and Communications》 2015年第3期1-7,共7页
Over the last fifteen years, face recognition has become a popular area of research in image analysis and one of the most successful applications of machine learning and understanding. To enhance the classification ra... Over the last fifteen years, face recognition has become a popular area of research in image analysis and one of the most successful applications of machine learning and understanding. To enhance the classification rate of the image recognition, several techniques are introduced, modified and combined. The suggested model extracts the features using Fourier-Gabor filter, selects the best features using signal to noise ratio, deletes or modifies anomalous images using fuzzy c-mean clustering, uses kernel least square and optimizes it by using wild dog pack optimization. To compare the suggested method with the previous methods, four datasets are used. The results indicate that the suggested methods without fuzzy clustering and with fuzzy clustering outperform state- of-art methods for all datasets. 展开更多
关键词 FACE Recognition fuzzy clustering kernel Least SQUARE GABOR FILTERS
下载PDF
Short-Term Wind Power Prediction Using Fuzzy Clustering and Support Vector Regression 被引量:3
3
作者 In-Yong Seo Bok-Nam Ha +3 位作者 Sung-Woo Lee Moon-Jong Jang Sang-Ok Kim Seong-Jun Kim 《Journal of Energy and Power Engineering》 2012年第10期1605-1610,共6页
A sustainable production of electricity is essential for low carbon green growth in South Korea. The generation of wind power as renewable energy has been rapidly growing around the world. Undoubtedly, wind energy is ... A sustainable production of electricity is essential for low carbon green growth in South Korea. The generation of wind power as renewable energy has been rapidly growing around the world. Undoubtedly, wind energy is unlimited in potential. However due to its own intermittency and volatility, there are difficulties in the effective harvesting of wind energy and the integration of wind power into the current electric power grid. To cope with this, many works have been done for wind speed and power forecasting. In this paper, an SVR (support vector regression) using FCM (Fuzzy C-Means) is proposed for wind speed forecasting. This paper describes the design of an FCM based SVR to increase the prediction accuracy. Proposed model was compared with ordinary SVR model using balanced and unbalanced test data. Also, multi-step ahead forecasting result was compared. Kernel parameters in SVR are adaptively determined in order to improve forecasting accuracy. An illustrative example is given by using real-world wind farm dataset. According to the experimental results, it is shown that the proposed method provides better forecasts of wind power. 展开更多
关键词 Support vector regression kernel fuzzy clustering wind power prediction.
下载PDF
Modified possibilistic clustering model based on kernel methods
4
作者 武小红 周建江 《Journal of Shanghai University(English Edition)》 CAS 2008年第2期136-140,共5页
A novel model of fuzzy clustering using kernel methods is proposed. This model is called kernel modified possibilistic c-means (KMPCM) model. The proposed model is an extension of the modified possibilistic c-means ... A novel model of fuzzy clustering using kernel methods is proposed. This model is called kernel modified possibilistic c-means (KMPCM) model. The proposed model is an extension of the modified possibilistic c-means (MPCM) algorithm by using kernel methods. Different from MPCM and fuzzy c-means (FCM) model which are based on Euclidean distance, the proposed model is based on kernel-induced distance. Furthermore, with kernel methods the input data can be mapped implicitly into a high-dimensional feature space where the nonlinear pattern now appears linear. It is unnecessary to do calculation in the high-dimensional feature space because the kernel function can do it. Numerical experiments show that KMPCM outperforms FCM and MPCM. 展开更多
关键词 fuzzy clustering kernel methods possibilistic c-means (PCM) kernel modified possibilistic c-means (KMPCM).
下载PDF
Kernel Generalized Noise Clustering Algorithm
5
作者 武小红 周建江 《Journal of Southwest Jiaotong University(English Edition)》 2007年第2期96-101,共6页
To deal with the nonlinear separable problem, the generalized noise clustering (GNC) algorithm is extended to a kernel generalized noise clustering (KGNC) model. Different from the fuzzy c-means (FCM) model and ... To deal with the nonlinear separable problem, the generalized noise clustering (GNC) algorithm is extended to a kernel generalized noise clustering (KGNC) model. Different from the fuzzy c-means (FCM) model and the GNC model which are based on Euclidean distance, the presented model is based on kernel-induced distance by using kernel method. By kernel method the input data are nonlinearly and implicitly mapped into a high-dimensional feature space, where the nonlinear pattern appears linear and the GNC algorithm is performed. It is unnecessary to calculate in high-dimensional feature space because the kernel function can do it just in input space. The effectiveness of the proposed algorithm is verified by experiments on three data sets. It is concluded that the KGNC algorithm has better clustering accuracy than FCM and GNC in clustering data sets containing noisy data. 展开更多
关键词 fuzzy clustering Pattern recognition kernel methods Noise clustering kernel generalized noise clustering
下载PDF
Substation clustering based on improved KFCM algorithm with adaptive optimal clustering number selection 被引量:1
6
作者 Yanhui Xu Yihao Gao +4 位作者 Yundan Cheng Yuhang Sun Xuesong Li Xianxian Pan Hao Yu 《Global Energy Interconnection》 EI CSCD 2023年第4期505-516,共12页
The premise and basis of load modeling are substation load composition inquiries and cluster analyses.However,the traditional kernel fuzzy C-means(KFCM)algorithm is limited by artificial clustering number selection an... The premise and basis of load modeling are substation load composition inquiries and cluster analyses.However,the traditional kernel fuzzy C-means(KFCM)algorithm is limited by artificial clustering number selection and its convergence to local optimal solutions.To overcome these limitations,an improved KFCM algorithm with adaptive optimal clustering number selection is proposed in this paper.This algorithm optimizes the KFCM algorithm by combining the powerful global search ability of genetic algorithm and the robust local search ability of simulated annealing algorithm.The improved KFCM algorithm adaptively determines the ideal number of clusters using the clustering evaluation index ratio.Compared with the traditional KFCM algorithm,the enhanced KFCM algorithm has robust clustering and comprehensive abilities,enabling the efficient convergence to the global optimal solution. 展开更多
关键词 Load substation clustering Simulated annealing genetic algorithm kernel fuzzy C-means algorithm clustering evaluation
下载PDF
KFL: a clustering algorithm for image database
7
作者 Xie Zongbo Feng Jiuchao 《High Technology Letters》 EI CAS 2012年第1期33-37,共5页
It is a fairly challenging issue to make image repositories easy to be searched and browsed. This depends on a technique--image clustering. Kernel-based clustering algorithm has been one of the most promising clusteri... It is a fairly challenging issue to make image repositories easy to be searched and browsed. This depends on a technique--image clustering. Kernel-based clustering algorithm has been one of the most promising clustering methods in the last few years, beeanse it can handle data with high dimensional complex structure. In this paper, a kernel fuzzy learning (KFL) algorithm is proposed, which takes advantages of the distance kernel trick and the gradient-based fuzzy clustering method to execute the image clustering automatically. Experimental results show that KFL is a more efficient method for image clustering in comparison with recent renorted alternative methods. 展开更多
关键词 kernel fuzzy learning (KFL) image clustering content-based image retrieval (CBIR)
下载PDF
Fault Pattern Recognition based on Kernel Method and Fuzzy C-means
8
作者 SUN Yebei ZHAO Rongzhen TANG Xiaobin 《International Journal of Plant Engineering and Management》 2016年第4期231-240,共10页
A method about fault identification is proposed to solve the relationship among fault features of large rotating machinery, which is extremely complicated and nonlinear. This paper studies the rotor test-rig and the c... A method about fault identification is proposed to solve the relationship among fault features of large rotating machinery, which is extremely complicated and nonlinear. This paper studies the rotor test-rig and the clustering of data sets and fault pattern recognitions. The present method firstly maps the data from their original space to a high dimensional Kernel space which makes the highly nonlinear data in low-dimensional space become linearly separable in Kernel space. It highlights the differences among the features of the data set. Then fuzzy C-means (FCM) is conducted in the Kernel space. Each data is assigned to the nearest class by computing the distance to the clustering center. Finally, test set is used to judge the results. The convergence rate and clustering accuracy are better than traditional FCM. The study shows that the method is effective for the accuracy of pattern recognition on rotating machinery. 展开更多
关键词 kernel method fuzzy C-means FCM pattern recognition clustering
下载PDF
基于FKCM的球磨机系统T-S模糊建模方法 被引量:5
9
作者 王恒 贾民平 +2 位作者 许飞云 陈左亮 谢超 《系统仿真学报》 CAS CSCD 北大核心 2009年第2期530-533,共4页
针对传统的描述热工过程动态数学模型的方法难以建立非线性模型的缺点,提出了一种基于模糊核聚类的球磨机系统T-S模糊建模算法。该算法首先通过灰色关系法确定模型输入变量,利用FKCM聚类算法对输入空间进行模糊划分,确定T-S模型的前件... 针对传统的描述热工过程动态数学模型的方法难以建立非线性模型的缺点,提出了一种基于模糊核聚类的球磨机系统T-S模糊建模算法。该算法首先通过灰色关系法确定模型输入变量,利用FKCM聚类算法对输入空间进行模糊划分,确定T-S模型的前件结构和前件参数;进而利用最小二乘算法确定模糊规则的后件参数。最后,利用数字仿真数据对球磨机系统进行模糊建模,建模结果表明该算法简单﹑实用,模型能够精确地描述过程的非线性。 展开更多
关键词 球磨机 T-S模糊模型 模糊核聚类 灰色关联度分析
下载PDF
基于LF-GWO优化FKCA模型的齿轮箱故障诊断研究 被引量:2
10
作者 袁荷伟 李高磊 +1 位作者 袁黎 张强 《机械设计与制造》 北大核心 2023年第4期239-242,共4页
采用莱维飞行策略对灰狼优化算法进行了优化,显著提升了算法的初期搜索性能。建立了LF-GWO算法求解FKCA模型,并给出了故障诊断步骤。通过实验验证结果表明:经过800次迭代计算处理时,LF-GWO寻优形成的最小错误率2%,以LF-GWO/FKCA诊断测... 采用莱维飞行策略对灰狼优化算法进行了优化,显著提升了算法的初期搜索性能。建立了LF-GWO算法求解FKCA模型,并给出了故障诊断步骤。通过实验验证结果表明:经过800次迭代计算处理时,LF-GWO寻优形成的最小错误率2%,以LF-GWO/FKCA诊断测试集时获得了98%的正确率,只对点蚀与磨损的故障类型存在错误判断各一处情况。相比较FKCA和BP方法,采用LF-GWO/FKCA方法则可以将无标签缺齿数据归为第4类,从而实现与已知故障类型的区分,达到了更高的正确率,实际测试正确率为98%,显著提升故障诊断正确率。对齿轮箱的故障进行诊断仿真显示本文设计的诊断方法可以达到很低的错误率,表现出了优异的故障诊断性能。 展开更多
关键词 灰狼优化算法 模糊核聚类 齿轮箱 故障诊断 错误率
下载PDF
基于改进FKCM方法的针织纱质量评价 被引量:1
11
作者 刘皓 成玲 《纺织学报》 EI CAS CSCD 北大核心 2009年第1期37-41,共5页
为对针织纱线的质量进行更客观准确的评价,提出应用改进的模糊核C-均值(FKCM)聚类算法对针织纱测量数据集聚类,改进FKCM聚类方法,将低维输入空间数据通过核函数映射到高维的特征空间,然后在特征空间应用FCM聚类分析对数据进行聚类分析,... 为对针织纱线的质量进行更客观准确的评价,提出应用改进的模糊核C-均值(FKCM)聚类算法对针织纱测量数据集聚类,改进FKCM聚类方法,将低维输入空间数据通过核函数映射到高维的特征空间,然后在特征空间应用FCM聚类分析对数据进行聚类分析,构造了核F(KF)统计量寻找合理的聚类数,最后建立聚类类别和质量等级之间的对应关系模型。通过对IRIS数据分析,显示应用改进的FKCM具有较好的分类效果,将这种方法应用到实测数据,KF指标显示样本分2类是较合理的。依据建立的类别质量等级函数即可确定每类样本的质量等级。改进的FKCM方法和KF指标结合能够有效地对多指标数据集进行分析。 展开更多
关键词 针织纱 质量评价 模糊核C-均值 核方法 聚类
下载PDF
改进RHGSO-FC算法的RGB-D图像GMM聚类分割
12
作者 郭培岩 范九伦 刘恒 《计算机工程与应用》 北大核心 2025年第2期234-246,共13页
随着低成本深度图像传感器的引入,在RGB-D图像中进行可靠的图像分割是计算机视觉的一个目标,而如何对杂乱的场景进行图像分割具有挑战性。基于随机亨利气体溶解度优化算法的模糊聚类(RHGSO-FC),提出一种新的RGB-D图像分割方法。对亨利... 随着低成本深度图像传感器的引入,在RGB-D图像中进行可靠的图像分割是计算机视觉的一个目标,而如何对杂乱的场景进行图像分割具有挑战性。基于随机亨利气体溶解度优化算法的模糊聚类(RHGSO-FC),提出一种新的RGB-D图像分割方法。对亨利气体溶解度优化算法(HGSO)进行改进,提出改进的亨利气体溶解度优化算法(LRHGSO),并利用基于改进亨利气体溶解度优化算法的核模糊聚类(LRHGSO-KFC)生成初始化标签。将初始化标签传入到高斯混合(GMM)聚类中,得到多个聚类结果。最后对这些聚类结果通过聚集超像素方法进行分割合并,得到最终分割结果。实验数据集采用NYU depth V2室内图像,与现有的一些分割方法:阈值分割算法、硬C-均值、模糊C-均值、高斯混合聚类、核模糊聚类、模糊子空间聚类、混沌Kbest引力搜索算法和随机亨利气体溶解度优化算法进行比较,结果表明提出的RGB-D分割算法优于其他比较的算法。 展开更多
关键词 RGB-D图像分割 核模糊聚类 亨利气体溶解度优化算法 高斯混合模型 聚集超像素
下载PDF
Fast global kernel fuzzy c-means clustering algorithm for consonant/vowel segmentation of speech signal 被引量:2
13
作者 Xian ZANG Felipe P. VISTA IV Kil To CHONG 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2014年第7期551-563,共13页
We propose a novel clustering algorithm using fast global kernel fuzzy c-means-F(FGKFCM-F), where F refers to kernelized feature space. This algorithm proceeds in an incremental way to derive the near-optimal solution... We propose a novel clustering algorithm using fast global kernel fuzzy c-means-F(FGKFCM-F), where F refers to kernelized feature space. This algorithm proceeds in an incremental way to derive the near-optimal solution by solving all intermediate problems using kernel-based fuzzy c-means-F(KFCM-F) as a local search procedure. Due to the incremental nature and the nonlinear properties inherited from KFCM-F, this algorithm overcomes the two shortcomings of fuzzy c-means(FCM): sen- sitivity to initialization and inability to use nonlinear separable data. An accelerating scheme is developed to reduce the compu-tational complexity without significantly affecting the solution quality. Experiments are carried out to test the proposed algorithm on a nonlinear artificial dataset and a real-world dataset of speech signals for consonant/vowel segmentation. Simulation results demonstrate the effectiveness of the proposed algorithm in improving clustering performance on both types of datasets. 展开更多
关键词 fuzzy c-means clustering kernel method Global optimization Consonant/vowel segmentation
原文传递
Improved Kernel Possibilistic Fuzzy Clustering Algorithm Based on Invasive Weed Optimization 被引量:1
14
作者 赵小强 周金虎 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第2期164-170,共7页
Fuzzy c-means(FCM) clustering algorithm is sensitive to noise points and outlier data, and the possibilistic fuzzy c-means(PFCM) clustering algorithm overcomes the problem well, but PFCM clustering algorithm has some ... Fuzzy c-means(FCM) clustering algorithm is sensitive to noise points and outlier data, and the possibilistic fuzzy c-means(PFCM) clustering algorithm overcomes the problem well, but PFCM clustering algorithm has some problems: it is still sensitive to initial clustering centers and the clustering results are not good when the tested datasets with noise are very unequal. An improved kernel possibilistic fuzzy c-means algorithm based on invasive weed optimization(IWO-KPFCM) is proposed in this paper. This algorithm first uses invasive weed optimization(IWO) algorithm to seek the optimal solution as the initial clustering centers, and introduces kernel method to make the input data from the sample space map into the high-dimensional feature space. Then, the sample variance is introduced in the objection function to measure the compact degree of data. Finally, the improved algorithm is used to cluster data. The simulation results of the University of California-Irvine(UCI) data sets and artificial data sets show that the proposed algorithm has stronger ability to resist noise, higher cluster accuracy and faster convergence speed than the PFCM algorithm. 展开更多
关键词 data mining clustering algorithm possibilistic fuzzy c-means(PFCM) kernel possibilistic fuzzy c-means algorithm based on invasiv
原文传递
基于改进FCM的冲压件缺陷图像分割算法
15
作者 张玉杰 高晗 《计算机工程》 CAS CSCD 北大核心 2024年第10期342-351,共10页
在工业质检过程中,冲压件缺陷图像分割作为缺陷检测的重要环节,直接影响缺陷检测效果。而传统的模糊C均值(FCM)聚类算法未考虑到空间邻域信息,对于噪声干扰较为敏感,导致分割精度较差,且其整体易受初始值的影响,造成收敛速度变慢。针对... 在工业质检过程中,冲压件缺陷图像分割作为缺陷检测的重要环节,直接影响缺陷检测效果。而传统的模糊C均值(FCM)聚类算法未考虑到空间邻域信息,对于噪声干扰较为敏感,导致分割精度较差,且其整体易受初始值的影响,造成收敛速度变慢。针对上述问题,提出一种改进的FCM算法。采用内核诱导距离中的简单两项代替传统的欧氏距离,将原有的空间像素映射到高维特征空间,提高线性可分概率和计算速度;利用图像像素之间的空间相关性,通过引入改进的马尔可夫随机场对FCM目标函数进行修正,提高算法的抗噪能力以及分割精度;采用秃鹰搜索(BES)算法确定FCM的初始聚类中心,提高算法的收敛速度,同时避免算法陷入局部极值的情况。为验证改进FCM算法的性能,选取划分熵、划分系数、Xie_Beni系数以及迭代次数作为评价指标,并与近年来先进的图像分割算法进行对比。实验结果表明,改进FCM算法具有更好的抗噪能力,能得到更好的缺陷分割效果,对工业生产中的冲压件缺陷检测有一定的应用价值。 展开更多
关键词 模糊C均值聚类 工业应用 冲压件缺陷 内核诱导距离 马尔可夫随机场 秃鹰搜索算法
下载PDF
基于模糊核聚类加权证据融合的深基坑施工风险评价方法及其应用
16
作者 甘淑清 刘择帅 +4 位作者 张立华 肖继远 叶秀军 刘进 雷明锋 《现代隧道技术》 CSCD 北大核心 2024年第S01期234-243,共10页
针对经典D-S证据理论在工程风险评价应用过程中存在的证据冲突、证据源不完备而带来的评价结果偏差问题,分别从合成法则修正和证据源精准赋权两方面进行改进研究,并开展实例应用分析。在平均信度优先的情况下保留经典的Dempster组合规则... 针对经典D-S证据理论在工程风险评价应用过程中存在的证据冲突、证据源不完备而带来的评价结果偏差问题,分别从合成法则修正和证据源精准赋权两方面进行改进研究,并开展实例应用分析。在平均信度优先的情况下保留经典的Dempster组合规则,提出多证据源合成法则计算新模型,以解决经典D-S证据理论中冲突证据导致的合成结果与实际情况不符的问题;引入模糊核聚类赋权方法对证据源权重进行修正,建立一种基于乘积偏好关系和偏差熵的模糊核聚类赋权方法,用以克服和解决传统模糊核聚类算法中离群点对聚类结果的影响以及多类专家意见同时存在时证据源的可靠度问题;形成基于模糊核聚类加权证据融合的风险评价方法,并依托某深基坑工程开展应用分析。结果表明:相较于经典D-S证据理论及其现有的相关修正方法,建立的基于模糊核聚类加权证据融合的风险评价方法收敛速度更快且考虑了证据间的关联性,可有效处理多类冲突意见同时存在的风险评价难题;依托工程关键风险源为软土开挖,关键风险事件为软土开挖造成的建筑损伤加剧及坑边地层变形,Ⅱ级风险的概率为0.7004,Ⅲ级风险的概率为0.2996。 展开更多
关键词 风险评价 模糊核聚类 证据理论 基坑开挖
下载PDF
Enhancing Multicriteria-Based Recommendations by Alleviating Scalability and Sparsity Issues Using Collaborative Denoising Autoencoder
17
作者 S.Abinaya K.Uttej Kumar 《Computers, Materials & Continua》 SCIE EI 2024年第2期2269-2286,共18页
A Recommender System(RS)is a crucial part of several firms,particularly those involved in e-commerce.In conventional RS,a user may only offer a single rating for an item-that is insufficient to perceive consumer prefe... A Recommender System(RS)is a crucial part of several firms,particularly those involved in e-commerce.In conventional RS,a user may only offer a single rating for an item-that is insufficient to perceive consumer preferences.Nowadays,businesses in industries like e-learning and tourism enable customers to rate a product using a variety of factors to comprehend customers’preferences.On the other hand,the collaborative filtering(CF)algorithm utilizing AutoEncoder(AE)is seen to be effective in identifying user-interested items.However,the cost of these computations increases nonlinearly as the number of items and users increases.To triumph over the issues,a novel expanded stacked autoencoder(ESAE)with Kernel Fuzzy C-Means Clustering(KFCM)technique is proposed with two phases.In the first phase of offline,the sparse multicriteria rating matrix is smoothened to a complete matrix by predicting the users’intact rating by the ESAE approach and users are clustered using the KFCM approach.In the next phase of online,the top-N recommendation prediction is made by the ESAE approach involving only the most similar user from multiple clusters.Hence the ESAE_KFCM model upgrades the prediction accuracy of 98.2%in Top-N recommendation with a minimized recommendation generation time.An experimental check on the Yahoo!Movies(YM)movie dataset and TripAdvisor(TA)travel dataset confirmed that the ESAE_KFCM model constantly outperforms conventional RS algorithms on a variety of assessment measures. 展开更多
关键词 Recommender systems multicriteria rating collaborative filtering sparsity issue scalability issue stacked-autoencoder kernel fuzzy C-Means clustering
下载PDF
改进黑猩猩优化算法的RGB-D图像核模糊聚类分割
18
作者 刘恒 范九伦 郭培岩 《微电子学与计算机》 2024年第9期10-21,共12页
借助于低成本深度传感器,产生了深度与颜色同步的RGB-D图像。针对RGB-D图像分割困难以及黑猩猩优化算法精度低、收敛速度慢和易陷入局部最优的问题,提出了基于改进黑猩猩优化算法(Improved Chimp Optimization Algorithm,IChOA)的RGB-D... 借助于低成本深度传感器,产生了深度与颜色同步的RGB-D图像。针对RGB-D图像分割困难以及黑猩猩优化算法精度低、收敛速度慢和易陷入局部最优的问题,提出了基于改进黑猩猩优化算法(Improved Chimp Optimization Algorithm,IChOA)的RGB-D图像核模糊聚类算法。首先,对RGB-D图像进行特征提取生成6个特征子集;其次,引入Levy飞行策略和非线性惯性权重对ChOA进行改造;最后,利用IChOA对6个特征子集进行核模糊聚类,得到多个最优聚类,然后通过聚集超像素方法对多个最优聚类进行不同组合的分割,生成最终的分割结果。采用NYU depth V2室内图像数据集进行实验,与现有的一些分割方法(阈值分割,模糊子空间聚类,残差驱动的模糊C-均值,硬C-均值,模糊C-均值,核模糊聚类,基于混沌kbest引力搜索算法和随机亨利溶解度优化算法)进行比较,结果表明所提出的RGB-D分割算法优于比较的算法。 展开更多
关键词 RGB-D图像分割 核模糊聚类 黑猩猩优化算法 聚集超像素
下载PDF
基于高斯核函数的差分隐私模糊C均值聚类算法的构建与应用
19
作者 曹自雄 陈宇鲜 蒋秀梅 《中国医学装备》 2024年第8期106-112,共7页
目的:提出一种基于高斯核函数的差分隐私模糊C均值聚类算法(DPFCM_GF),旨在优化大数据背景下医疗数据分析和挖掘带来的数据隐私安全问题,为数据隐私保护提供理论基础。方法:针对随机初始化模糊C-均值隶属度矩阵降低算法精度问题,采用最... 目的:提出一种基于高斯核函数的差分隐私模糊C均值聚类算法(DPFCM_GF),旨在优化大数据背景下医疗数据分析和挖掘带来的数据隐私安全问题,为数据隐私保护提供理论基础。方法:针对随机初始化模糊C-均值隶属度矩阵降低算法精度问题,采用最大距离法确定初始中心点,使用聚类中心点的高斯值计算隐私预算分配比率,并添加拉普拉斯噪声以完成差分隐私保护,构建DPFCM_GF。收集整理美国加州大学欧文分校机器学习存储库的心脏病、乳腺癌、甲状腺疾病及糖尿病公开数据集对DPFCM_GF有效性进行验证,收集2019年1月1日至2022年12月31日淮安市第二人民医院收治的756例胃癌和肺癌患者病例数据集,对DPFCM_GF的可用性进行验证,并将分析结果与模糊C均值聚类算法(FCM)以及差分隐私模糊C均值聚类算法(DPFCM)进行对比分析。结果:对于心脏病、乳腺癌、甲状腺疾病及糖尿病公开数据集,DPFCM_GF和DPFCM的最优聚类效果与FCM聚类效果相当;相较于DPFCM,DPFCM_GF迭代时间更快,聚集速度显著,差异有统计学意义(t=4.01、4.71、4.01、12.38,P<0.05)。对于肺癌和胃癌数据集,随着隐私预算ε的增大,DPFCM_GF正确识别率逐渐聚集于91.9%和93.9%,受试者工作特征(ROC)曲线下面积(AUC)值分别为0.79和0.81;当隐私函数ε为0.1、0.5、1和2(ε<3)时,DPFCM_GF聚类效果显著优于DPFCM,且聚类效果更佳,差异有统计学意义(χ^(2)=12.25、87.12、68.58、7.76,P<0.05;χ^(2)=4.74、43.51、42.47、4.89,P<0.05)。结论:DPFCM_GF是一种有效保护医疗数据隐私的方法,同时也可进行数据分析和挖掘任务,具有一定的研究意义和研究前景。 展开更多
关键词 数据隐私 差分隐私 模糊C均值聚类算法 高斯核函数 数据挖掘 隐私预算
下载PDF
基于粒子群优化的直觉模糊核聚类算法研究 被引量:55
20
作者 余晓东 雷英杰 +1 位作者 岳韶华 王睿 《通信学报》 EI CSCD 北大核心 2015年第5期74-80,共7页
针对现有基于核方法的直觉模糊聚类算法对初始值敏感、收敛速度慢等缺陷,利用粒子群优化算法全局搜索能力强、收敛速度快的优势,对直觉模糊核聚类算法的初始聚类中心进行优化,并提出了一种基于粒子群优化的直觉模糊核聚类算法。该算法... 针对现有基于核方法的直觉模糊聚类算法对初始值敏感、收敛速度慢等缺陷,利用粒子群优化算法全局搜索能力强、收敛速度快的优势,对直觉模糊核聚类算法的初始聚类中心进行优化,并提出了一种基于粒子群优化的直觉模糊核聚类算法。该算法在提升聚类性能的同时,有效增强了算法的收敛速度。在实验阶段,采用4组标准数据集对该算法进行了分类实验及有效性测试,并将其与模糊c均值聚类算法及直觉模糊c均值聚类算法的分类效果及运行时间进行对比,实验结果充分表明了该算法的有效性及优越性。 展开更多
关键词 直觉模糊集 核方法 模糊聚类 粒子群优化
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部