Based on the investigation data of 12 Haloxylon ammodendron plots in the south edge of Gurbantunggut Desert, Fuzzy distribution was introduced into the study of Haloxylon ammodendron base diameter structure fitting ac...Based on the investigation data of 12 Haloxylon ammodendron plots in the south edge of Gurbantunggut Desert, Fuzzy distribution was introduced into the study of Haloxylon ammodendron base diameter structure fitting according to the consistency between the characteristics of Fuzzy distribution function and the distribution series of cumulative percentage of stand base diameter, and the fitting precision and effect of Fuzzy distribution function were discussed. The root mean square error RMSE and determination coefficient R<sup>2</sup> values showed that Fuzzy-Γ<sub>1</sub>, Fuzzy-Γ<sub>2</sub>, Fuzzy-Γ<sub>3</sub>, Fuzzy-Γ<sub>4</sub> had good fitting performance, among which Fuzzy-Γ<sub>1</sub> had relatively high fitting precision, and its parameters were closely related to stand age and density, Fuzzy-Γ<sub>2</sub> distribution function was the second, and Fuzzy-Γ<sub>4</sub> distribution function had the worst fitting effect. By introducing a parameter c from the similarity of four distribution function formulas, a generalized Fuzzy distribution function Fuzzy-Γ<sub>5</sub> is obtained. This function shows the highest fitting accuracy. Most of the values of parameter c are near 1 or 2, which shows that the diameter distribution is mainly approximate to Fuzzy-Γ<sub>1</sub> and Fuzzy-Γ<sub>2</sub>.展开更多
Breast cancer remains a significant global health challenge, necessitating effective early detection and prognosis to enhance patient outcomes. Current diagnostic methods, including mammography and MRI, suffer from li...Breast cancer remains a significant global health challenge, necessitating effective early detection and prognosis to enhance patient outcomes. Current diagnostic methods, including mammography and MRI, suffer from limitations such as uncertainty and imprecise data, leading to late-stage diagnoses. To address this, various expert systems have been developed, but many rely on type-1 fuzzy logic and lack mobile-based applications for data collection and feedback to healthcare practitioners. This research investigates the development of an Enhanced Mobile-based Fuzzy Expert system (EMFES) for breast cancer pre-growth prognosis. The study explores the use of type-2 fuzzy logic to enhance accuracy and model uncertainty effectively. Additionally, it evaluates the advantages of employing the python programming language over java for implementation and considers specific risk factors for data collection. The research aims to dynamically generate fuzzy rules, adapting to evolving breast cancer research and patient data. Key research questions focus on the comparative effectiveness of type-2 fuzzy logic, the handling of uncertainty and imprecise data, the integration of mobile-based features, the choice of programming language, and the creation of dynamic fuzzy rules. Furthermore, the study examines the differences between the Mamdani Inference System and the Sugeno Fuzzy Inference method and explores challenges and opportunities in deploying the EMFES on mobile devices. The research identifies a critical gap in existing breast cancer diagnostic systems, emphasizing the need for a comprehensive, mobile-enabled, and adaptable solution by developing an EMFES that leverages Type-2 fuzzy logic, the Sugeno Inference Algorithm, Python Programming, and dynamic fuzzy rule generation. This study seeks to enhance early breast cancer detection and ultimately reduce breast cancer-related mortality.展开更多
A new fuzzy stochastic finite element method based on the fuzzy factor method and random factor method is given and the analysis of structural dynamic characteristic for fuzzy stochastic truss structures is presented....A new fuzzy stochastic finite element method based on the fuzzy factor method and random factor method is given and the analysis of structural dynamic characteristic for fuzzy stochastic truss structures is presented. Considering the fuzzy randomness of the structural physical parameters and geometric dimensions simultaneously, the structural stiffness and mass matrices axe constructed based on the fuzzy factor method and random factor method; from the Rayleigh's quotient of structural vibration, the structural fuzzy random dynamic characteristic is obtained by means of the interval arithmetic; the fuzzy numeric characteristics of dynamic characteristic axe then derived by using the random variable's moment function method and algebra synthesis method. Two examples axe used to illustrate the validity and rationality of the method given. The advantage of this method is that the effect of the fuzzy randomness of one of the structural parameters on the fuzzy randomness of the dynamic characteristic can be reflected expediently and objectively.展开更多
The farm produce logistics plays an important role in promoting the agricultural production and prosperity of the rural economy,so grasping the main factors influencing the development of farm produce logistics,is of ...The farm produce logistics plays an important role in promoting the agricultural production and prosperity of the rural economy,so grasping the main factors influencing the development of farm produce logistics,is of important significance to accelerating the development of farm produce logistics. The values of identification coefficient in the grey relational analysis are taken based on the experience,so the accuracy of the results is affected. This article uses the improved fuzzy grey relational analysis to analyze the main factors influencing farm produce logistics. The results show that the number of storage companies has a great impact on the development of farm produce logistics,followed by the farm produce processing machinery capacity,rural transport infrastructure,farm produce market conditions and government financial support for agriculture,while the total number of Internet users in rural areas has an limited impact on the development of farm produce logistics.展开更多
A new kind of optimal fuzzy PID controller is proposed, which contains two parts. One is an on line fuzzy inference system, and the other is a conventional PID controller. In the fuzzy inference system, three adjustab...A new kind of optimal fuzzy PID controller is proposed, which contains two parts. One is an on line fuzzy inference system, and the other is a conventional PID controller. In the fuzzy inference system, three adjustable factors x p, x i , and x d are introduced. Their functions are to further modify and optimize the result of the fuzzy inference so as to make the controller have the optimal control effect on a given object. The optimal values of these adjustable factors are determined based on the ITAE criterion and the Nelder and Mead′s flexible polyhedron search algorithm. This optimal fuzzy PID controller has been used to control the executive motor of the intelligent artificial leg designed by the authors. The result of computer simulation indicates that this controller is very effective and can be widely used to control different kinds of objects and processes.展开更多
Fuzzy sets theory cannot describe the neutrality degreeof data, which has largely limited the objectivity of fuzzy time seriesin uncertain data forecasting. With this regard, a multi-factor highorderintuitionistic fuz...Fuzzy sets theory cannot describe the neutrality degreeof data, which has largely limited the objectivity of fuzzy time seriesin uncertain data forecasting. With this regard, a multi-factor highorderintuitionistic fuzzy time series forecasting model is built. Inthe new model, a fuzzy clustering algorithm is used to get unequalintervals, and a more objective technique for ascertaining membershipand non-membership functions of the intuitionistic fuzzy setis proposed. On these bases, forecast rules based on multidimensionalintuitionistic fuzzy modus ponens inference are established.Finally, contrast experiments on the daily mean temperature ofBeijing are carried out, which show that the novel model has aclear advantage of improving the forecast accuracy.展开更多
Based on the theory of competitive advantage and value chain, this paper establishes the indicator system, and develop the strategic framework using the fuzzy Delphi method. Then the triangular fuzzy number model is e...Based on the theory of competitive advantage and value chain, this paper establishes the indicator system, and develop the strategic framework using the fuzzy Delphi method. Then the triangular fuzzy number model is established using Fuzzy Analytic Hierarchy Process, and the key factors influencing biotechnology industry are extracted. The results show that in terms of weight, the key factors influencing the success of biotechnology industry are sequenced as follows: "open innovation capacity", "quality and cost control ability", "advanced customer-oriented product manufacturing capacity", "technology R & D personnel's capacity", "brand image building capacity", "logistics and sales capacity", "grasping the market demand trends". The manufacturers and government decision-making body can use this as the basis, to promote the development of the biotechnology industry.展开更多
Yaw control system plays an important role in helping large-scale horizontal wind turbines capture the wind energy.To track the stochastic and fast-changing wind direction,the nacelle is rotated by the yaw control sys...Yaw control system plays an important role in helping large-scale horizontal wind turbines capture the wind energy.To track the stochastic and fast-changing wind direction,the nacelle is rotated by the yaw control system.Therein,a difficulty consists in the variation speed of the wind direction much faster than the rotation speed of the nacelle.To deal with this difficulty,model predictive control has been recently proposed in the literature,in which the previewed wind direction is employed into the predictive model,and the estimated captured energy and yaw actuator usage are two contradictive objectives.Since the performance of the model predictive control strat-egy relies largely on the weighting factor that is designed to balance the two objectives,the weighting factor should be carefully selected.In this study,a fuzzy-deduced scheme is proposed to derive the weighting factor of the mod-el predictive yaw control.For the proposed fuzzy-deduced strategy,the variation degree and the increment of the wind direction during the predictive horizon are used as the inputs,and the weighting factor is the output,which is dynamically adjusted.The proposed model predictive yaw control is demonstrated by some simulations using real wind data and its performance is compared with the conventional model predictive control with thefixed weighting factor.Comparison results confirm the outweighing performance of the proposed control strategy over the conventional one.展开更多
In the inking system of an offset printing press,a vibrator roller distributes ink not only in the circumferential direction but also in the axial direction.In the control process,if ink amount is determined only by t...In the inking system of an offset printing press,a vibrator roller distributes ink not only in the circumferential direction but also in the axial direction.In the control process,if ink amount is determined only by the dot area coverage without considering the impact of vibrator roller's oscillation,the printing colour quality will be reduced.This paper describes a method of calculating the impact factor of vibrator roller' s oscillation.First,the oscillation performance is analyzed and sample data of impact factor is got.Then,a fuzzy controller used for the calculation of the impact factor is designed,and genetic algorithm is used to optimize membership functions and obtain the fuzzy control rules automatically.This fuzzy controller can be used to calculate impact factors for any printing condition,and the impact factors can be used for ink amount control in printing process and it is important for higher printing colour quality and lowering ink and paper waste.展开更多
Uemura [1] discovered a mapping formula that transforms and maps the state of nature into fuzzy events with a membership function that expresses the degree of attribution. In decision theory in no-data problems, seque...Uemura [1] discovered a mapping formula that transforms and maps the state of nature into fuzzy events with a membership function that expresses the degree of attribution. In decision theory in no-data problems, sequential Bayesian inference is an example of this mapping formula, and Hori et al. [2] made the mapping formula multidimensional, introduced the concept of time, to Markov (decision) processes in fuzzy events under ergodic conditions, and derived stochastic differential equations in fuzzy events, although in reverse. In this paper, we focus on type 2 fuzzy. First, assuming that Type 2 Fuzzy Events are transformed and mapped onto the state of nature by a quadratic mapping formula that simultaneously considers longitudinal and transverse ambiguity, the joint stochastic differential equation representing these two ambiguities can be applied to possibility principal factor analysis if the weights of the equations are orthogonal. This indicates that the type 2 fuzzy is a two-dimensional possibility multivariate error model with longitudinal and transverse directions. Also, when the weights are oblique, it is a general possibility oblique factor analysis. Therefore, an example of type 2 fuzzy system theory is the possibility factor analysis. Furthermore, we show the initial and stopping condition on possibility factor rotation, on the base of possibility theory.展开更多
This paper presents the use of fuzzy logic technique to control the reactive power of load and hence improve the source power factor. A shunt compensator is proposed, which consists of a voltage controlled reactor by ...This paper presents the use of fuzzy logic technique to control the reactive power of load and hence improve the source power factor. A shunt compensator is proposed, which consists of a voltage controlled reactor by full-wave thyristor bridge in parallel with a capacitor. The proposed voltage control technique composed of two independent fuzzy controllers, primary and secondary. The PFC (primary fuzzy controller) is designed based on linearization method to introduce to the network the nearest value of reactive power (VAR) required to correct the power factor. The SFC (secondary fuzzy controller) is designed to achieve accurate compensation for the required VAR to achieve the pre-set power factor value. Simulations for 15 different practical study cases are presented to evaluate the performance of the controller, and the results show how the designed controller is fast and accurate. Harmonics analyses are carried out up to the 13th harmonic to determine the requirement of harmonics filter.展开更多
This article aims to address the clustering effect caused by unorganized charging of electric vehicles by adopting a two-tier recommendation method.The electric vehicles(EVs)are classified into high-level alerts and g...This article aims to address the clustering effect caused by unorganized charging of electric vehicles by adopting a two-tier recommendation method.The electric vehicles(EVs)are classified into high-level alerts and general alerts based on their state of charge(SOC).EVs with high-level alerts have the most urgent charging needs,so the distance to charging stations is set as the highest priority for recommendations.For users with general alerts,a comprehensive EV charging station recommendation model is proposed,taking into account factors such as charging price,charging time,charging station preference,and distance to the charging station.Using real data from EV charging stations and ride-hailing vehicles in Xiamen City,Fujian Province,simulation analyses are conducted using Python for different periods of the day.The research results show that the stability of the multi-factor recommendation model in terms of service density variance,coverage rate,price cost,and distance cost outperform single-factor models.This indicates that our composite multi-factor recommendation model has significant practical value in resolving the clustering phenomenon caused by unorganized EV charging,optimizing the EV charging service system,and improving user satisfaction.展开更多
Adopting the strategy of fuzzy control with self tuning factor within whole universe of discourse, a kind of fuzzy control method for jigger discharging is put forward. This method has many advantages over the convent...Adopting the strategy of fuzzy control with self tuning factor within whole universe of discourse, a kind of fuzzy control method for jigger discharging is put forward. This method has many advantages over the conventional PID controller in terms of response speed, stability and robustness. It is effective to restrain the jig bed from over thick or empty, and the stability of the bed is markedly improved. The good results are obtained in factory tests.展开更多
文摘Based on the investigation data of 12 Haloxylon ammodendron plots in the south edge of Gurbantunggut Desert, Fuzzy distribution was introduced into the study of Haloxylon ammodendron base diameter structure fitting according to the consistency between the characteristics of Fuzzy distribution function and the distribution series of cumulative percentage of stand base diameter, and the fitting precision and effect of Fuzzy distribution function were discussed. The root mean square error RMSE and determination coefficient R<sup>2</sup> values showed that Fuzzy-Γ<sub>1</sub>, Fuzzy-Γ<sub>2</sub>, Fuzzy-Γ<sub>3</sub>, Fuzzy-Γ<sub>4</sub> had good fitting performance, among which Fuzzy-Γ<sub>1</sub> had relatively high fitting precision, and its parameters were closely related to stand age and density, Fuzzy-Γ<sub>2</sub> distribution function was the second, and Fuzzy-Γ<sub>4</sub> distribution function had the worst fitting effect. By introducing a parameter c from the similarity of four distribution function formulas, a generalized Fuzzy distribution function Fuzzy-Γ<sub>5</sub> is obtained. This function shows the highest fitting accuracy. Most of the values of parameter c are near 1 or 2, which shows that the diameter distribution is mainly approximate to Fuzzy-Γ<sub>1</sub> and Fuzzy-Γ<sub>2</sub>.
文摘Breast cancer remains a significant global health challenge, necessitating effective early detection and prognosis to enhance patient outcomes. Current diagnostic methods, including mammography and MRI, suffer from limitations such as uncertainty and imprecise data, leading to late-stage diagnoses. To address this, various expert systems have been developed, but many rely on type-1 fuzzy logic and lack mobile-based applications for data collection and feedback to healthcare practitioners. This research investigates the development of an Enhanced Mobile-based Fuzzy Expert system (EMFES) for breast cancer pre-growth prognosis. The study explores the use of type-2 fuzzy logic to enhance accuracy and model uncertainty effectively. Additionally, it evaluates the advantages of employing the python programming language over java for implementation and considers specific risk factors for data collection. The research aims to dynamically generate fuzzy rules, adapting to evolving breast cancer research and patient data. Key research questions focus on the comparative effectiveness of type-2 fuzzy logic, the handling of uncertainty and imprecise data, the integration of mobile-based features, the choice of programming language, and the creation of dynamic fuzzy rules. Furthermore, the study examines the differences between the Mamdani Inference System and the Sugeno Fuzzy Inference method and explores challenges and opportunities in deploying the EMFES on mobile devices. The research identifies a critical gap in existing breast cancer diagnostic systems, emphasizing the need for a comprehensive, mobile-enabled, and adaptable solution by developing an EMFES that leverages Type-2 fuzzy logic, the Sugeno Inference Algorithm, Python Programming, and dynamic fuzzy rule generation. This study seeks to enhance early breast cancer detection and ultimately reduce breast cancer-related mortality.
基金Project supported by the Natural Science Foundation of Shaanxi Province of China (No,A200214)
文摘A new fuzzy stochastic finite element method based on the fuzzy factor method and random factor method is given and the analysis of structural dynamic characteristic for fuzzy stochastic truss structures is presented. Considering the fuzzy randomness of the structural physical parameters and geometric dimensions simultaneously, the structural stiffness and mass matrices axe constructed based on the fuzzy factor method and random factor method; from the Rayleigh's quotient of structural vibration, the structural fuzzy random dynamic characteristic is obtained by means of the interval arithmetic; the fuzzy numeric characteristics of dynamic characteristic axe then derived by using the random variable's moment function method and algebra synthesis method. Two examples axe used to illustrate the validity and rationality of the method given. The advantage of this method is that the effect of the fuzzy randomness of one of the structural parameters on the fuzzy randomness of the dynamic characteristic can be reflected expediently and objectively.
文摘The farm produce logistics plays an important role in promoting the agricultural production and prosperity of the rural economy,so grasping the main factors influencing the development of farm produce logistics,is of important significance to accelerating the development of farm produce logistics. The values of identification coefficient in the grey relational analysis are taken based on the experience,so the accuracy of the results is affected. This article uses the improved fuzzy grey relational analysis to analyze the main factors influencing farm produce logistics. The results show that the number of storage companies has a great impact on the development of farm produce logistics,followed by the farm produce processing machinery capacity,rural transport infrastructure,farm produce market conditions and government financial support for agriculture,while the total number of Internet users in rural areas has an limited impact on the development of farm produce logistics.
文摘A new kind of optimal fuzzy PID controller is proposed, which contains two parts. One is an on line fuzzy inference system, and the other is a conventional PID controller. In the fuzzy inference system, three adjustable factors x p, x i , and x d are introduced. Their functions are to further modify and optimize the result of the fuzzy inference so as to make the controller have the optimal control effect on a given object. The optimal values of these adjustable factors are determined based on the ITAE criterion and the Nelder and Mead′s flexible polyhedron search algorithm. This optimal fuzzy PID controller has been used to control the executive motor of the intelligent artificial leg designed by the authors. The result of computer simulation indicates that this controller is very effective and can be widely used to control different kinds of objects and processes.
基金supported by the National Natural Science Foundation of China(61309022)
文摘Fuzzy sets theory cannot describe the neutrality degreeof data, which has largely limited the objectivity of fuzzy time seriesin uncertain data forecasting. With this regard, a multi-factor highorderintuitionistic fuzzy time series forecasting model is built. Inthe new model, a fuzzy clustering algorithm is used to get unequalintervals, and a more objective technique for ascertaining membershipand non-membership functions of the intuitionistic fuzzy setis proposed. On these bases, forecast rules based on multidimensionalintuitionistic fuzzy modus ponens inference are established.Finally, contrast experiments on the daily mean temperature ofBeijing are carried out, which show that the novel model has aclear advantage of improving the forecast accuracy.
文摘Based on the theory of competitive advantage and value chain, this paper establishes the indicator system, and develop the strategic framework using the fuzzy Delphi method. Then the triangular fuzzy number model is established using Fuzzy Analytic Hierarchy Process, and the key factors influencing biotechnology industry are extracted. The results show that in terms of weight, the key factors influencing the success of biotechnology industry are sequenced as follows: "open innovation capacity", "quality and cost control ability", "advanced customer-oriented product manufacturing capacity", "technology R & D personnel's capacity", "brand image building capacity", "logistics and sales capacity", "grasping the market demand trends". The manufacturers and government decision-making body can use this as the basis, to promote the development of the biotechnology industry.
基金supported by the National Natural Science Foundation of China under Grant 61803393project supported by the Natural Science Foundation of Hunan Province(No.2020JJ4751)the Innovation-Driven Project of Central South University(No.2020CX031).
文摘Yaw control system plays an important role in helping large-scale horizontal wind turbines capture the wind energy.To track the stochastic and fast-changing wind direction,the nacelle is rotated by the yaw control system.Therein,a difficulty consists in the variation speed of the wind direction much faster than the rotation speed of the nacelle.To deal with this difficulty,model predictive control has been recently proposed in the literature,in which the previewed wind direction is employed into the predictive model,and the estimated captured energy and yaw actuator usage are two contradictive objectives.Since the performance of the model predictive control strat-egy relies largely on the weighting factor that is designed to balance the two objectives,the weighting factor should be carefully selected.In this study,a fuzzy-deduced scheme is proposed to derive the weighting factor of the mod-el predictive yaw control.For the proposed fuzzy-deduced strategy,the variation degree and the increment of the wind direction during the predictive horizon are used as the inputs,and the weighting factor is the output,which is dynamically adjusted.The proposed model predictive yaw control is demonstrated by some simulations using real wind data and its performance is compared with the conventional model predictive control with thefixed weighting factor.Comparison results confirm the outweighing performance of the proposed control strategy over the conventional one.
基金Supported by the National Science and Technology Supporting Program(No.2012BAF13B05-1)National Natural Science Foundation(No.51105009)Beijing Natural Science Foundation(No.3113025)
文摘In the inking system of an offset printing press,a vibrator roller distributes ink not only in the circumferential direction but also in the axial direction.In the control process,if ink amount is determined only by the dot area coverage without considering the impact of vibrator roller's oscillation,the printing colour quality will be reduced.This paper describes a method of calculating the impact factor of vibrator roller' s oscillation.First,the oscillation performance is analyzed and sample data of impact factor is got.Then,a fuzzy controller used for the calculation of the impact factor is designed,and genetic algorithm is used to optimize membership functions and obtain the fuzzy control rules automatically.This fuzzy controller can be used to calculate impact factors for any printing condition,and the impact factors can be used for ink amount control in printing process and it is important for higher printing colour quality and lowering ink and paper waste.
文摘Uemura [1] discovered a mapping formula that transforms and maps the state of nature into fuzzy events with a membership function that expresses the degree of attribution. In decision theory in no-data problems, sequential Bayesian inference is an example of this mapping formula, and Hori et al. [2] made the mapping formula multidimensional, introduced the concept of time, to Markov (decision) processes in fuzzy events under ergodic conditions, and derived stochastic differential equations in fuzzy events, although in reverse. In this paper, we focus on type 2 fuzzy. First, assuming that Type 2 Fuzzy Events are transformed and mapped onto the state of nature by a quadratic mapping formula that simultaneously considers longitudinal and transverse ambiguity, the joint stochastic differential equation representing these two ambiguities can be applied to possibility principal factor analysis if the weights of the equations are orthogonal. This indicates that the type 2 fuzzy is a two-dimensional possibility multivariate error model with longitudinal and transverse directions. Also, when the weights are oblique, it is a general possibility oblique factor analysis. Therefore, an example of type 2 fuzzy system theory is the possibility factor analysis. Furthermore, we show the initial and stopping condition on possibility factor rotation, on the base of possibility theory.
文摘This paper presents the use of fuzzy logic technique to control the reactive power of load and hence improve the source power factor. A shunt compensator is proposed, which consists of a voltage controlled reactor by full-wave thyristor bridge in parallel with a capacitor. The proposed voltage control technique composed of two independent fuzzy controllers, primary and secondary. The PFC (primary fuzzy controller) is designed based on linearization method to introduce to the network the nearest value of reactive power (VAR) required to correct the power factor. The SFC (secondary fuzzy controller) is designed to achieve accurate compensation for the required VAR to achieve the pre-set power factor value. Simulations for 15 different practical study cases are presented to evaluate the performance of the controller, and the results show how the designed controller is fast and accurate. Harmonics analyses are carried out up to the 13th harmonic to determine the requirement of harmonics filter.
基金the Jiangsu Provincial College Students Innovation and Entrepreneurship Training Plan Project(Grant Number 202311276097Y).
文摘This article aims to address the clustering effect caused by unorganized charging of electric vehicles by adopting a two-tier recommendation method.The electric vehicles(EVs)are classified into high-level alerts and general alerts based on their state of charge(SOC).EVs with high-level alerts have the most urgent charging needs,so the distance to charging stations is set as the highest priority for recommendations.For users with general alerts,a comprehensive EV charging station recommendation model is proposed,taking into account factors such as charging price,charging time,charging station preference,and distance to the charging station.Using real data from EV charging stations and ride-hailing vehicles in Xiamen City,Fujian Province,simulation analyses are conducted using Python for different periods of the day.The research results show that the stability of the multi-factor recommendation model in terms of service density variance,coverage rate,price cost,and distance cost outperform single-factor models.This indicates that our composite multi-factor recommendation model has significant practical value in resolving the clustering phenomenon caused by unorganized EV charging,optimizing the EV charging service system,and improving user satisfaction.
文摘Adopting the strategy of fuzzy control with self tuning factor within whole universe of discourse, a kind of fuzzy control method for jigger discharging is put forward. This method has many advantages over the conventional PID controller in terms of response speed, stability and robustness. It is effective to restrain the jig bed from over thick or empty, and the stability of the bed is markedly improved. The good results are obtained in factory tests.