In order to solve the problem of inconsistent energy in the charging and discharging cycles of lithium-ion battery packs,a new multilayer equilibrium topology is designed in this paper.The structure adopts a hierarchi...In order to solve the problem of inconsistent energy in the charging and discharging cycles of lithium-ion battery packs,a new multilayer equilibrium topology is designed in this paper.The structure adopts a hierarchical structure design,which includes intra-group equilibrium,primary inter-group equilibrium and secondary inter-group equilibrium.This structure greatly increases the number of equilibrium paths for lithium-ion batteries,thus shortening the time required for equilibrium,and improving the overall efficiency.In terms of control strategy,fuzzy logic control(FLC)is chosen to control the size of the equilibrium current during the equilibrium process.We performed rigorous modeling and simulation of the proposed system by MATLAB and Simulink software.Experiments show that the multilayer equilibrium circuit structure greatly exceeds the traditional single-layer equilibrium circuit in terms of efficacy,specifically,the Li-ion battery equilibrium speed is improved by 12.71%in static equilibrium,14.48%in charge equilibrium,and 11.19%in discharge equilibrium.In addition,compared with the maximum value algorithm,the use of the FLC algorithm reduces the equalization time by about 3.27%and improves the energy transfer efficiency by about 66.49%under the stationary condition,which verifies the feasibility of the equalization scheme.展开更多
In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transfo...In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transforming the three-phase currents and voltages into a rotating reference frame, commonly referred to as the “dq” frame. In this frame, the torque/speed and flux components are decoupled, allowing for independent control, by doing so, the motor’s speed can be regulated accurately and maintain a constant flux which is crucial to ensure optimal motor performance and efficiency. The research focused on studying and simulating a field-oriented control system using fuzzy control techniques for an induction motor. The aim was to address the issue of parameter variations, particularly the change in rotor resistance during motor operation, which causes the control system to deviate from the desired direction. This deviation implies to an increase in the magnetic flux value, specifically the flux component on the q-axis. By employing fuzzy logic techniques to regulate flux vector’s components in the dq frame, this problem was successfully resolved, ensuring that the magnetic flux value remains within the nominal limits. To enhance the control system’s performance, response speed, and efficiency of the motor, sliding mode controllers were implemented to regulate the current in the inner loop. The simulation results demonstrated the proficiency of the proposed methodology.展开更多
An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and c...An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and control of the weld pool depth with ANN and theintelligent control for weld seam tracking with FLC. The proposed neural network can produce highlycomplex nonlinear multi-variable model of the GTAW process that offers the accurate prediction ofwelding penetration depth. A self-adjusting fuzzy controller used for seam tracking adjusts thecontrol parameters on-line automatically according to the tracking errors so that the torch positioncan be controlled accurately.展开更多
As wind energy is becoming one of the fastestgrowing renewable energy resources,controlling large-scale wind turbines remains a challenging task due to its system model nonlinearities and high external uncertainties.T...As wind energy is becoming one of the fastestgrowing renewable energy resources,controlling large-scale wind turbines remains a challenging task due to its system model nonlinearities and high external uncertainties.The main goal of the current work is to propose an intelligent control of the wind turbine system without the need for model identification.For this purpose,a novel model-independent nonsingular terminal slidingmode control(MINTSMC)using the basic principles of the ultralocal model(ULM)and combined with the single input interval type-2 fuzzy logic control(SIT2-FLC)is developed for non-linear wind turbine pitch angle control.In the suggested control framework,the MINTSMC scheme is designed to regulate the wind turbine speed rotor,and a sliding-mode(SM)observer is adopted to estimate the unknown phenomena of the ULM.The auxiliary SIT2-FLC is added in the model-independent control structure to improve the rotor speed regulation and compensate for the SM observation estimation error.Extensive examinations and comparative analyses were made using a real-time softwarein-the-loop(RT-SiL)based on the dSPACE 1202 board to appraise the efficiency and applicability of the suggested modelindependent scheme in a real-time testbed.展开更多
The Hierarchical Structure Fuzzy Logic Control (HSFLC) strategies of torque distribute for Parallel Hybrid Electric Vehicle (PHEV) in the mode of operation of the vehicle i. e. , acceleration, cruise, deceleration etc...The Hierarchical Structure Fuzzy Logic Control (HSFLC) strategies of torque distribute for Parallel Hybrid Electric Vehicle (PHEV) in the mode of operation of the vehicle i. e. , acceleration, cruise, deceleration etc. have been studied. Using secondly developed the hybrid vehicle simulation tool ADVISOR, the dynamic model of PHEV has been set up by MATLAB/SIMULINK. The engine, motor as well as the battery characteristics have been studied. Simulation results show that the proposed hierarchical structured fuzzy logic control strategy is effective over the entire operating range of the vehicle in terms of fuel economy. Based on the analyses of the simulation results and driver’s experiences, a fuzzy controller is designed and developed to control the torque distribution. The controller is evaluated via hardware-in-the-loop simulator (HILS). The results show that controller verify its value.展开更多
Fuzzy logic controller adopting unevenly-distributed membership function was presented with the purpose of enhancing performance of the temperature control precision and robustness for the chamber cooling system.Histo...Fuzzy logic controller adopting unevenly-distributed membership function was presented with the purpose of enhancing performance of the temperature control precision and robustness for the chamber cooling system.Histogram equalization and noise detection were performed to modify the evenly-distributed membership functions of error and error change rate into unevenly-distributed membership functions.Then,the experimental results with evenly and unevenly distributed membership functions were compared under the same outside environment conditions.The experimental results show that the steady-state error is reduced around 40% and the noise disturbance is rejected successfully even though noise range is 60% of the control precision range.The control precision is improved by reducing the steady-state error and the robustness is enhanced by rejecting noise disturbance through the fuzzy logic controller with unevenly-distributed membership function.Moreover,the system energy efficiency and lifetime of electronic expansion valve(EEV) installed in chamber cooling system are improved by adopting the unevenly-distributed membership function.展开更多
A microcomputer control system based on 80C320 and a switching regulation of wire feeder were designed. A correction factor based double model fuzzy logic controller (FLC) was introduced to achieve welding digital a...A microcomputer control system based on 80C320 and a switching regulation of wire feeder were designed. A correction factor based double model fuzzy logic controller (FLC) was introduced to achieve welding digital and intellectualized control by means of wire feeding speed feedback. The controller has many functions such as keyboard input, light emitting diode (LED) display and real-time intellectualized control of welding process etc. The controlling performance influenced by the coefficient of correction function was discussed. It was concluded by the experiments the relation between the coefficient of correction function and welding quality, when the coefficient of correction function is great, the dynamic character of controller is better, when the coefficient of correction function is small, the sensitivity character of controller is better. Experimental results also show that digital and fuzzy logic control method enable the improvement of appearance of weld and stability of welding process to be achieved in submerged arc automatic welding.展开更多
In this study an indirect adaptive sliding mode control (SMC) based on a fuzzy logic scheme is proposed to strengthen the tracking control performance of a general class of multi-input multi-output (MIMO) nonlinear un...In this study an indirect adaptive sliding mode control (SMC) based on a fuzzy logic scheme is proposed to strengthen the tracking control performance of a general class of multi-input multi-output (MIMO) nonlinear uncertain systems. Combining reaching law approach and fuzzy universal approximation theorem, the proposed design procedure combines the advantages of fuzzy logic control, adaptive control and sliding mode control. The stability of the control systems is proved in the sense of the Lyapunov second stability theorem. Two simulation studies are presented to demonstrate the effectiveness of our new hybrid control algorithm.展开更多
The secondary usage of spectrum has been investigated in Cognitive Radio(CR) network to resolving the spectrum scarcity issue in wireless communication.When Primary Users(PU) who own the spectrum appear,spectrum hando...The secondary usage of spectrum has been investigated in Cognitive Radio(CR) network to resolving the spectrum scarcity issue in wireless communication.When Primary Users(PU) who own the spectrum appear,spectrum handoff is needed to maintain the communications of Secondary Users.But the decision making of spectrum handoff is a challenge issue for CR network,because the input of decision making,which obtain through spectrum sensing,is heterogeneous and inexact.In this paper we will use fuzzy logic control theory to solve this issue and make use of new information for handoff operation:the probability of PU's occupancy at a certain channel.Our new algorithm can make more intelligent decision compared to simple traditional spectrum handoff decision making and reduce the probability of spectrum handoff,also the performance of SU's communication can be enhanced.展开更多
The model of half a tracked vehicle semi-active suspension is established. The fuzzy logic controller of the semi-active suspension system is constructed. The acceleration of driver's seat and its time derivative ...The model of half a tracked vehicle semi-active suspension is established. The fuzzy logic controller of the semi-active suspension system is constructed. The acceleration of driver's seat and its time derivative are used as the inputs of the fuzzy logic controller, and the fuzzy logic controller output determines the semi-active suspension controllable damping force. The fuzzy logic controller is to minimize the mean square root of acceleration of the driver's seat. The control forces of controllable dampers behind the first road wheel are obtained by time delay, and the delay times are determined by the vehicle speed and axles distances. The simulation results show that this control method can decrease the acceleration of driver's seat and the suspension travel of the first road wheel, the ride quality is improved obviously.展开更多
In industrial process control, fluid level control is one of the most basic aspects. Many control methods such as on-off, linear and PID (Proportional Integral Derivative) were developed time by time and used for prec...In industrial process control, fluid level control is one of the most basic aspects. Many control methods such as on-off, linear and PID (Proportional Integral Derivative) were developed time by time and used for precise controlling of fluid level. Due to flaws of PID controller in non-linear type processes such as inertial lag, time delay and time varying etc., there is a need of alternative design methodology that can be applied in both linear and non-linear systems and it can be execute with fuzzy concept. By using fuzzy logic, designer can realize lower development cost, superior feature and better end product. In this paper, level of fluid in tank is control by using fuzzy logic concept. For this purpose, a simulation system of fuzzy logic controller for fluid level control is designed using simulation packages of MATLAB software such as Fuzzy Logic Toolbox and Simulink. The designed fuzzy logic controller first takes information about inflow and outflow of fluid in tank than maintain the level of fluid in tank by controlling its output valve. In this paper, a controller is designed on five rules using two-input and one-output parameters. At the end, simulation results of fuzzy logic based controller are compared with classical PID controller and it shows that fuzzy logic controller has better stability, fast response and small overshoot.展开更多
This work presents a Fuzzy Logic Controller (FLC) assigned to control a robotic arm motion while avoiding the obstacles that may face the robotic arm in its movement from the initial point to the final point in an o...This work presents a Fuzzy Logic Controller (FLC) assigned to control a robotic arm motion while avoiding the obstacles that may face the robotic arm in its movement from the initial point to the final point in an optimized manner, in addition to avoid the singularity phenomenon, and without any exceeding of the physical constraints of the robot arm. A real platform (5 DOF "Degree Of Freedom" Lab Volt 5150 Robotic Arm) is used to carry this work practically, in addition to providing it by a vision sensor, where a new approach is proposed to inspect the robot work environment using a designed integrated MATLAB program having the ability to recognize the changeable locations of each of the robotic arm's end-effector, the goal, and the multi existed obstacles through a recorded film taken by a webcam, then these information will be treated using the FLC where its outputs represent the values that must be delivered to the robot to adopt them in its next steps till reaching to the goal in collision-free movements. The experimental results showed that the developed robotic ann travels successfully from Start to Goal where a high percentage of accuracy in arriving to Goal was achieved, and without colliding with any obstacle ensuring the harmonization between the theoretical part and the experimental part in achieving the best results of controlling the robotic arm's motion.展开更多
In this paper, a sender-initiated protocol is applied which uses fuzzy logic control method to improve computer networks performance by balancing loads among computers. This new model devises sender-initiated protocol...In this paper, a sender-initiated protocol is applied which uses fuzzy logic control method to improve computer networks performance by balancing loads among computers. This new model devises sender-initiated protocol for load transfer for load balancing. Groups are formed and every group has a node called a designated representative (DR). During load transferring processes, loads are transferred using the DR in each group to achieve load balancing purposes. The simulation results show that the performance of the protocol proposed is better than the compared conventional method. This protocol is more stable than the method without using the fuzzy logic control.展开更多
<span style="font-family:Verdana;">The target of this paper is to model a Maximum Power Point Tracker (MPPT) using a Fuzzy Logic Control (FLC) algorithm and to investigate its behavior with a battery l...<span style="font-family:Verdana;">The target of this paper is to model a Maximum Power Point Tracker (MPPT) using a Fuzzy Logic Control (FLC) algorithm and to investigate its behavior with a battery load. The advantage of this study over other studies in this field is that it considers a battery load rather than the commonly used</span><span></span><span></span><b><span><span></span><span></span> </span></b><span style="font-family:Verdana;">resistive load especially when we deal with the relationship between MPPT and system load. The system is about 60</span><span style="font-family:""> </span><span style="font-family:Verdana;">kW which </span><span style="font-family:Verdana;">is </span><span style="font-family:Verdana;">simulated under various environmental conditions by Matlab/Simulink program. For this type of non-linear application, FLC naturally offers a superior controller for </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">real load case. The artificial intelligence approach also benefits from this method for overcoming the complexity of nonlinear system modelling. The results show that FLC provides high performance for MPPT of PV system with battery load due to its low settling time and limited oscillation around the steady state value. These are</span><span style="font-family:""> </span><span style="font-family:Verdana;">assistant factors for increasing battery life.</span>展开更多
This work presents the implementation of fuzzy logic control(FLC) on a microbial electrolysis cell(MEC).Hydrogen has been touted as a potential alternative source of energy to the depleting fossil fuels. MEC is one of...This work presents the implementation of fuzzy logic control(FLC) on a microbial electrolysis cell(MEC).Hydrogen has been touted as a potential alternative source of energy to the depleting fossil fuels. MEC is one of the most extensively studied method of hydrogen production. The utilization of biowaste as its substrate by MEC promotes the waste to energy initiative. The hydrogen production within the MEC system, which involves microbial interaction contributes to the system's nonlinearity. Taking into account of the high complexity of MEC system, a precise process control system is required to ensure a wellcontrolled biohydrogen production flow rate and storage application inside a tank. Proportionalderivative-integral(PID) controller has been one of the pioneer control loop mechanism. However, it lacks the capability to adapt properly in the presence of disturbance. An advanced process control mechanism such as the FLC has proven to be a better solution to be implemented on a nonlinear system due to its similarity in human-natured thinking. The performance of the FLC has been evaluated based on its implementation on the MEC system through various control schemes progressively. Similar evaluations include the performance of Proportional-Integral(PI) and PID controller for comparison purposes. The tracking capability of FLC is also accessed against another advanced controller that is the model predictive controller(MPC). One of the key findings in this work is that the FLC resulted in a desirable hydrogen output via MEC over the PI and PID controller in terms of shorter settling time and lesser overshoot.展开更多
The vibration caused by terrible road excitation affects the ride quality and safety of track vehicles. The vibration control of suspension systems is a very important factor for modern track vehicles. A fuzzy logic c...The vibration caused by terrible road excitation affects the ride quality and safety of track vehicles. The vibration control of suspension systems is a very important factor for modern track vehicles. A fuzzy logic control for suspension system of a track vehicle is presented. A mechanical model and a system of difft, rential equations of motion taking account of the mass of loading wheel are established. Then the fuzzy logic control is applied to control the vibration of suspension system of track vehicles for sine signal and random road surfaces. Numerical simulation shows that the maximum acceleration of suspension system can be reduced to 44 % of the original value for sine signal road surface, and the mean square root of acceleration of suspension system can be reduced to 21% for random road surface. Therefore, the proposed fuzzy logic control is an efficient method for the suspension systems of track vehicles.展开更多
A scheme of fuzzy logic control for the suspension system of a tracked vehicle is presented. A mechanical model for the whole body of a tracked vehicle, which is totally a fifteen-degree-of-freedom system, is establis...A scheme of fuzzy logic control for the suspension system of a tracked vehicle is presented. A mechanical model for the whole body of a tracked vehicle, which is totally a fifteen-degree-of-freedom system, is established. The model includes the vertical motion, the pitch motion as well as the roll motion of the tracked vehicle. In contrast to most previous studies, the coupling effect among the vertical, the pitch and the roll motions of the suspension system of a tracked vehicle is considered simultaneously. The simulation of fuzzy logic control under road surface with random excitation shows that the acceleration, pitch angle and roll angle of suspension system can be efficiently controlled.展开更多
On the basis of analyzing the system constitution of vehicle semi-active suspension, a 4-DOF (degree of freedom) dynamic model is established. A tunable fuzzy logic controller is designed by using without quantificati...On the basis of analyzing the system constitution of vehicle semi-active suspension, a 4-DOF (degree of freedom) dynamic model is established. A tunable fuzzy logic controller is designed by using without quantification method and taking into account the uncertainty, nonlinearity and complexity of parameters for a vehicle suspension system. Simulation to test the performance of this controller is performed under random excitations and definite disturbances of a C grade road, and the effects of time delay and changes of system parameters on the vehicle suspension system are researched. The numerical simulation shows that the performance of the designed tunable fuzzy logic controller is effective, stable and reliable.展开更多
The question of stable control system of bank-to-turn (BTT) missiles is a bottleneckin BTT technology. Integrate fuzzy logic stable control system of BTT missiles is designed in whichthree main problems are resolved. ...The question of stable control system of bank-to-turn (BTT) missiles is a bottleneckin BTT technology. Integrate fuzzy logic stable control system of BTT missiles is designed in whichthree main problems are resolved. How to select input variables Of the fuzzy logic controller and howto guarantee completeness of the output control are two of them. The last one is how to coordinatethe fuzzy logic controllers in integrate fuzzy logic stable control system. Simulating results prov that integrate fuzzy logic stable coatrol system of BTT missiles is sueccessful, and it can be widelyused in future.展开更多
Making full use of wind power is one of the main purposes of the wind turbine generator control. Conventional hill climbing search (HCS) method can realize the maximum power point tracking (MPPT). However, the ste...Making full use of wind power is one of the main purposes of the wind turbine generator control. Conventional hill climbing search (HCS) method can realize the maximum power point tracking (MPPT). However, the step size of HCS method is constant so that it cannot consider both steady-state response and dynamic response. A fuzzy logical control (FLC) algorithm is proposed to solve this problem in this paper, which can track the maximum power point (MPP) quickly and smoothly. To evaluate MPPT algorithms, four performance indices are also proposed in this paper. They are the energy captured by wind turbine, the maximum power-point tracking time when wind speed changes slowly, the fluctuation magnitude of real power during steady state, and the energy captured by wind turbine when wind speed changes fast. Three cases are designed and simulated in MATLAB/Simulink respectively. The comparison of the three MPPT strategies concludes that the proposed fuzzy logical control algorithm is more superior to the conventional HCS algorithms.展开更多
基金funded by the National Natural Science Foundation of China:Research on the Energy Management Strategy of Li-Ion Battery and Sc Hybrid Energy Storage System for Electric Vehicle(51677058).
文摘In order to solve the problem of inconsistent energy in the charging and discharging cycles of lithium-ion battery packs,a new multilayer equilibrium topology is designed in this paper.The structure adopts a hierarchical structure design,which includes intra-group equilibrium,primary inter-group equilibrium and secondary inter-group equilibrium.This structure greatly increases the number of equilibrium paths for lithium-ion batteries,thus shortening the time required for equilibrium,and improving the overall efficiency.In terms of control strategy,fuzzy logic control(FLC)is chosen to control the size of the equilibrium current during the equilibrium process.We performed rigorous modeling and simulation of the proposed system by MATLAB and Simulink software.Experiments show that the multilayer equilibrium circuit structure greatly exceeds the traditional single-layer equilibrium circuit in terms of efficacy,specifically,the Li-ion battery equilibrium speed is improved by 12.71%in static equilibrium,14.48%in charge equilibrium,and 11.19%in discharge equilibrium.In addition,compared with the maximum value algorithm,the use of the FLC algorithm reduces the equalization time by about 3.27%and improves the energy transfer efficiency by about 66.49%under the stationary condition,which verifies the feasibility of the equalization scheme.
文摘In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transforming the three-phase currents and voltages into a rotating reference frame, commonly referred to as the “dq” frame. In this frame, the torque/speed and flux components are decoupled, allowing for independent control, by doing so, the motor’s speed can be regulated accurately and maintain a constant flux which is crucial to ensure optimal motor performance and efficiency. The research focused on studying and simulating a field-oriented control system using fuzzy control techniques for an induction motor. The aim was to address the issue of parameter variations, particularly the change in rotor resistance during motor operation, which causes the control system to deviate from the desired direction. This deviation implies to an increase in the magnetic flux value, specifically the flux component on the q-axis. By employing fuzzy logic techniques to regulate flux vector’s components in the dq frame, this problem was successfully resolved, ensuring that the magnetic flux value remains within the nominal limits. To enhance the control system’s performance, response speed, and efficiency of the motor, sliding mode controllers were implemented to regulate the current in the inner loop. The simulation results demonstrated the proficiency of the proposed methodology.
基金National Natural Science Foundation of China and Provincial Natural Science Foundafion of Guangdong, China.
文摘An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and control of the weld pool depth with ANN and theintelligent control for weld seam tracking with FLC. The proposed neural network can produce highlycomplex nonlinear multi-variable model of the GTAW process that offers the accurate prediction ofwelding penetration depth. A self-adjusting fuzzy controller used for seam tracking adjusts thecontrol parameters on-line automatically according to the tracking errors so that the torch positioncan be controlled accurately.
文摘As wind energy is becoming one of the fastestgrowing renewable energy resources,controlling large-scale wind turbines remains a challenging task due to its system model nonlinearities and high external uncertainties.The main goal of the current work is to propose an intelligent control of the wind turbine system without the need for model identification.For this purpose,a novel model-independent nonsingular terminal slidingmode control(MINTSMC)using the basic principles of the ultralocal model(ULM)and combined with the single input interval type-2 fuzzy logic control(SIT2-FLC)is developed for non-linear wind turbine pitch angle control.In the suggested control framework,the MINTSMC scheme is designed to regulate the wind turbine speed rotor,and a sliding-mode(SM)observer is adopted to estimate the unknown phenomena of the ULM.The auxiliary SIT2-FLC is added in the model-independent control structure to improve the rotor speed regulation and compensate for the SM observation estimation error.Extensive examinations and comparative analyses were made using a real-time softwarein-the-loop(RT-SiL)based on the dSPACE 1202 board to appraise the efficiency and applicability of the suggested modelindependent scheme in a real-time testbed.
基金the National High Technology Development of China to R & D EV Project(863-2001AA501213)
文摘The Hierarchical Structure Fuzzy Logic Control (HSFLC) strategies of torque distribute for Parallel Hybrid Electric Vehicle (PHEV) in the mode of operation of the vehicle i. e. , acceleration, cruise, deceleration etc. have been studied. Using secondly developed the hybrid vehicle simulation tool ADVISOR, the dynamic model of PHEV has been set up by MATLAB/SIMULINK. The engine, motor as well as the battery characteristics have been studied. Simulation results show that the proposed hierarchical structured fuzzy logic control strategy is effective over the entire operating range of the vehicle in terms of fuel economy. Based on the analyses of the simulation results and driver’s experiences, a fuzzy controller is designed and developed to control the torque distribution. The controller is evaluated via hardware-in-the-loop simulator (HILS). The results show that controller verify its value.
文摘Fuzzy logic controller adopting unevenly-distributed membership function was presented with the purpose of enhancing performance of the temperature control precision and robustness for the chamber cooling system.Histogram equalization and noise detection were performed to modify the evenly-distributed membership functions of error and error change rate into unevenly-distributed membership functions.Then,the experimental results with evenly and unevenly distributed membership functions were compared under the same outside environment conditions.The experimental results show that the steady-state error is reduced around 40% and the noise disturbance is rejected successfully even though noise range is 60% of the control precision range.The control precision is improved by reducing the steady-state error and the robustness is enhanced by rejecting noise disturbance through the fuzzy logic controller with unevenly-distributed membership function.Moreover,the system energy efficiency and lifetime of electronic expansion valve(EEV) installed in chamber cooling system are improved by adopting the unevenly-distributed membership function.
基金the National Natural Science Foundation of China under Grant no50575074
文摘A microcomputer control system based on 80C320 and a switching regulation of wire feeder were designed. A correction factor based double model fuzzy logic controller (FLC) was introduced to achieve welding digital and intellectualized control by means of wire feeding speed feedback. The controller has many functions such as keyboard input, light emitting diode (LED) display and real-time intellectualized control of welding process etc. The controlling performance influenced by the coefficient of correction function was discussed. It was concluded by the experiments the relation between the coefficient of correction function and welding quality, when the coefficient of correction function is great, the dynamic character of controller is better, when the coefficient of correction function is small, the sensitivity character of controller is better. Experimental results also show that digital and fuzzy logic control method enable the improvement of appearance of weld and stability of welding process to be achieved in submerged arc automatic welding.
文摘In this study an indirect adaptive sliding mode control (SMC) based on a fuzzy logic scheme is proposed to strengthen the tracking control performance of a general class of multi-input multi-output (MIMO) nonlinear uncertain systems. Combining reaching law approach and fuzzy universal approximation theorem, the proposed design procedure combines the advantages of fuzzy logic control, adaptive control and sliding mode control. The stability of the control systems is proved in the sense of the Lyapunov second stability theorem. Two simulation studies are presented to demonstrate the effectiveness of our new hybrid control algorithm.
基金Supported by the High-Tech Research and Development Program (863 Program) of China (No. 2009AA011801 and 2009AA012002)the National Fundamental Research Program of China (No. A1420080150)+3 种基金the National Basic Research Program (973 Program) of China (No. 2009CB320405)National Grand Special Science and Technology Project of China (No. 2008ZX03005-001, No. 2009ZX03007-004, No. 2009ZX03005-002, No. 2009ZX 03005-004, No. 2010ZX03006-002-02)the Foundation Project of National Key Laboratory of Science and Technology on Communications (No. 9140C0202061004)Special Project on Broadband Wireless Access sponsored by Huawei co., ltd
文摘The secondary usage of spectrum has been investigated in Cognitive Radio(CR) network to resolving the spectrum scarcity issue in wireless communication.When Primary Users(PU) who own the spectrum appear,spectrum handoff is needed to maintain the communications of Secondary Users.But the decision making of spectrum handoff is a challenge issue for CR network,because the input of decision making,which obtain through spectrum sensing,is heterogeneous and inexact.In this paper we will use fuzzy logic control theory to solve this issue and make use of new information for handoff operation:the probability of PU's occupancy at a certain channel.Our new algorithm can make more intelligent decision compared to simple traditional spectrum handoff decision making and reduce the probability of spectrum handoff,also the performance of SU's communication can be enhanced.
文摘The model of half a tracked vehicle semi-active suspension is established. The fuzzy logic controller of the semi-active suspension system is constructed. The acceleration of driver's seat and its time derivative are used as the inputs of the fuzzy logic controller, and the fuzzy logic controller output determines the semi-active suspension controllable damping force. The fuzzy logic controller is to minimize the mean square root of acceleration of the driver's seat. The control forces of controllable dampers behind the first road wheel are obtained by time delay, and the delay times are determined by the vehicle speed and axles distances. The simulation results show that this control method can decrease the acceleration of driver's seat and the suspension travel of the first road wheel, the ride quality is improved obviously.
文摘In industrial process control, fluid level control is one of the most basic aspects. Many control methods such as on-off, linear and PID (Proportional Integral Derivative) were developed time by time and used for precise controlling of fluid level. Due to flaws of PID controller in non-linear type processes such as inertial lag, time delay and time varying etc., there is a need of alternative design methodology that can be applied in both linear and non-linear systems and it can be execute with fuzzy concept. By using fuzzy logic, designer can realize lower development cost, superior feature and better end product. In this paper, level of fluid in tank is control by using fuzzy logic concept. For this purpose, a simulation system of fuzzy logic controller for fluid level control is designed using simulation packages of MATLAB software such as Fuzzy Logic Toolbox and Simulink. The designed fuzzy logic controller first takes information about inflow and outflow of fluid in tank than maintain the level of fluid in tank by controlling its output valve. In this paper, a controller is designed on five rules using two-input and one-output parameters. At the end, simulation results of fuzzy logic based controller are compared with classical PID controller and it shows that fuzzy logic controller has better stability, fast response and small overshoot.
文摘This work presents a Fuzzy Logic Controller (FLC) assigned to control a robotic arm motion while avoiding the obstacles that may face the robotic arm in its movement from the initial point to the final point in an optimized manner, in addition to avoid the singularity phenomenon, and without any exceeding of the physical constraints of the robot arm. A real platform (5 DOF "Degree Of Freedom" Lab Volt 5150 Robotic Arm) is used to carry this work practically, in addition to providing it by a vision sensor, where a new approach is proposed to inspect the robot work environment using a designed integrated MATLAB program having the ability to recognize the changeable locations of each of the robotic arm's end-effector, the goal, and the multi existed obstacles through a recorded film taken by a webcam, then these information will be treated using the FLC where its outputs represent the values that must be delivered to the robot to adopt them in its next steps till reaching to the goal in collision-free movements. The experimental results showed that the developed robotic ann travels successfully from Start to Goal where a high percentage of accuracy in arriving to Goal was achieved, and without colliding with any obstacle ensuring the harmonization between the theoretical part and the experimental part in achieving the best results of controlling the robotic arm's motion.
文摘In this paper, a sender-initiated protocol is applied which uses fuzzy logic control method to improve computer networks performance by balancing loads among computers. This new model devises sender-initiated protocol for load transfer for load balancing. Groups are formed and every group has a node called a designated representative (DR). During load transferring processes, loads are transferred using the DR in each group to achieve load balancing purposes. The simulation results show that the performance of the protocol proposed is better than the compared conventional method. This protocol is more stable than the method without using the fuzzy logic control.
文摘<span style="font-family:Verdana;">The target of this paper is to model a Maximum Power Point Tracker (MPPT) using a Fuzzy Logic Control (FLC) algorithm and to investigate its behavior with a battery load. The advantage of this study over other studies in this field is that it considers a battery load rather than the commonly used</span><span></span><span></span><b><span><span></span><span></span> </span></b><span style="font-family:Verdana;">resistive load especially when we deal with the relationship between MPPT and system load. The system is about 60</span><span style="font-family:""> </span><span style="font-family:Verdana;">kW which </span><span style="font-family:Verdana;">is </span><span style="font-family:Verdana;">simulated under various environmental conditions by Matlab/Simulink program. For this type of non-linear application, FLC naturally offers a superior controller for </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">real load case. The artificial intelligence approach also benefits from this method for overcoming the complexity of nonlinear system modelling. The results show that FLC provides high performance for MPPT of PV system with battery load due to its low settling time and limited oscillation around the steady state value. These are</span><span style="font-family:""> </span><span style="font-family:Verdana;">assistant factors for increasing battery life.</span>
基金supported by the UMRG RP006H-13ICT Project, University of Malaya, Malaysia。
文摘This work presents the implementation of fuzzy logic control(FLC) on a microbial electrolysis cell(MEC).Hydrogen has been touted as a potential alternative source of energy to the depleting fossil fuels. MEC is one of the most extensively studied method of hydrogen production. The utilization of biowaste as its substrate by MEC promotes the waste to energy initiative. The hydrogen production within the MEC system, which involves microbial interaction contributes to the system's nonlinearity. Taking into account of the high complexity of MEC system, a precise process control system is required to ensure a wellcontrolled biohydrogen production flow rate and storage application inside a tank. Proportionalderivative-integral(PID) controller has been one of the pioneer control loop mechanism. However, it lacks the capability to adapt properly in the presence of disturbance. An advanced process control mechanism such as the FLC has proven to be a better solution to be implemented on a nonlinear system due to its similarity in human-natured thinking. The performance of the FLC has been evaluated based on its implementation on the MEC system through various control schemes progressively. Similar evaluations include the performance of Proportional-Integral(PI) and PID controller for comparison purposes. The tracking capability of FLC is also accessed against another advanced controller that is the model predictive controller(MPC). One of the key findings in this work is that the FLC resulted in a desirable hydrogen output via MEC over the PI and PID controller in terms of shorter settling time and lesser overshoot.
文摘The vibration caused by terrible road excitation affects the ride quality and safety of track vehicles. The vibration control of suspension systems is a very important factor for modern track vehicles. A fuzzy logic control for suspension system of a track vehicle is presented. A mechanical model and a system of difft, rential equations of motion taking account of the mass of loading wheel are established. Then the fuzzy logic control is applied to control the vibration of suspension system of track vehicles for sine signal and random road surfaces. Numerical simulation shows that the maximum acceleration of suspension system can be reduced to 44 % of the original value for sine signal road surface, and the mean square root of acceleration of suspension system can be reduced to 21% for random road surface. Therefore, the proposed fuzzy logic control is an efficient method for the suspension systems of track vehicles.
文摘A scheme of fuzzy logic control for the suspension system of a tracked vehicle is presented. A mechanical model for the whole body of a tracked vehicle, which is totally a fifteen-degree-of-freedom system, is established. The model includes the vertical motion, the pitch motion as well as the roll motion of the tracked vehicle. In contrast to most previous studies, the coupling effect among the vertical, the pitch and the roll motions of the suspension system of a tracked vehicle is considered simultaneously. The simulation of fuzzy logic control under road surface with random excitation shows that the acceleration, pitch angle and roll angle of suspension system can be efficiently controlled.
基金Funded by the National Natural Science Foundation of China (NO.50135030)
文摘On the basis of analyzing the system constitution of vehicle semi-active suspension, a 4-DOF (degree of freedom) dynamic model is established. A tunable fuzzy logic controller is designed by using without quantification method and taking into account the uncertainty, nonlinearity and complexity of parameters for a vehicle suspension system. Simulation to test the performance of this controller is performed under random excitations and definite disturbances of a C grade road, and the effects of time delay and changes of system parameters on the vehicle suspension system are researched. The numerical simulation shows that the performance of the designed tunable fuzzy logic controller is effective, stable and reliable.
文摘The question of stable control system of bank-to-turn (BTT) missiles is a bottleneckin BTT technology. Integrate fuzzy logic stable control system of BTT missiles is designed in whichthree main problems are resolved. How to select input variables Of the fuzzy logic controller and howto guarantee completeness of the output control are two of them. The last one is how to coordinatethe fuzzy logic controllers in integrate fuzzy logic stable control system. Simulating results prov that integrate fuzzy logic stable coatrol system of BTT missiles is sueccessful, and it can be widelyused in future.
基金supported by the National High Technology Research and Development Program of China under Grant No.2011AA05S113Major State Basic Research Development Program under Grant No.2012CB215106+1 种基金Science and Technology Plan Program in Zhejiang Province under Grant No.2009C34013National Science and Technology Supporting Plan Project under Grant No.2009BAG12A09
文摘Making full use of wind power is one of the main purposes of the wind turbine generator control. Conventional hill climbing search (HCS) method can realize the maximum power point tracking (MPPT). However, the step size of HCS method is constant so that it cannot consider both steady-state response and dynamic response. A fuzzy logical control (FLC) algorithm is proposed to solve this problem in this paper, which can track the maximum power point (MPP) quickly and smoothly. To evaluate MPPT algorithms, four performance indices are also proposed in this paper. They are the energy captured by wind turbine, the maximum power-point tracking time when wind speed changes slowly, the fluctuation magnitude of real power during steady state, and the energy captured by wind turbine when wind speed changes fast. Three cases are designed and simulated in MATLAB/Simulink respectively. The comparison of the three MPPT strategies concludes that the proposed fuzzy logical control algorithm is more superior to the conventional HCS algorithms.