期刊文献+
共找到736篇文章
< 1 2 37 >
每页显示 20 50 100
A new fuzzy edge detection algorithm 被引量:1
1
作者 孙伟 夏良正 《Journal of Southeast University(English Edition)》 EI CAS 2003年第2期132-135,共4页
Based upon the maximum entropy theorem of information theory, a novel fuzzy approach for edge detection is presented. Firstly, a definition of fuzzy partition entropy is proposed after introducing the concepts of fu... Based upon the maximum entropy theorem of information theory, a novel fuzzy approach for edge detection is presented. Firstly, a definition of fuzzy partition entropy is proposed after introducing the concepts of fuzzy probability and fuzzy partition. The relation of the probability partition and the fuzzy c-partition of the image gradient are used in the algorithm. Secondly, based on the conditional probabilities and the fuzzy partition, the optimal thresholding is searched adaptively through the maximum fuzzy entropy principle, and then the edge image is obtained. Lastly, an edge-enhancing procedure is executed on the edge image. The experimental results show that the proposed approach performs well. 展开更多
关键词 edge detection fuzzy entropy image segmentation fuzzy partition
下载PDF
Color Edge Detection Using Multidirectional Sobel Filter and Fuzzy Fusion 被引量:1
2
作者 Slim Ben Chaabane Anas Bushnag 《Computers, Materials & Continua》 SCIE EI 2023年第2期2839-2852,共14页
A new model is proposed in this paper on color edge detection that uses the second derivative operators and data fusion mechanism.The secondorder neighborhood shows the connection between the current pixel and the sur... A new model is proposed in this paper on color edge detection that uses the second derivative operators and data fusion mechanism.The secondorder neighborhood shows the connection between the current pixel and the surroundings of this pixel.This connection is for each RGB component color of the input image.Once the image edges are detected for the three primary colors:red,green,and blue,these colors are merged using the combination rule.Then,the final decision is applied to obtain the segmentation.This process allows different data sources to be combined,which is essential to improve the image information quality and have an optimal image segmentation.Finally,the segmentation results of the proposed model are validated.Moreover,the classification accuracy of the tested data is assessed,and a comparison with other current models is conducted.The comparison results show that the proposed model outperforms the existing models in image segmentation. 展开更多
关键词 SEGMENTATION edge detection second derivative operators data fusion technique fuzzy fusion CLASSIFICATION
下载PDF
Object Detection in Remote Sensing Images Using Picture Fuzzy Clustering and MapReduce 被引量:1
3
作者 Tran Manh Tuan Tran Thi Ngan Nguyen Tu Trung 《Computer Systems Science & Engineering》 SCIE EI 2022年第12期1241-1253,共13页
In image processing, one of the most important steps is image segmentation. The objects in remote sensing images often have to be detected in order toperform next steps in image processing. Remote sensing images usua... In image processing, one of the most important steps is image segmentation. The objects in remote sensing images often have to be detected in order toperform next steps in image processing. Remote sensing images usually havelarge size and various spatial resolutions. Thus, detecting objects in remote sensing images is very complicated. In this paper, we develop a model to detectobjects in remote sensing images based on the combination of picture fuzzy clustering and MapReduce method (denoted as MPFC). Firstly, picture fuzzy clustering is applied to segment the input images. Then, MapReduce is used to reducethe runtime with the guarantee of quality. To convert data for MapReduce processing, two new procedures are introduced, including Map_PFC and Reduce_PFC.The formal representation and details of two these procedures are presented in thispaper. The experiments on satellite image and remote sensing image datasets aregiven to evaluate proposed model. Validity indices and time consuming are usedto compare proposed model to picture fuzzy clustering model. The values ofvalidity indices show that picture fuzzy clustering integrated to MapReduce getsbetter quality of segmentation than using picture fuzzy clustering only. Moreover,on two selected image datasets, the run time of MPFC model is much less thanthat of picture fuzzy clustering. 展开更多
关键词 Remote sensing images picture fuzzy clustering image segmentation object detection MAPREDUCE
下载PDF
Effective data transmission through energy-efficient clustering and Fuzzy-Based IDS routing approach in WSNs
4
作者 Saziya TABBASSUM Rajesh Kumar PATHAK 《虚拟现实与智能硬件(中英文)》 EI 2024年第1期1-16,共16页
Wireless sensor networks(WSN)gather information and sense information samples in a certain region and communicate these readings to a base station(BS).Energy efficiency is considered a major design issue in the WSNs,a... Wireless sensor networks(WSN)gather information and sense information samples in a certain region and communicate these readings to a base station(BS).Energy efficiency is considered a major design issue in the WSNs,and can be addressed using clustering and routing techniques.Information is sent from the source to the BS via routing procedures.However,these routing protocols must ensure that packets are delivered securely,guaranteeing that neither adversaries nor unauthentic individuals have access to the sent information.Secure data transfer is intended to protect the data from illegal access,damage,or disruption.Thus,in the proposed model,secure data transmission is developed in an energy-effective manner.A low-energy adaptive clustering hierarchy(LEACH)is developed to efficiently transfer the data.For the intrusion detection systems(IDS),Fuzzy logic and artificial neural networks(ANNs)are proposed.Initially,the nodes were randomly placed in the network and initialized to gather information.To ensure fair energy dissipation between the nodes,LEACH randomly chooses cluster heads(CHs)and allocates this role to the various nodes based on a round-robin management mechanism.The intrusion-detection procedure was then utilized to determine whether intruders were present in the network.Within the WSN,a Fuzzy interference rule was utilized to distinguish the malicious nodes from legal nodes.Subsequently,an ANN was employed to distinguish the harmful nodes from suspicious nodes.The effectiveness of the proposed approach was validated using metrics that attained 97%accuracy,97%specificity,and 97%sensitivity of 95%.Thus,it was proved that the LEACH and Fuzzy-based IDS approaches are the best choices for securing data transmission in an energy-efficient manner. 展开更多
关键词 Low energy adaptive clustering hierarchy(LEACH) Intrusion detection system(IDS) Wireless sensor network(WSN) fuzzy logic and artificial neural network(ANN)
下载PDF
MULTI-GRAY EDGE DETECTION BASED ON GENERALIZED FUZZY SET
5
作者 Wang Hui (Institute of Information Engineering, Shenzhen University, Shenzhen 518060) 《Journal of Electronics(China)》 2002年第4期426-430,共5页
In this letter, drawbacks of the classical algorithm to enhance the fuzzy contrast among adjacent regions are analyzed. Based on it, a new fuzzy enhancement algorithm and a linear fuzzy distribution that maps the gray... In this letter, drawbacks of the classical algorithm to enhance the fuzzy contrast among adjacent regions are analyzed. Based on it, a new fuzzy enhancement algorithm and a linear fuzzy distribution that maps the gray images to corresponding generalized fuzzy set are proposed. Results of two examples illustrate that the algorithm is more effective and faster when used to detect the multi-level edges of images. 展开更多
关键词 fuzzy enhancement Generalized fuzzy set edge detection
下载PDF
Fast Edge Detection Based on the Combination of Fuzzy Subsets 被引量:1
6
作者 TuChengyuan ZengYanjun +1 位作者 PeiWei XieJian 《工程科学(英文版)》 2005年第2期57-61,共5页
A fast edge detection method basing on the combination of fuzzy subsets is developed, in which the detection of an edge as a classification problem will be considered, partitioning the image into two portions: the edg... A fast edge detection method basing on the combination of fuzzy subsets is developed, in which the detection of an edge as a classification problem will be considered, partitioning the image into two portions: the edge portion and the non-edge portion. The latter one, as the main constituent of an image, consists of the object and its background. Removing the non-edge portion from an image, the remainder is nothing but the edge of this image. As far as the fuzziness of the edge of an image is concerned, some fuzzy operations can be made. In this paper, the gray level histogram is partitioned into several sub-regions, and some operations are performed with the associated fuzzy subsets corresponding to those sub-edges in the sub-regions on the gray-level-square-difference histogram, and the edge of this image is finally obtained. Practical examples in this paper illustrate that, the described method is simple and effective to achieve an ideal edge image. 展开更多
关键词 边缘检测 模糊集 灰色电平直方图 图像分割
下载PDF
Robust edge detection based on stationary wavelet transform 被引量:3
7
作者 章国宝 刘泉 《Journal of Southeast University(English Edition)》 EI CAS 2006年第2期218-221,共4页
By combining multiscale stationary wavelet analysis with fuzzy c-means, a robust edge detection algorithm is presented. Based on the translation invafiance built in multiscale stationary wavelet transform, components ... By combining multiscale stationary wavelet analysis with fuzzy c-means, a robust edge detection algorithm is presented. Based on the translation invafiance built in multiscale stationary wavelet transform, components in different transformed sub-images corresponding to a pixel are employed to form a feature vector of the pixel. All the feature vectors are classified with unsupervised fuzzy c-means to segment the image, and then the edge pixels are checked out by the Canny detector. A series of images contaminated with different intensive Gaussian noises are used to test the novel algorithm. Experiments show that fairly precise edges can be checked out robustly from those images with fairly intensive noise by the proposed algorithm. 展开更多
关键词 edge detection stationary wavelet multiscale analysis fuzzy c-means
下载PDF
Information hiding with adaptive steganography based on novel fuzzy edge identification 被引量:2
8
作者 Sanjeev Kumar Amarpal Singh Manoj Kumar 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第2期162-169,共8页
The evolution in communication techniques has created wide threats for crucial information transfer through a communication channel. Covert communication with steganography is a skill of concealing secret information ... The evolution in communication techniques has created wide threats for crucial information transfer through a communication channel. Covert communication with steganography is a skill of concealing secret information within cover object and hence shields the data theft over rapidly growing network.Recently, diverse steganography techniques using edge identification have been proposed in literature.Numerous methods however utilize certain pixels in the cover image for inserting edge information,resulting in significant deformation. The conventional edge detection method limits the deployment of edge detection in steganography as concealing the information would introduce some variations to the cover image. Hence inserting data in pixel areas recognized by existing conventional edge detection techniques like canny cannot ensure the recognition of the exact edge locations for the cover and stego images. In this paper, an Adaptive steganography method based on novel fuzzy edge identification is proposed. The method proposed is proficient of estimating the precise edge areas of a cover image and also ensures the exact edge location after embedding the secret message. Experimental results reveal that the technique has attained good imperceptibility compared to the Hayat AI-Dmour and Ahmed AIAni Edge XOR method in spatial domain. 展开更多
关键词 Information security ADAPTIVE STEGANOGRAPHY fuzzy edge detection PATTERN RECOGNITION
下载PDF
A Framework for an Adaptive Anomaly Detection System with Fuzzy Data Mining 被引量:1
9
作者 GAO Xiang WANG Min ZHAO Rongchun 《Wuhan University Journal of Natural Sciences》 CAS 2006年第6期1797-1800,共4页
In this paper, we present an adaptive anomaly detection framework that isapplicable to network-based intrusion detection. Our framework employs fuzzy cluster algorithm to detect anomalies in an online, adaptive fashio... In this paper, we present an adaptive anomaly detection framework that isapplicable to network-based intrusion detection. Our framework employs fuzzy cluster algorithm to detect anomalies in an online, adaptive fashion without a priori knowledge of the underlying data. We evaluate our method by performing experiments over network records from the KDD CUP99 data set. 展开更多
关键词 intrusion detection anomaly detection fuzzy cluster UNSUPERVISED network security
下载PDF
FLBS: Fuzzy lion Bayes system for intrusion detection in wireless communication network
10
作者 NARENDRASINH B Gohil VDEVYAS Dwivedi 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第11期3017-3033,共17页
An important problem in wireless communication networks (WCNs) is that they have a minimum number of resources, which leads to high-security threats. An approach to find and detect the attacks is the intrusion detecti... An important problem in wireless communication networks (WCNs) is that they have a minimum number of resources, which leads to high-security threats. An approach to find and detect the attacks is the intrusion detection system (IDS). In this paper, the fuzzy lion Bayes system (FLBS) is proposed for intrusion detection mechanism. Initially, the data set is grouped into a number of clusters by the fuzzy clustering algorithm. Here, the Naive Bayes classifier is integrated with the lion optimization algorithm and the new lion naive Bayes (LNB) is created for optimally generating the probability measures. Then, the LNB model is applied to each data group, and the aggregated data is generated. After generating the aggregated data, the LNB model is applied to the aggregated data, and the abnormal nodes are identified based on the posterior probability function. The performance of the proposed FLBS system is evaluated using the KDD Cup 99 data and the comparative analysis is performed by the existing methods for the evaluation metrics accuracy and false acceptance rate (FAR). From the experimental results, it can be shown that the proposed system has the maximum performance, which shows the effectiveness of the proposed system in the intrusion detection. 展开更多
关键词 intrusion detection wireless communication network fuzzy clustering naive Bayes classifier lion naive Bayes system
下载PDF
Diabetic Retinopathy Diagnosis Using ResNet with Fuzzy Rough C-Means Clustering
11
作者 R.S.Rajkumar A.Grace Selvarani 《Computer Systems Science & Engineering》 SCIE EI 2022年第8期509-521,共13页
Diabetic Retinopathy(DR)is a vision disease due to the long-term prevalenceof Diabetes Mellitus.It affects the retina of the eye and causes severedamage to the vision.If not treated on time it may lead to permanent vi... Diabetic Retinopathy(DR)is a vision disease due to the long-term prevalenceof Diabetes Mellitus.It affects the retina of the eye and causes severedamage to the vision.If not treated on time it may lead to permanent vision lossin diabetic patients.Today’s development in science has no medication to cureDiabetic Retinopathy.However,if diagnosed at an early stage it can be controlledand permanent vision loss can be avoided.Compared to the diabetic population,experts to diagnose Diabetic Retinopathy are very less in particular to local areas.Hence an automatic computer-aided diagnosis for DR detection is necessary.Inthis paper,we propose an unsupervised clustering technique to automatically clusterthe DR into one of its five development stages.The deep learning based unsupervisedclustering is made to improve itself with the help of fuzzy rough c-meansclustering where cluster centers are updated by fuzzy rough c-means clusteringalgorithm during the forward pass and the deep learning model representationsare updated by Stochastic Gradient Descent during the backward pass of training.The proposed method was implemented using python and the results were takenon DGX server with Tesla V100 GPU cards.An experimental result on the publicallyavailable Kaggle dataset shows an overall accuracy of 88.7%.The proposedmodel improves the accuracy of DR diagnosis compared to the existingunsupervised algorithms like k-means,FCM,auto-encoder,and FRCM withalexnet. 展开更多
关键词 Diabetic retinopathy detection diabetic retinopathy diagnosis fuzzy rough c-means clustering unsupervised CNN clustering
下载PDF
Shadow Detection Method Based on HMRF with Soft Edges for High-Resolution Remote-Sensing Images
12
作者 Wenying Ge 《Journal of Signal and Information Processing》 2019年第4期200-210,共11页
Shadow detection is a crucial task in high-resolution remote-sensing image processing. Various shadow detection methods have been explored during the last decades. These methods did improve the detection accuracy but ... Shadow detection is a crucial task in high-resolution remote-sensing image processing. Various shadow detection methods have been explored during the last decades. These methods did improve the detection accuracy but are still not robust enough to get satisfactory results for failing to extract enough information from the original images. To take full advantage of various features of shadows, a new method combining edges information with the spectral and spatial information is proposed in this paper. As known, edge is one of the most important characteristics in the high-resolution remote-sensing images. Unfortunately, in shadow detection, it is a high-risk strategy to determine whether a pixel is the edge or not strictly because intensity values on shadow boundaries are always between those in shadow and non-shadow areas. Therefore, a soft edge description model is developed to describe the degree of each pixel belonging to the edges or not. Sequentially, the soft edge description is incorporating to a fuzzy clustering procedure based on HMRF (Hidden Markov Random Fields), in which more appropriate spatial contextual information can be used. More concretely, it consists of two components: the soft edge description model and an iterative shadow detection algorithm. Experiments on several remote sensing images have shown that the proposed method can obtain more accurate shadow detection results. 展开更多
关键词 SHADOW detection SOFT edgeS clustering REMOTE-SENSING Images
下载PDF
Fuzzy-ART背景抑制的单帧红外弱小目标检测 被引量:5
13
作者 陈炳文 王文伟 秦前清 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2012年第6期775-779,共5页
针对现有背景抑制算法未能有效地抑制背景而导致目标检测率低的问题,提出一种基于模糊自适应共振理论(Fuzzy-ART)进行背景抑制、基于行列k均值(k-means)聚类实现阈值分割的单帧红外弱小目标检测算法.首先依据红外成像原理仿真生成红外... 针对现有背景抑制算法未能有效地抑制背景而导致目标检测率低的问题,提出一种基于模糊自适应共振理论(Fuzzy-ART)进行背景抑制、基于行列k均值(k-means)聚类实现阈值分割的单帧红外弱小目标检测算法.首先依据红外成像原理仿真生成红外弱小目标训练样本;然后采用Fuzzy-ART神经网络建立目标模型,并以此分析各像素点的目标模糊隶属度来抑制背景杂波;最后采用基于行列k-means聚类的自适应阈值分割算法来检测真实目标.实验结果表明,该算法能有效地抑制背景杂波和突显目标,并能有效地提高信噪比检测弱小目标. 展开更多
关键词 弱小目标检测 模糊自适应共振理论 行列k均值聚类
下载PDF
A Novel Model of IDS Based on Fuzzy Cluster and Immune Principle 被引量:1
14
作者 TAOXin-min LIUFu-rong 《Wuhan University Journal of Natural Sciences》 CAS 2005年第1期157-160,共4页
This paper presents a novel intrusion detection model based on fuzzy cluster and immune principle. The original rival penalized competitive learning (RPCL) algorithm is modified in order to address the problem of diff... This paper presents a novel intrusion detection model based on fuzzy cluster and immune principle. The original rival penalized competitive learning (RPCL) algorithm is modified in order to address the problem of different variability of variables and correlation between variables, the sensitivity to initial number of clusters is also solved. Especially, we use the extended RPCL algorithm to determine the initial number of clusters in the fuzzy cluster algorithm. The genetic algorithm is used to optimize the radius deviation for the determination of characteristic function of abnormal subspace. 展开更多
关键词 intrusion detection fuzzy cluster RPCL genetic algorithm CORRELATION
下载PDF
Edge-Weighted Centroidal Voronoi Tessellations 被引量:2
15
作者 Jie Wang Xiaoqiang Wang 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2010年第2期223-244,共22页
Most existing applications of centroidal Voronoi tessellations(CVTs) lack consideration of the length of the cluster boundaries.In this paper we propose a new model and algorithms to produce segmentations which would ... Most existing applications of centroidal Voronoi tessellations(CVTs) lack consideration of the length of the cluster boundaries.In this paper we propose a new model and algorithms to produce segmentations which would minimize the total energy—a sum of the classic CVT energy and the weighted length of cluster boundaries.To distinguish it with the classic CVTs,we call it an Edge-Weighted CVT(EWCVT).The concept of EWCVT is expected to build a mathematical base for all CVT related data classifications with requirement of smoothness of the cluster boundaries.The EWCVT method is easy in implementation,fast in computation,and natural for any number of clusters. 展开更多
关键词 Centroidal Voronoi tessellations cluster boundaD edge detection clustering image processing.
下载PDF
A Novel Unsupervised Change Detection Method with Structure Consistency and GFLICM Based on UAV Images 被引量:3
16
作者 Wensong LIU Xinyuan JI +2 位作者 Jie LIU Fengcheng GUO Zongqiao YU 《Journal of Geodesy and Geoinformation Science》 2022年第1期91-102,共12页
With the rapid development of Unmanned Aerial Vehicle(UAV)technology,change detection methods based on UAV images have been extensively studied.However,the imaging of UAV sensors is susceptible to environmental interf... With the rapid development of Unmanned Aerial Vehicle(UAV)technology,change detection methods based on UAV images have been extensively studied.However,the imaging of UAV sensors is susceptible to environmental interference,which leads to great differences of same object between UAV images.Overcoming the discrepancy difference between UAV images is crucial to improving the accuracy of change detection.To address this issue,a novel unsupervised change detection method based on structural consistency and the Generalized Fuzzy Local Information C-means Clustering Model(GFLICM)was proposed in this study.Within this method,the establishment of a graph-based structural consistency measure allowed for the detection of change information by comparing structure similarity between UAV images.The local variation coefficient was introduced and a new fuzzy factor was reconstructed,after which the GFLICM algorithm was used to analyze difference images.Finally,change detection results were analyzed qualitatively and quantitatively.To measure the feasibility and robustness of the proposed method,experiments were conducted using two data sets from the cities of Yangzhou and Nanjing.The experimental results show that the proposed method can improve the overall accuracy of change detection and reduce the false alarm rate when compared with other state-of-the-art change detection methods. 展开更多
关键词 change detection UAV images graph model structural consistency Generalized fuzzy Local Information C-means clustering Model(GFLICM)
下载PDF
基于Fuzzy聚类的Peleg-ε维数边缘提取算法
17
作者 崔泽延 王琰 《沈阳理工大学学报》 CAS 2011年第4期6-9,共4页
本算法综合了传统的利用毯子维数提取图像边缘的方法和Fuzzy聚类的方法,对具有不同维数的物体边缘进行提取。通过改进Fuzzy聚类方法,克服了传统Fuzzy聚类方法中只考虑分维谱图中像素自身而忽略分维谱图中邻近像素聚类特点的缺点;改进后... 本算法综合了传统的利用毯子维数提取图像边缘的方法和Fuzzy聚类的方法,对具有不同维数的物体边缘进行提取。通过改进Fuzzy聚类方法,克服了传统Fuzzy聚类方法中只考虑分维谱图中像素自身而忽略分维谱图中邻近像素聚类特点的缺点;改进后的Fuzzy聚类方法同时弥补了传统的利用毯子维数提取图像边界时迭代次数过少的不足。实验结果表明,利用该算法较传统算法更好地描述了物体的边界. 展开更多
关键词 毯子维数 fuzzy聚类 边缘提取
下载PDF
Fuzzy Service Aware Adaptive Cooperative Spectrum Sensing Algorithm
18
作者 Gongan Qiu Shibing Zhang Xiaoge Zhang 《China Communications》 SCIE CSCD 2016年第12期250-260,共11页
Based on the service characteristics and the sensing ability for secondary users, a joint optimization scheme of spectrum detection and allocation is investigated to expand the available sensing region and allocate th... Based on the service characteristics and the sensing ability for secondary users, a joint optimization scheme of spectrum detection and allocation is investigated to expand the available sensing region and allocate the Qo S-specified channels. On the aspect of spectrum detection, due to the available detection index with the global detection metrics, cooperation thresholds are adaptively adjusted to select the cooperative model for maximizing the available sensing region. On the aspect of spectrum allocation, for different service category, the idle channels are efficiently allocated that depend on their stability and available bandwidth. Meanwhile, based on the requested rates defined by fuzzy theory, the secondary users can be divided into two categories, i.e.,delay sensitive service and reliability sensitive service. Finally, the Qo S-specified channels from the targeted spectrum subset are allocated to secondary users. Simulation results show that our proposed algorithm can not only expand the available sensing region,but also decrease the outage probability of delay sensitive services. Additionally, it enables stable power consumption in the time-variation channel. 展开更多
关键词 spectrum detection spectrum allocation adaptive cluster cooperation fuzzy service awareness
下载PDF
Real-Time Fuzzy Obstacle Avoidance Using Directional Visual Perception
19
作者 黄国权 RadA.B. WongY.K. 《Journal of Southwest Jiaotong University(English Edition)》 2004年第2期107-115,共9页
This paper presents a novel vision-based obstacle avoidance approach for the Autonomous Mobile Robot (AMR) with a Pan-Tilt-Zoom (PTZ) camera as its only sensing modality. The approach combines the morphological closin... This paper presents a novel vision-based obstacle avoidance approach for the Autonomous Mobile Robot (AMR) with a Pan-Tilt-Zoom (PTZ) camera as its only sensing modality. The approach combines the morphological closing operation based on Sobel Edge Detection Operation and the (μ-kσ) thresholding technique to detect obstacles to soften the various lighting and ground floor effects. Both the morphology method and thresholding technique are computationally simple. The processing speed of the algorithm is fast enough to avoid some active obstacles. In addition, this approach takes into account the history obstacle effects on the current state. Fuzzy logic is used to control the behaviors of AMR as it navigates in the environment. All behaviors run concurrently and generate motor response solely based on vision perception. A priority based on subsumption coordinator selects the most appropriate response to direct the AMR away from obstacles. Validation of the proposed approach is done on a Pioneer 1 mobile robot. 展开更多
关键词 fuzzy system Obstacle avoidance edge detection Autonomous mobile robot
下载PDF
基于VMD模糊熵与GG聚类的直流配电网故障检测方法 被引量:1
20
作者 韦延方 王志杰 +2 位作者 王鹏 曾志辉 王晓卫 《电机与控制学报》 EI CSCD 北大核心 2024年第2期129-141,共13页
针对直流配电网存在的故障信号难以提取、不易对各类故障进行诊断等问题,提出一种基于变分模态分解(VMD)模糊熵与Gath-Geva(GG)聚类的故障检测方法。首先,提取出暂态电流,采用VMD算法将故障暂态电流分解成若干个固有模态分量(IMF)。然后... 针对直流配电网存在的故障信号难以提取、不易对各类故障进行诊断等问题,提出一种基于变分模态分解(VMD)模糊熵与Gath-Geva(GG)聚类的故障检测方法。首先,提取出暂态电流,采用VMD算法将故障暂态电流分解成若干个固有模态分量(IMF)。然后,分别计算分解得到的若干个IMF的模糊熵,将其作为特征向量。最后,采用GG聚类算法对故障特征的特征向量进行聚类识别。GG聚类的主要算法为将聚类样本划分为c类,设出隶属度矩阵,通过设定迭代来计算聚类中心与最大似然估计距离,更新隶属度矩阵,当隶属度矩阵满足条件矩阵时终止迭代,从而实现对单极故障、极间故障以及区外交流侧接地故障的聚类识别。仿真结果表明,所提保护方案可靠性强、准确率高,在不同故障类型、故障位置和过渡电阻等工况下均能可靠检测直流线路故障并准确识别故障类型,且具备一定的抗干扰能力。 展开更多
关键词 直流配电网 故障暂态电流 变分模态分解 模糊熵 Gath-Geva聚类 故障检测
下载PDF
上一页 1 2 37 下一页 到第
使用帮助 返回顶部