期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Multivariable Fuzzy Predictive Control Based on the Modified CPN Model
1
作者 郑怀林 陈维南 《Journal of Southeast University(English Edition)》 EI CAS 1998年第1期108-113,共6页
Through modifying the CPN model, a kind of multivariable fuzzy model is put forward, and the matching fuzzy multistep predictive control algorithm is deduced based on the model. The modified model works in a competiti... Through modifying the CPN model, a kind of multivariable fuzzy model is put forward, and the matching fuzzy multistep predictive control algorithm is deduced based on the model. The modified model works in a competitive output manner which results in its local representation property. While studying on line, only a few parameters need to be regulated. So the model has the merits of fast learning and on line self organizing modeling. The control algorithm is simple, adaptive and useful in multivariable and time delay systems. Applying the algorithm in a paper making system, simulation shows its good effect. 展开更多
关键词 modified CPN model fuzzy predictive control MULTIVARIABLE time delay systems
下载PDF
Predictive Control in Fuzzy Dynamic Environment
2
作者 Li Shaoyuan Xi Yugeng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2000年第4期24-29,共6页
This paper investigates the use of fuzzy decision making in predictive control. The use of fuzzy goals and fuzzy constraints in predictive control allows for a more flexible aggregation of the control objectives than ... This paper investigates the use of fuzzy decision making in predictive control. The use of fuzzy goals and fuzzy constraints in predictive control allows for a more flexible aggregation of the control objectives than the usual weighting sum of squared errors. Compared to the standard quadratic objective function, with the fuzzy decision-making approach, the designer has more freedom in specifying the desired process behavior. 展开更多
关键词 fuzzy predictive control fuzzy goals fuzzy constraints Optimization.?
下载PDF
Adaptive predictive functional control based on Takagi-Sugeno model and its application to pH process 被引量:5
3
作者 苏成利 李平 《Journal of Central South University》 SCIE EI CAS 2010年第2期363-371,共9页
In order to obtain accurate prediction model and compensate for the influence of model mismatch on the control performance of the system and avoid solving nonlinear programming problem,an adaptive fuzzy predictive fun... In order to obtain accurate prediction model and compensate for the influence of model mismatch on the control performance of the system and avoid solving nonlinear programming problem,an adaptive fuzzy predictive functional control(AFPFC) scheme for multivariable nonlinear systems was proposed.Firstly,multivariable nonlinear systems were described based on Takagi-Sugeno(T-S) fuzzy models;assuming that the antecedent parameters of T-S models were kept,the consequent parameters were identified on-line by using the weighted recursive least square(WRLS) method.Secondly,the identified T-S models were linearized to be time-varying state space model at each sampling instant.Finally,by using linear predictive control technique the analysis solution of the optimal control law of AFPFC was established.The application results for pH neutralization process show that the absolute error between the identified T-S model output and the process output is smaller than 0.015;the tracking ability of the proposed AFPFC is superior to that of non-AFPFC(NAFPFC) for pH process without disturbances,the overshoot of the effluent pH value of AFPFC with disturbances is decreased by 50% compared with that of NAFPFC;when the process parameters of AFPFC vary with time the integrated absolute error(IAE) performance index still retains to be less than 200 compared with that of NAFPFC. 展开更多
关键词 Takagi-Sugeno (T-S) model adaptive fuzzy predictive functional control (AFPFC) weighted recursive least square (WRLS) pH process
下载PDF
Research on Multi-Objective Real-Time Optimization of Automatic Train Operation(ATO) in Urban Rail Transit 被引量:2
4
作者 HE Tong XIONG Ruiqi 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第2期327-335,共9页
The determination and optimization of Automatic Train Operation(ATO) control strategy is one of the most critical technologies for urban rail train operation. The practical ATO optimal control strategy must consider m... The determination and optimization of Automatic Train Operation(ATO) control strategy is one of the most critical technologies for urban rail train operation. The practical ATO optimal control strategy must consider many goals of the train operation, such as safety, accuracy, comfort, energy saving and so on. This paper designs a set of efficient and universal multi-objective control strategy. Firstly, based on the analysis of urban rail transit and its operating environment, the multi-objective optimization model considering all the indexes of train operation is established by using multi-objective optimization theory. Secondly, Non-dominated Sorting Genetic Algorithm II(NSGA-II) is used to solve the model, and the optimal speed curve of train running is generated.Finally, the intelligent controller is designed by the combination of fuzzy controller algorithm and the predictive control algorithm, which can control and optimize the train operation in real time. Then the robustness of the control system can ensure and the requirements for multi-objective in train operation can be satisfied. 展开更多
关键词 urban rail transit MULTI-OBJECTIVE Automatic Train Operation(ATO) Non-dominated Sorting Genetic Algorithm II(NSGA-II) fuzzy predictive controller
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部