A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As t...A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As the conventional PID controller is difficult to make the operation temperatures steady, a fuzzy self-tuning PID control algorithm is proposed. The application shows that the algorithm is effective, the operation temperatures of both stages can be controlled steadily, and the operation flexibility and adaptability of the hydrogen recovery unit are enhanced with safety. This study lays a foundation to optimize the control of the membrane separation process and thus ensure the membrane performance.展开更多
In accordance with the feature of pure delay in monitor AGC system for cold rolling mill, a new fuzzy selftuning PID Smith prediction controller is developed. The position control model is deduced based on a single st...In accordance with the feature of pure delay in monitor AGC system for cold rolling mill, a new fuzzy selftuning PID Smith prediction controller is developed. The position control model is deduced based on a single stand cold rolling mill, and the fuzzy controller for monitor AGC system is designed. The analysis of dynamic performance for traditional PID Smith prediction controller and fuzzy self-tuning PID Smith prediction controller is done by MAT- LAB toolbox. The simulation results show that fuzzy self-tuning PID Smith controller has stronger robustness, faster response and higher static accuracy than traditional PID Smith controller.展开更多
In this paper, a fuzzy self-tuning Proportional-Integral-Derivative (PID) control of hydrogen-driven Pneumatic Artificial Muscle (PAM) actuator is presented. With a conventional PID control, non-linear thermodynam...In this paper, a fuzzy self-tuning Proportional-Integral-Derivative (PID) control of hydrogen-driven Pneumatic Artificial Muscle (PAM) actuator is presented. With a conventional PID control, non-linear thermodynamics of the hydrogen-driven PAM actuator still highly affects the mechanical actuations itself, causing deyiation of desired tasks. The fuzzy self-tuning PID con- troller is systematically developed so as to achieve dynamic performance targets of the hydrogen-driven PAM actuator. The fuzzy rules based on desired characteristics of closed-loop control are designed to finely tune the PID gains of the controller under different operating conditions. The empirical models and properties of the hydrogen-driven PAM actuator are used as a genuine representation of mechanical actuations. A mass-spring-damper system is applied to the hydrogen-driven PAM actuator as a typical mechanical load during actuations. The results of the implementation show that the viability of the proposed method in actuating the hydrogen-driven PAM under mechanical loads is close to desired oerformance.展开更多
This paper concerns the problem of output feedback tracking (OFT) control with bounded torque inputs of robot manipulators, and proposes a novel saturated OFT controller based on fuzzy self-tuning proportional and der...This paper concerns the problem of output feedback tracking (OFT) control with bounded torque inputs of robot manipulators, and proposes a novel saturated OFT controller based on fuzzy self-tuning proportional and derivative (PD) gains. First, aiming to accomplish the whole closed-loop control with only position measurements, a linear filter is involved to generate a pseudo velocity error signal. Second, different from previous strategies, the arctangent function with error-gain is applied to ensure the boundedness of the torque control input, and an explicit system stability proof is made by using the theory of singularly perturbed systems. Moreover, a fuzzy self-tuning PD regulator, which guarantees the continuous stability of the overall closed-loop system, is added to obtain an adaptive performance in tackling the disturbances during tracking control. Simulation showed that the proposed controller gains more satisfactory tracking results than the others, with a better dynamic response performance and stronger anti-disturbance capability.展开更多
A self-tuning reaching law based sliding mode control(SMC)theory is proposed to stabilize the nonlinear continuous stirred tank reactor(CSTR).T-S fuzzy logic is used to build a global fuzzy state-space linear model.Co...A self-tuning reaching law based sliding mode control(SMC)theory is proposed to stabilize the nonlinear continuous stirred tank reactor(CSTR).T-S fuzzy logic is used to build a global fuzzy state-space linear model.Combing the traits of SMC and CSTR,three fuzzy rules can meet the requirements of controlled system.The self-tuning switch control law which can drive the state variables to the sliding surface as soon as possible is designed to ensure the robustness of uncertain fuzzy system.Lyapunov equation is applied to proving the stability of the sliding surface.The simulations show that the proposed approach can achieve desired performance with less chattering problem.展开更多
One kind of the SAW seam tracking system with contactless ultrasonic sensor is presented in this paper. The new contactless ultrasonic sensor for seam tracking and the working principle of the seam tracking with the s...One kind of the SAW seam tracking system with contactless ultrasonic sensor is presented in this paper. The new contactless ultrasonic sensor for seam tracking and the working principle of the seam tracking with the sensor are introduced. Based on the experiments, the optimal values of the fuzzy control parameters α and k 3 are defined by means of the off line adjusting method. Because the self tuning fuzzy control is adopted in the seam tracking system, the overshoot of the system is restrained, the steady state error is reduced, and the system's response speed is improved effectively. The results of the SAW seam tracking experiments show that this system's tracking accuracy is up to ±0.5 mm and the system can satisfy the requirements of the engineering application.展开更多
Fuzzy logic has attracted the attention of structural control engineers during the last few years,because fuzzy logic can handle nonlinearities,uncertainties,and heuristic knowledge effectively and easily.In this pape...Fuzzy logic has attracted the attention of structural control engineers during the last few years,because fuzzy logic can handle nonlinearities,uncertainties,and heuristic knowledge effectively and easily.In this paper,a self-Tuning fuzzy-PID control method which used the technology of the fuzzy control and PID control unified is presented.These techniques can visualize the results and processes for structure stress.These techniques will also provide convenience for engineers and users,and have high practical values.The MATLAB simulation result shows that the system precision and the efficiency are very high and the static error is small,and robustness was also validated.展开更多
Adopting the strategy of fuzzy control with self tuning factor within whole universe of discourse, a kind of fuzzy control method for jigger discharging is put forward. This method has many advantages over the convent...Adopting the strategy of fuzzy control with self tuning factor within whole universe of discourse, a kind of fuzzy control method for jigger discharging is put forward. This method has many advantages over the conventional PID controller in terms of response speed, stability and robustness. It is effective to restrain the jig bed from over thick or empty, and the stability of the bed is markedly improved. The good results are obtained in factory tests.展开更多
This work investigates a self-tuning resonator composed of a slender clamped-clamped steel beam and a freely movable slider.The clamped-clamped beam exhibits hardening nonlinearity when it vibrates in large amplitude,...This work investigates a self-tuning resonator composed of a slender clamped-clamped steel beam and a freely movable slider.The clamped-clamped beam exhibits hardening nonlinearity when it vibrates in large amplitude,providing a broad bandwidth of dynamic response.The moving slider changes the mass distribution of the whole structure,and provides a passive self-tuning approach for capturing the high-energy orbit of the structure.In the case without inclination,adequate inertial force that mainly depends on the vibration amplitude of the beam and the position of the slider can drive the slider to move from the side toward the centre of the beam.This movement amplifies the beam response when the excitation frequency is below 37 Hz in our prototyped device.In the multi-orbit frequency range(28-37 Hz),the self-tuning and magnification of beam response can be achieved when the slider is initially placed in an appropriate position on the beam.Once the beam is disturbed,however,the desired response in the high-energy orbit can be lost easily and cannot be reacquired without external assistance.In an improved design with a small inclination,the introduced small gravitational component enables the slider to move from the higher side toward the lower side when the beam amplitude is small.This property sacrifices the less efficient self-tuning region below 25 Hz,but can enable the beam to acquire and maintain the high-energy orbit response in the multi-orbit frequency range(28-39 Hz),which is resistant to disturbance.The proposed resonator in this paper not only broadens the frequency bandwidth of dynamic response,but also enables capture and maintenance of the high-energy orbit in a completely passive way.Such a passive self-tuning structure presents an advantage in the design of broadband vibration energy-harvesting systems.展开更多
In this paper, a new nonlinear self-tuning PID controller(NSPIDC) is proposed to control the joint position and link deflection of a flexible-link manipulator(FLM) while it is subjected to carry different payloads. Si...In this paper, a new nonlinear self-tuning PID controller(NSPIDC) is proposed to control the joint position and link deflection of a flexible-link manipulator(FLM) while it is subjected to carry different payloads. Since, payload is a critical parameter of the FLM whose variation greatly influences the controller performance. The proposed controller guarantees stability under change in payload by attenuating the non-modeled higher order dynamics using a new nonlinear autoregressive moving average with exogenous-input(NARMAX) model of the FLM. The parameters of the FLM are identified on-line using recursive least square(RLS) algorithm and using minimum variance control(MVC) laws the control parameters are updated in real-time. This proposed NSPID controller has been implemented in real-time on an experimental set-up. The joint tracking and link deflection performances of the proposed adaptive controller are compared with that of a popular direct adaptive controller(DAC). From the obtained results, it is confirmed that the proposed controller exhibits improved performance over the DAC both in terms of accurate position tracking and quick damping of link deflections when subjected to variable payloads.展开更多
This paper proposes an intelligent controller for motion control of robotic systems to obtain high precision tracking without the need for a real-time trial and error method.In addition, a new self-tuning algorithm ha...This paper proposes an intelligent controller for motion control of robotic systems to obtain high precision tracking without the need for a real-time trial and error method.In addition, a new self-tuning algorithm has been developed based on both the ant colony algorithm and a fuzzy system for real-time tuning of controller parameters. Simulations and experiments using a real robot have been addressed to demonstrate the success of the proposed controller and validate the theoretical analysis. Obtained results confirm that the proposed controller ensures robust performance in the presence of disturbances and parametric uncertainties without the need for adjustment of control law parameters by a trial and error method.展开更多
For the multi-sensor linear discrete time-invariant stochastic systems with correlated measurement noises and unknown noise statistics,an on-line noise statistics estimator is obtained using the correlation method.Sub...For the multi-sensor linear discrete time-invariant stochastic systems with correlated measurement noises and unknown noise statistics,an on-line noise statistics estimator is obtained using the correlation method.Substituting it into the optimal weighted fusion steady-state white noise deconvolution estimator based on the Kalman filtering,a self-tuning weighted measurement fusion white noise deconvolution estimator is presented.By the Dynamic Error System Analysis(DESA) method,it proved that the self-tuning fusion white noise deconvolution estimator converges to the steady-state optimal fusion white noise deconvolution estimator in a realization.Therefore,it has the asymptotically global optimality.A simulation example for the tracking system with 3 sensors and the Bernoulli-Gaussian input white noise shows its effectiveness.展开更多
Variational mode decomposition(VMD)is a suitable tool for processing cavitation-induced vibration signals and is greatly affected by two parameters:the decomposed number K and penalty factorαunder strong noise interf...Variational mode decomposition(VMD)is a suitable tool for processing cavitation-induced vibration signals and is greatly affected by two parameters:the decomposed number K and penalty factorαunder strong noise interference.To solve this issue,this study proposed self-tuning VMD(SVMD)for cavitation diagnostics in fluid machinery,with a special focus on low signal-to-noise ratio conditions.A two-stage progressive refinement of the coarsely located target penalty factor for SVMD was conducted to narrow down the search space for accelerated decomposition.A hybrid optimized sparrow search algorithm(HOSSA)was developed for optimalαfine-tuning in a refined space based on fault-type-guided objective functions.Based on the submodes obtained using exclusive penalty factors in each iteration,the cavitation-related characteristic frequencies(CCFs)were extracted for diagnostics.The power spectrum correlation coefficient between the SVMD reconstruction and original signals was employed as a stop criterion to determine whether to stop further decomposition.The proposed SVMD overcomes the blindness of setting the mode number K in advance and the drawback of sharing penalty factors for all submodes in fixed-parameter and parameter-optimized VMDs.Comparisons with other existing methods in simulation signal decomposition and in-lab experimental data demonstrated the advantages of the proposed method in accurately extracting CCFs with lower computational cost.SVMD especially enhances the denoising capability of the VMD-based method.展开更多
For multisensor systems,when the model parameters and the noise variances are unknown,the consistent fused estimators of the model parameters and noise variances are obtained,based on the system identification algorit...For multisensor systems,when the model parameters and the noise variances are unknown,the consistent fused estimators of the model parameters and noise variances are obtained,based on the system identification algorithm,correlation method and least squares fusion criterion.Substituting these consistent estimators into the optimal weighted measurement fusion Kalman filter,a self-tuning weighted measurement fusion Kalman filter is presented.Using the dynamic error system analysis (DESA) method,the convergence of the self-tuning weighted measurement fusion Kalman filter is proved,i.e.,the self-tuning Kalman filter converges to the corresponding optimal Kalman filter in a realization.Therefore,the self-tuning weighted measurement fusion Kalman filter has asymptotic global optimality.One simulation example for a 4-sensor target tracking system verifies its effectiveness.展开更多
This paper proposes a self-tuning iterative learning control method for the attitude control of a flexible solar power satellite,which is simplified as an Euler-Bernoulli beam moving in space.An orbit-attitude-structu...This paper proposes a self-tuning iterative learning control method for the attitude control of a flexible solar power satellite,which is simplified as an Euler-Bernoulli beam moving in space.An orbit-attitude-structure coupled dynamic model is established using absolute nodal coordinate formulation,and the attitude control is performed using two control moment gyros.In order to improve control accuracy of the classic proportional-derivative control method,a switched iterative learning control method is presented using the control moments of the previous periods as feedforward control moments.Although the iterative learning control is a model-free method,the parameters of the controller must be selected manually.This would be undesirable for complicated systems with multiple control parameters.Thus,a self-tuning method is proposed using fuzzy logic.The control frequency of the controller is adjusted according to the averaged control error in one control period.Simulation results show that the proposed controller increases the control accuracy greatly and reduces the influence of measurement noise.Moreover,the control frequency is automatically adjusted to a suitable value.展开更多
In this paper a trial has been made to design a simple self-tuning LabVIEW-based PID controller. The controller uses an open-loop relay test, calculates the tuned parameters in an open loop mode of operation before it...In this paper a trial has been made to design a simple self-tuning LabVIEW-based PID controller. The controller uses an open-loop relay test, calculates the tuned parameters in an open loop mode of operation before it updates controller parameters and runs the process as a closed-loop system. The controller reacts on a persistent offset error value as a result of load disturbance or a set point change. Practical results show that such a controller may be recommended to control a variety of industrial processes. A GUI was developed to facilitate control-mode selection, the setting of controller parameters, and the display of control system variables. GUI makes it possible to put the controller in manual or self-tuning mode.展开更多
This paper illustrates the benefits of a self-tuning PID strategy applied to a proton exchange membrane fuel cell system. Controller parameters are updated on-line, at each sampling time, based on an instantaneous lin...This paper illustrates the benefits of a self-tuning PID strategy applied to a proton exchange membrane fuel cell system. Controller parameters are updated on-line, at each sampling time, based on an instantaneous linearization of an artificial neural network model of the process and a General Minimum Variance control law. The self-tuning PID scheme allows managing nonlinear behaviors of the system while avoiding heavy computations. The applicability, efficiency and robustness of the proposed control strategy are experimentally confirmed using varying control scenarios. In this aim, the original built-in controller is overridden and the self-tuning PID controller is implemented externally and executed on-line. Experimental results show good performance in setpoint tracking accuracy and robustness against plant/model mismatch. The proposed strategy appears to be a promising alternative to heavy computation nonlinear control strategies and not optimal linear control strategies.展开更多
文摘A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As the conventional PID controller is difficult to make the operation temperatures steady, a fuzzy self-tuning PID control algorithm is proposed. The application shows that the algorithm is effective, the operation temperatures of both stages can be controlled steadily, and the operation flexibility and adaptability of the hydrogen recovery unit are enhanced with safety. This study lays a foundation to optimize the control of the membrane separation process and thus ensure the membrane performance.
基金Item Sponsored by National Natural Science Foundation of China (50634030)
文摘In accordance with the feature of pure delay in monitor AGC system for cold rolling mill, a new fuzzy selftuning PID Smith prediction controller is developed. The position control model is deduced based on a single stand cold rolling mill, and the fuzzy controller for monitor AGC system is designed. The analysis of dynamic performance for traditional PID Smith prediction controller and fuzzy self-tuning PID Smith prediction controller is done by MAT- LAB toolbox. The simulation results show that fuzzy self-tuning PID Smith controller has stronger robustness, faster response and higher static accuracy than traditional PID Smith controller.
文摘In this paper, a fuzzy self-tuning Proportional-Integral-Derivative (PID) control of hydrogen-driven Pneumatic Artificial Muscle (PAM) actuator is presented. With a conventional PID control, non-linear thermodynamics of the hydrogen-driven PAM actuator still highly affects the mechanical actuations itself, causing deyiation of desired tasks. The fuzzy self-tuning PID con- troller is systematically developed so as to achieve dynamic performance targets of the hydrogen-driven PAM actuator. The fuzzy rules based on desired characteristics of closed-loop control are designed to finely tune the PID gains of the controller under different operating conditions. The empirical models and properties of the hydrogen-driven PAM actuator are used as a genuine representation of mechanical actuations. A mass-spring-damper system is applied to the hydrogen-driven PAM actuator as a typical mechanical load during actuations. The results of the implementation show that the viability of the proposed method in actuating the hydrogen-driven PAM under mechanical loads is close to desired oerformance.
基金Project (No. 2008C21106) supported by the Science and Technology Foundation of Zhejiang Province, China
文摘This paper concerns the problem of output feedback tracking (OFT) control with bounded torque inputs of robot manipulators, and proposes a novel saturated OFT controller based on fuzzy self-tuning proportional and derivative (PD) gains. First, aiming to accomplish the whole closed-loop control with only position measurements, a linear filter is involved to generate a pseudo velocity error signal. Second, different from previous strategies, the arctangent function with error-gain is applied to ensure the boundedness of the torque control input, and an explicit system stability proof is made by using the theory of singularly perturbed systems. Moreover, a fuzzy self-tuning PD regulator, which guarantees the continuous stability of the overall closed-loop system, is added to obtain an adaptive performance in tackling the disturbances during tracking control. Simulation showed that the proposed controller gains more satisfactory tracking results than the others, with a better dynamic response performance and stronger anti-disturbance capability.
文摘A self-tuning reaching law based sliding mode control(SMC)theory is proposed to stabilize the nonlinear continuous stirred tank reactor(CSTR).T-S fuzzy logic is used to build a global fuzzy state-space linear model.Combing the traits of SMC and CSTR,three fuzzy rules can meet the requirements of controlled system.The self-tuning switch control law which can drive the state variables to the sliding surface as soon as possible is designed to ensure the robustness of uncertain fuzzy system.Lyapunov equation is applied to proving the stability of the sliding surface.The simulations show that the proposed approach can achieve desired performance with less chattering problem.
文摘One kind of the SAW seam tracking system with contactless ultrasonic sensor is presented in this paper. The new contactless ultrasonic sensor for seam tracking and the working principle of the seam tracking with the sensor are introduced. Based on the experiments, the optimal values of the fuzzy control parameters α and k 3 are defined by means of the off line adjusting method. Because the self tuning fuzzy control is adopted in the seam tracking system, the overshoot of the system is restrained, the steady state error is reduced, and the system's response speed is improved effectively. The results of the SAW seam tracking experiments show that this system's tracking accuracy is up to ±0.5 mm and the system can satisfy the requirements of the engineering application.
基金supported by Chongqing Bureau of Foreign Experts Affairs ( Project number:20075000028)
文摘Fuzzy logic has attracted the attention of structural control engineers during the last few years,because fuzzy logic can handle nonlinearities,uncertainties,and heuristic knowledge effectively and easily.In this paper,a self-Tuning fuzzy-PID control method which used the technology of the fuzzy control and PID control unified is presented.These techniques can visualize the results and processes for structure stress.These techniques will also provide convenience for engineers and users,and have high practical values.The MATLAB simulation result shows that the system precision and the efficiency are very high and the static error is small,and robustness was also validated.
文摘Adopting the strategy of fuzzy control with self tuning factor within whole universe of discourse, a kind of fuzzy control method for jigger discharging is put forward. This method has many advantages over the conventional PID controller in terms of response speed, stability and robustness. It is effective to restrain the jig bed from over thick or empty, and the stability of the bed is markedly improved. The good results are obtained in factory tests.
基金The authors gratefully acknowledge the supports from the National Natural Science Foundation of China(Grant 51375103)China Scholarship Council(Grant 201706680013).
文摘This work investigates a self-tuning resonator composed of a slender clamped-clamped steel beam and a freely movable slider.The clamped-clamped beam exhibits hardening nonlinearity when it vibrates in large amplitude,providing a broad bandwidth of dynamic response.The moving slider changes the mass distribution of the whole structure,and provides a passive self-tuning approach for capturing the high-energy orbit of the structure.In the case without inclination,adequate inertial force that mainly depends on the vibration amplitude of the beam and the position of the slider can drive the slider to move from the side toward the centre of the beam.This movement amplifies the beam response when the excitation frequency is below 37 Hz in our prototyped device.In the multi-orbit frequency range(28-37 Hz),the self-tuning and magnification of beam response can be achieved when the slider is initially placed in an appropriate position on the beam.Once the beam is disturbed,however,the desired response in the high-energy orbit can be lost easily and cannot be reacquired without external assistance.In an improved design with a small inclination,the introduced small gravitational component enables the slider to move from the higher side toward the lower side when the beam amplitude is small.This property sacrifices the less efficient self-tuning region below 25 Hz,but can enable the beam to acquire and maintain the high-energy orbit response in the multi-orbit frequency range(28-39 Hz),which is resistant to disturbance.The proposed resonator in this paper not only broadens the frequency bandwidth of dynamic response,but also enables capture and maintenance of the high-energy orbit in a completely passive way.Such a passive self-tuning structure presents an advantage in the design of broadband vibration energy-harvesting systems.
文摘In this paper, a new nonlinear self-tuning PID controller(NSPIDC) is proposed to control the joint position and link deflection of a flexible-link manipulator(FLM) while it is subjected to carry different payloads. Since, payload is a critical parameter of the FLM whose variation greatly influences the controller performance. The proposed controller guarantees stability under change in payload by attenuating the non-modeled higher order dynamics using a new nonlinear autoregressive moving average with exogenous-input(NARMAX) model of the FLM. The parameters of the FLM are identified on-line using recursive least square(RLS) algorithm and using minimum variance control(MVC) laws the control parameters are updated in real-time. This proposed NSPID controller has been implemented in real-time on an experimental set-up. The joint tracking and link deflection performances of the proposed adaptive controller are compared with that of a popular direct adaptive controller(DAC). From the obtained results, it is confirmed that the proposed controller exhibits improved performance over the DAC both in terms of accurate position tracking and quick damping of link deflections when subjected to variable payloads.
文摘This paper proposes an intelligent controller for motion control of robotic systems to obtain high precision tracking without the need for a real-time trial and error method.In addition, a new self-tuning algorithm has been developed based on both the ant colony algorithm and a fuzzy system for real-time tuning of controller parameters. Simulations and experiments using a real robot have been addressed to demonstrate the success of the proposed controller and validate the theoretical analysis. Obtained results confirm that the proposed controller ensures robust performance in the presence of disturbances and parametric uncertainties without the need for adjustment of control law parameters by a trial and error method.
基金Supported by National Natural Science Foundation of China (No.60874063)Key Laboratory of Electronics Engineering,College of Heilongjiang Province (No.DZZD2010-5),and Science and Automatic Control Key Laboratory of Heilongjiang University
文摘For the multi-sensor linear discrete time-invariant stochastic systems with correlated measurement noises and unknown noise statistics,an on-line noise statistics estimator is obtained using the correlation method.Substituting it into the optimal weighted fusion steady-state white noise deconvolution estimator based on the Kalman filtering,a self-tuning weighted measurement fusion white noise deconvolution estimator is presented.By the Dynamic Error System Analysis(DESA) method,it proved that the self-tuning fusion white noise deconvolution estimator converges to the steady-state optimal fusion white noise deconvolution estimator in a realization.Therefore,it has the asymptotically global optimality.A simulation example for the tracking system with 3 sensors and the Bernoulli-Gaussian input white noise shows its effectiveness.
基金Supported by National Natural Science Foundation of China(Grant No.52075481)Zhejiang Provincial Natural Science Foundation of China(Grant No.LD21E050003)Central Government Fund for Regional Science and Technology Development of China(Grant No.2023ZY1033).
文摘Variational mode decomposition(VMD)is a suitable tool for processing cavitation-induced vibration signals and is greatly affected by two parameters:the decomposed number K and penalty factorαunder strong noise interference.To solve this issue,this study proposed self-tuning VMD(SVMD)for cavitation diagnostics in fluid machinery,with a special focus on low signal-to-noise ratio conditions.A two-stage progressive refinement of the coarsely located target penalty factor for SVMD was conducted to narrow down the search space for accelerated decomposition.A hybrid optimized sparrow search algorithm(HOSSA)was developed for optimalαfine-tuning in a refined space based on fault-type-guided objective functions.Based on the submodes obtained using exclusive penalty factors in each iteration,the cavitation-related characteristic frequencies(CCFs)were extracted for diagnostics.The power spectrum correlation coefficient between the SVMD reconstruction and original signals was employed as a stop criterion to determine whether to stop further decomposition.The proposed SVMD overcomes the blindness of setting the mode number K in advance and the drawback of sharing penalty factors for all submodes in fixed-parameter and parameter-optimized VMDs.Comparisons with other existing methods in simulation signal decomposition and in-lab experimental data demonstrated the advantages of the proposed method in accurately extracting CCFs with lower computational cost.SVMD especially enhances the denoising capability of the VMD-based method.
基金supported by the National Natural Science Foundation of China(No.60874063)the Innovation Scientific Research Foundation for Graduate Students of Heilongjiang Province(No.YJSCX2008-018HLJ),and the Automatic Control Key Laboratory of Heilongjiang University
文摘For multisensor systems,when the model parameters and the noise variances are unknown,the consistent fused estimators of the model parameters and noise variances are obtained,based on the system identification algorithm,correlation method and least squares fusion criterion.Substituting these consistent estimators into the optimal weighted measurement fusion Kalman filter,a self-tuning weighted measurement fusion Kalman filter is presented.Using the dynamic error system analysis (DESA) method,the convergence of the self-tuning weighted measurement fusion Kalman filter is proved,i.e.,the self-tuning Kalman filter converges to the corresponding optimal Kalman filter in a realization.Therefore,the self-tuning weighted measurement fusion Kalman filter has asymptotic global optimality.One simulation example for a 4-sensor target tracking system verifies its effectiveness.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(No.2019A1515110730)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(No.2021QNRC001)the Fundamental Research Funds for the Central Universities of Sun Yat-sen University(No.22qntd0703)。
文摘This paper proposes a self-tuning iterative learning control method for the attitude control of a flexible solar power satellite,which is simplified as an Euler-Bernoulli beam moving in space.An orbit-attitude-structure coupled dynamic model is established using absolute nodal coordinate formulation,and the attitude control is performed using two control moment gyros.In order to improve control accuracy of the classic proportional-derivative control method,a switched iterative learning control method is presented using the control moments of the previous periods as feedforward control moments.Although the iterative learning control is a model-free method,the parameters of the controller must be selected manually.This would be undesirable for complicated systems with multiple control parameters.Thus,a self-tuning method is proposed using fuzzy logic.The control frequency of the controller is adjusted according to the averaged control error in one control period.Simulation results show that the proposed controller increases the control accuracy greatly and reduces the influence of measurement noise.Moreover,the control frequency is automatically adjusted to a suitable value.
文摘In this paper a trial has been made to design a simple self-tuning LabVIEW-based PID controller. The controller uses an open-loop relay test, calculates the tuned parameters in an open loop mode of operation before it updates controller parameters and runs the process as a closed-loop system. The controller reacts on a persistent offset error value as a result of load disturbance or a set point change. Practical results show that such a controller may be recommended to control a variety of industrial processes. A GUI was developed to facilitate control-mode selection, the setting of controller parameters, and the display of control system variables. GUI makes it possible to put the controller in manual or self-tuning mode.
文摘This paper illustrates the benefits of a self-tuning PID strategy applied to a proton exchange membrane fuel cell system. Controller parameters are updated on-line, at each sampling time, based on an instantaneous linearization of an artificial neural network model of the process and a General Minimum Variance control law. The self-tuning PID scheme allows managing nonlinear behaviors of the system while avoiding heavy computations. The applicability, efficiency and robustness of the proposed control strategy are experimentally confirmed using varying control scenarios. In this aim, the original built-in controller is overridden and the self-tuning PID controller is implemented externally and executed on-line. Experimental results show good performance in setpoint tracking accuracy and robustness against plant/model mismatch. The proposed strategy appears to be a promising alternative to heavy computation nonlinear control strategies and not optimal linear control strategies.