Fuzzy logic controller adopting unevenly-distributed membership function was presented with the purpose of enhancing performance of the temperature control precision and robustness for the chamber cooling system.Histo...Fuzzy logic controller adopting unevenly-distributed membership function was presented with the purpose of enhancing performance of the temperature control precision and robustness for the chamber cooling system.Histogram equalization and noise detection were performed to modify the evenly-distributed membership functions of error and error change rate into unevenly-distributed membership functions.Then,the experimental results with evenly and unevenly distributed membership functions were compared under the same outside environment conditions.The experimental results show that the steady-state error is reduced around 40% and the noise disturbance is rejected successfully even though noise range is 60% of the control precision range.The control precision is improved by reducing the steady-state error and the robustness is enhanced by rejecting noise disturbance through the fuzzy logic controller with unevenly-distributed membership function.Moreover,the system energy efficiency and lifetime of electronic expansion valve(EEV) installed in chamber cooling system are improved by adopting the unevenly-distributed membership function.展开更多
Photovoltaic based reverse osmosis desalination systems (PV/RO) present an effective method of water desalination especially in remote areas. The increase of the feed water temperature leads to an amelioration of the ...Photovoltaic based reverse osmosis desalination systems (PV/RO) present an effective method of water desalination especially in remote areas. The increase of the feed water temperature leads to an amelioration of the plant performances. Photovoltaic Thermal Collector (PV/T) represents an ideal power source as it provides both electric and thermal energies for the reverse osmosis process. Nevertheless, PV/T based RO plants should be controlled in order to solve operation problems related to electrical efficiency, reverse osmosis membrane, produced water and the rejected salts. This paper suggests a fuzzy logic controller for the flow rate of the circulating fluid into the PV/T collectors so as to ameliorate the system performances. The designed controller has improved the PV/T field electrical efficiency and preserved the reverse osmosis membrane which upgrades the system productivity. LABVIEW software is used to simulate the controlled system and validate the effectiveness of the controller.展开更多
This paper presents the implementation of maximum power point tracking (MPPT) with fuzzy logic controller. For cost consideration, an inexpensive 8-bit microcontroller, PIC 16F877A, is selected and programmed with C...This paper presents the implementation of maximum power point tracking (MPPT) with fuzzy logic controller. For cost consideration, an inexpensive 8-bit microcontroller, PIC 16F877A, is selected and programmed with C language and integer variables For evaluation, the implemented fuzzy logic controller (FLC) is compared with the MPPT controller of using perturbation and observation (P&O). Both types of MPPT controllers are tested on the same voltage source with a series-connected resistor. Experimental results show that the implemented FLC with appropriate design meets the control requirements of MPPT. The FLC based on linguistic fuzzy rules has more flexibility and intelligence than conventional P&O controller, but the FLC spends more RAM and ROM spaces than the P&O tracker does.展开更多
An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and c...An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and control of the weld pool depth with ANN and theintelligent control for weld seam tracking with FLC. The proposed neural network can produce highlycomplex nonlinear multi-variable model of the GTAW process that offers the accurate prediction ofwelding penetration depth. A self-adjusting fuzzy controller used for seam tracking adjusts thecontrol parameters on-line automatically according to the tracking errors so that the torch positioncan be controlled accurately.展开更多
This work presents the implementation of fuzzy logic control(FLC) on a microbial electrolysis cell(MEC).Hydrogen has been touted as a potential alternative source of energy to the depleting fossil fuels. MEC is one of...This work presents the implementation of fuzzy logic control(FLC) on a microbial electrolysis cell(MEC).Hydrogen has been touted as a potential alternative source of energy to the depleting fossil fuels. MEC is one of the most extensively studied method of hydrogen production. The utilization of biowaste as its substrate by MEC promotes the waste to energy initiative. The hydrogen production within the MEC system, which involves microbial interaction contributes to the system's nonlinearity. Taking into account of the high complexity of MEC system, a precise process control system is required to ensure a wellcontrolled biohydrogen production flow rate and storage application inside a tank. Proportionalderivative-integral(PID) controller has been one of the pioneer control loop mechanism. However, it lacks the capability to adapt properly in the presence of disturbance. An advanced process control mechanism such as the FLC has proven to be a better solution to be implemented on a nonlinear system due to its similarity in human-natured thinking. The performance of the FLC has been evaluated based on its implementation on the MEC system through various control schemes progressively. Similar evaluations include the performance of Proportional-Integral(PI) and PID controller for comparison purposes. The tracking capability of FLC is also accessed against another advanced controller that is the model predictive controller(MPC). One of the key findings in this work is that the FLC resulted in a desirable hydrogen output via MEC over the PI and PID controller in terms of shorter settling time and lesser overshoot.展开更多
On the basis of analyzing the system constitution of vehicle semi-active suspension, a 4-DOF (degree of freedom) dynamic model is established. A tunable fuzzy logic controller is designed by using without quantificati...On the basis of analyzing the system constitution of vehicle semi-active suspension, a 4-DOF (degree of freedom) dynamic model is established. A tunable fuzzy logic controller is designed by using without quantification method and taking into account the uncertainty, nonlinearity and complexity of parameters for a vehicle suspension system. Simulation to test the performance of this controller is performed under random excitations and definite disturbances of a C grade road, and the effects of time delay and changes of system parameters on the vehicle suspension system are researched. The numerical simulation shows that the performance of the designed tunable fuzzy logic controller is effective, stable and reliable.展开更多
In this paper, implantation of fuzzy logic controller for parallel hybrid electric vehicles (PHEV) is presented. In PHEV the required torque is generated by a combination of internal-combustion engine (ICE) and an...In this paper, implantation of fuzzy logic controller for parallel hybrid electric vehicles (PHEV) is presented. In PHEV the required torque is generated by a combination of internal-combustion engine (ICE) and an electric motor. The controller simulated using the SIMULINK/MATLAB package. The controller is designed based on the desired speed for driving and the state of speed error. In the other hand, performance of PHEV and ICE under different road cycle is given. The hardware setup is done for electric propulsion system; the system contains the induction motor, the three phase IGBT inverter with control circuit using microcontroller. The closed loop control system used a DC permanent generator whose output voltage is related to motor speed. Comparison between simulation and experimental results show accurate matching.展开更多
The main objective of implementing charging stations is to ensure the good charging to theElectric Vehicles by using a solar PV array which is interconnected to the battery energy storagesystems. The charging station ...The main objective of implementing charging stations is to ensure the good charging to theElectric Vehicles by using a solar PV array which is interconnected to the battery energy storagesystems. The charging station regulates the supply voltage and frequency without the use of amechanical speed governor. It also assures that energy gained from grid or by the DG set willhave the unity power factor (UPF) when the load is nonlinear. Besides this, the Point of CommonCoupling (PCC) voltage is synchronised with the grid/generator voltage in order to providecontinuous charging. In order to increase the optimal efficiency of the charging stations, thecharging stations will perform the active/reactive power transfer from the vehicle to grid, vehicleto house and vehicle to vehicle (V2V) power transfer. The operational experiment of the chargingstation is simulated and verified by using MATLAB/SIMULINK.展开更多
In order to solve the problem of inconsistent energy in the charging and discharging cycles of lithium-ion battery packs,a new multilayer equilibrium topology is designed in this paper.The structure adopts a hierarchi...In order to solve the problem of inconsistent energy in the charging and discharging cycles of lithium-ion battery packs,a new multilayer equilibrium topology is designed in this paper.The structure adopts a hierarchical structure design,which includes intra-group equilibrium,primary inter-group equilibrium and secondary inter-group equilibrium.This structure greatly increases the number of equilibrium paths for lithium-ion batteries,thus shortening the time required for equilibrium,and improving the overall efficiency.In terms of control strategy,fuzzy logic control(FLC)is chosen to control the size of the equilibrium current during the equilibrium process.We performed rigorous modeling and simulation of the proposed system by MATLAB and Simulink software.Experiments show that the multilayer equilibrium circuit structure greatly exceeds the traditional single-layer equilibrium circuit in terms of efficacy,specifically,the Li-ion battery equilibrium speed is improved by 12.71%in static equilibrium,14.48%in charge equilibrium,and 11.19%in discharge equilibrium.In addition,compared with the maximum value algorithm,the use of the FLC algorithm reduces the equalization time by about 3.27%and improves the energy transfer efficiency by about 66.49%under the stationary condition,which verifies the feasibility of the equalization scheme.展开更多
In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transfo...In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transforming the three-phase currents and voltages into a rotating reference frame, commonly referred to as the “dq” frame. In this frame, the torque/speed and flux components are decoupled, allowing for independent control, by doing so, the motor’s speed can be regulated accurately and maintain a constant flux which is crucial to ensure optimal motor performance and efficiency. The research focused on studying and simulating a field-oriented control system using fuzzy control techniques for an induction motor. The aim was to address the issue of parameter variations, particularly the change in rotor resistance during motor operation, which causes the control system to deviate from the desired direction. This deviation implies to an increase in the magnetic flux value, specifically the flux component on the q-axis. By employing fuzzy logic techniques to regulate flux vector’s components in the dq frame, this problem was successfully resolved, ensuring that the magnetic flux value remains within the nominal limits. To enhance the control system’s performance, response speed, and efficiency of the motor, sliding mode controllers were implemented to regulate the current in the inner loop. The simulation results demonstrated the proficiency of the proposed methodology.展开更多
In this paper, a sender-initiated protocol is applied which uses fuzzy logic control method to improve computer networks performance by balancing loads among computers. This new model devises sender-initiated protocol...In this paper, a sender-initiated protocol is applied which uses fuzzy logic control method to improve computer networks performance by balancing loads among computers. This new model devises sender-initiated protocol for load transfer for load balancing. Groups are formed and every group has a node called a designated representative (DR). During load transferring processes, loads are transferred using the DR in each group to achieve load balancing purposes. The simulation results show that the performance of the protocol proposed is better than the compared conventional method. This protocol is more stable than the method without using the fuzzy logic control.展开更多
The position control system of an electro-hydraulic actuator system (EHAS) is investigated in this paper. The EHAS is developed by taking into consideration the nonlinearities of the system: the friction and the in...The position control system of an electro-hydraulic actuator system (EHAS) is investigated in this paper. The EHAS is developed by taking into consideration the nonlinearities of the system: the friction and the internal leakage. A variable load that simulates a realistic load in robotic excavator is taken as the trajectory reference. A method of control strategy that is implemented by employing a fuzzy logic controller (FLC) whose parameters are optimized using particle swarm optimization (PSO) is proposed. The scaling factors of the fuzzy inference system are tuned to obtain the optimal values which yield the best system performance. The simulation results show that the FLC is able to track the trajectory reference accurately for a range of values of orifice opening. Beyond that range, the orifice opening may introduce chattering, which the FLC alone is not sufficient to overcome. The PSO optimized FLC can reduce the chattering significantly. This result justifies the implementation of the proposed method in position control of EHAS.展开更多
The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant...The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant model has been used to validate the ANFIS combined FOPID control scheme.In the pro-posed adaptive control structure,the intelligent ANFIS was designed such that it will dynamically adjust the fractional order factors(λandµ)of the FOPID(also known as PIλDµ)controller to achieve better control performance.When the plant experiences uncertainties like external load disturbances or sudden changes in the input parameters,the stability and robustness of the system can be achieved effec-tively with the proposed control scheme.Also,a modified structure of the FOPID controller has been used in the present system to enhance the dynamic perfor-mance of the controller.An extensive MATLAB software simulation study was made to verify the usefulness of the proposed control scheme.The study has been carried out under different operating conditions such as external disturbances and sudden changes in input parameters.The results obtained using the ANFIS-FOPID control scheme are also compared to the classical fractional order PIλDµand conventional PID control schemes to validate the advantages of the control-lers.The simulation results confirm the effectiveness of the ANFIS combined FOPID controller for the chosen plant model.Also,the proposed control scheme outperformed traditional control methods in various performance metrics such as rise time,settling time and error criteria.展开更多
This paper presents a novel method of power quality enrichment in a grid-connected photovoltaic(PV) system using a distribution static compensator(DSTATCOM). The paper consists of two-step control processes. In the pr...This paper presents a novel method of power quality enrichment in a grid-connected photovoltaic(PV) system using a distribution static compensator(DSTATCOM). The paper consists of two-step control processes. In the primary step, a fuzzy logic controller(FLC) is employed in the DC-DC converter to extract the peak power point from the PV panel, where the FLC produces a switching signal for the DC-DC converter.In the secondary step, a unit vector template(UVT)/adaptive linear neuron(ADALINE)-based least mean square(LMS) controller is adopted in the DC-AC converter, i. e., voltage source converter(VSC). The input to this VSC is the boosted DC voltage, which originates from the PV panel as a result of DC-DC conversion. The VSC shunted with the power grid is known as a DSTATCOM, which can maintain the power quality in the distribution system. The UVT controller generates reference source currents from the grid voltages and DC-link voltages.The ADALINE-based LMS controller calculates the online weight according to the previous weights by the sensed load current. The UVT/ADALINE-based LMS controller of a DSTATCOM performs several tasks such as maintaining the sinusoidal source current, achieving a unity power factor, and performing reactive power compensation. The reference current extracted from the UVT/ADALINE-based LMS controller is fed to the hysteresis current controller to obtain the desired switching signal for the VSC. A 100 k W solar PV system integrated into a three-phase four-wire distribution system through a four-leg VSC is designed in MATLAB/Simulink. The performances of the FLC and UVT/ADALINE-based LMS controllers are demonstrated under various irradiances as well as constant temperature and nonlinear loading conditions.展开更多
Among the available options for renewable energy integration in existing power system, wind power is being considered as one of the suited options for future electrical power generation. The major constraint of wind p...Among the available options for renewable energy integration in existing power system, wind power is being considered as one of the suited options for future electrical power generation. The major constraint of wind power generating system (WPGS) is that it does not provide inertial support because of power electronic converters between the grid and the WPGS to facilitate frequency stabilization. The proposed control strategy suggests a substantial contribution to system inertia in terms of short-term active power support in a two area restructured power system. The control scheme uses fuzzy logic based design and takes frequency deviation as input to provide quick active power support, which balances the drop in frequency and tie-line power during transient conditions. This paper presents a comprehensive study of the wind power impact with increasing wind power penetration on frequency stabilization in restructured power system scenario. Variation of load conditions are also analyzed in simulation studies for the same power system model with the proposed control scheme. Simula- tion results advocates the justification of control scheme over other schemes.展开更多
In supply chain management (SCM) environment, we consider a resource-constrained project scheduling problem (rcPSP) model as one of advanced scheduling problems considered by a constraint programming technique. We de...In supply chain management (SCM) environment, we consider a resource-constrained project scheduling problem (rcPSP) model as one of advanced scheduling problems considered by a constraint programming technique. We develop a hybrid genetic algorithm (hGA) with a fuzzy logic controller (FLC) to solve the rcPSP which is the well known NP-hard problem. This new approach is based on the design of genetic operators with FLC through initializing the serial method which is superior for a large rcPSP scale. For solving these rcPSP problems, we first demonstrate that our hGA with FLC (flc-hGA) yields better results than several heuristic procedures presented in the literature. We have revealed a fact that flc-hGA has the evolutionary behaviors of average fitness better than hGA without FLC.展开更多
In industrial process control, fluid level control is one of the most basic aspects. Many control methods such as on-off, linear and PID (Proportional Integral Derivative) were developed time by time and used for prec...In industrial process control, fluid level control is one of the most basic aspects. Many control methods such as on-off, linear and PID (Proportional Integral Derivative) were developed time by time and used for precise controlling of fluid level. Due to flaws of PID controller in non-linear type processes such as inertial lag, time delay and time varying etc., there is a need of alternative design methodology that can be applied in both linear and non-linear systems and it can be execute with fuzzy concept. By using fuzzy logic, designer can realize lower development cost, superior feature and better end product. In this paper, level of fluid in tank is control by using fuzzy logic concept. For this purpose, a simulation system of fuzzy logic controller for fluid level control is designed using simulation packages of MATLAB software such as Fuzzy Logic Toolbox and Simulink. The designed fuzzy logic controller first takes information about inflow and outflow of fluid in tank than maintain the level of fluid in tank by controlling its output valve. In this paper, a controller is designed on five rules using two-input and one-output parameters. At the end, simulation results of fuzzy logic based controller are compared with classical PID controller and it shows that fuzzy logic controller has better stability, fast response and small overshoot.展开更多
In this paper an interval type-2 fuzzy logic controller (IT2FLC) was proposed for thyristor controlled series capacitor (TCSC) to improve power system damping. For controller design, memberships of system variable...In this paper an interval type-2 fuzzy logic controller (IT2FLC) was proposed for thyristor controlled series capacitor (TCSC) to improve power system damping. For controller design, memberships of system variables were represented using interval type-2 fuzzy sets. The three-dimensional membership function of type-2 fuzzy sets provided additional degree of freedom that made it possible to directly model and handle uncertainties. Simulations conducted on a single machine infinite bus (SMIB) power system showed that the proposed controller was more effective than particle swarm optimization (PSO) tuned and type-1 fuzzy logic (T1FL) based damping controllers. Robust performance of the proposed controller was also validated at different operating conditions, various disturbances and parameter variation of the transmission line parameters.展开更多
In recent years,renewable energy sources,specifically solar power systems,have developed rapidly owing to their technological maturity and cost effectiveness.However,its grid integration deteriorates frequency stabili...In recent years,renewable energy sources,specifically solar power systems,have developed rapidly owing to their technological maturity and cost effectiveness.However,its grid integration deteriorates frequency stability because of insufficient rotating masses and inertial response.Hence,a synchronverter,which is an inverter that mimics the operation of a synchronous generator,is crucial to interface solar power in a power grid.It stabilizes the power grid by emulating a virtual inertia.However,a conventional proportional-integral(PI)-based synchronverter is not equipped with an adaptive damping factor(Dp)or a digitalized smart controller to manage fast-responding solar inputs.Hence,a novel fuzzy logic controller(FLC)framework is proposed such that the synchronverter can operate in a grid-connected solar power system.In this study,Dp is controlled in real time using an FLC to achieve balance between speed and stability for frequency error correction based on frequency difference.Results of four case studies performed in Matlab/Simulink show that the proposed FLC-based synchronverter can stabilize the grid frequency by reducing the frequency deviation by at least 0.2 Hz(0.4%),as compared with the conventional PI-based synchronverter.展开更多
Most of the controllers of IM (induction motor) for industrial applications have been designed based on PI controller without consideration of CL (core loss) and SLL (stray load loss). To get the precise perform...Most of the controllers of IM (induction motor) for industrial applications have been designed based on PI controller without consideration of CL (core loss) and SLL (stray load loss). To get the precise performances of torque as well as rotor speed and flux, the above mentioned losses should be considered. Conventional PI controller has overshoot effect at the transient period of the speed response curve. On the other hand, fuzzy logic and ANN (artificial neural network) based controllers can minimize the overshoot effect at the transient period because they have the abilities to deal with the nonlinear systems. In this paper, a comparative analysis is done between PI, fuzzy logic and ANN based speed controllers to find the suitable control strategy for IM with consideration of CL and SLL. The simulation analysis is done by using Matlab/Simulink software. The simulation results show that the fuzzy logic based speed controller gives better responses than ANN and conventional PI based speed controllers in terms of rotor speed, electromagnetic torque and rotor flux of IM.展开更多
文摘Fuzzy logic controller adopting unevenly-distributed membership function was presented with the purpose of enhancing performance of the temperature control precision and robustness for the chamber cooling system.Histogram equalization and noise detection were performed to modify the evenly-distributed membership functions of error and error change rate into unevenly-distributed membership functions.Then,the experimental results with evenly and unevenly distributed membership functions were compared under the same outside environment conditions.The experimental results show that the steady-state error is reduced around 40% and the noise disturbance is rejected successfully even though noise range is 60% of the control precision range.The control precision is improved by reducing the steady-state error and the robustness is enhanced by rejecting noise disturbance through the fuzzy logic controller with unevenly-distributed membership function.Moreover,the system energy efficiency and lifetime of electronic expansion valve(EEV) installed in chamber cooling system are improved by adopting the unevenly-distributed membership function.
文摘Photovoltaic based reverse osmosis desalination systems (PV/RO) present an effective method of water desalination especially in remote areas. The increase of the feed water temperature leads to an amelioration of the plant performances. Photovoltaic Thermal Collector (PV/T) represents an ideal power source as it provides both electric and thermal energies for the reverse osmosis process. Nevertheless, PV/T based RO plants should be controlled in order to solve operation problems related to electrical efficiency, reverse osmosis membrane, produced water and the rejected salts. This paper suggests a fuzzy logic controller for the flow rate of the circulating fluid into the PV/T collectors so as to ameliorate the system performances. The designed controller has improved the PV/T field electrical efficiency and preserved the reverse osmosis membrane which upgrades the system productivity. LABVIEW software is used to simulate the controlled system and validate the effectiveness of the controller.
文摘This paper presents the implementation of maximum power point tracking (MPPT) with fuzzy logic controller. For cost consideration, an inexpensive 8-bit microcontroller, PIC 16F877A, is selected and programmed with C language and integer variables For evaluation, the implemented fuzzy logic controller (FLC) is compared with the MPPT controller of using perturbation and observation (P&O). Both types of MPPT controllers are tested on the same voltage source with a series-connected resistor. Experimental results show that the implemented FLC with appropriate design meets the control requirements of MPPT. The FLC based on linguistic fuzzy rules has more flexibility and intelligence than conventional P&O controller, but the FLC spends more RAM and ROM spaces than the P&O tracker does.
基金National Natural Science Foundation of China and Provincial Natural Science Foundafion of Guangdong, China.
文摘An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and control of the weld pool depth with ANN and theintelligent control for weld seam tracking with FLC. The proposed neural network can produce highlycomplex nonlinear multi-variable model of the GTAW process that offers the accurate prediction ofwelding penetration depth. A self-adjusting fuzzy controller used for seam tracking adjusts thecontrol parameters on-line automatically according to the tracking errors so that the torch positioncan be controlled accurately.
基金supported by the UMRG RP006H-13ICT Project, University of Malaya, Malaysia。
文摘This work presents the implementation of fuzzy logic control(FLC) on a microbial electrolysis cell(MEC).Hydrogen has been touted as a potential alternative source of energy to the depleting fossil fuels. MEC is one of the most extensively studied method of hydrogen production. The utilization of biowaste as its substrate by MEC promotes the waste to energy initiative. The hydrogen production within the MEC system, which involves microbial interaction contributes to the system's nonlinearity. Taking into account of the high complexity of MEC system, a precise process control system is required to ensure a wellcontrolled biohydrogen production flow rate and storage application inside a tank. Proportionalderivative-integral(PID) controller has been one of the pioneer control loop mechanism. However, it lacks the capability to adapt properly in the presence of disturbance. An advanced process control mechanism such as the FLC has proven to be a better solution to be implemented on a nonlinear system due to its similarity in human-natured thinking. The performance of the FLC has been evaluated based on its implementation on the MEC system through various control schemes progressively. Similar evaluations include the performance of Proportional-Integral(PI) and PID controller for comparison purposes. The tracking capability of FLC is also accessed against another advanced controller that is the model predictive controller(MPC). One of the key findings in this work is that the FLC resulted in a desirable hydrogen output via MEC over the PI and PID controller in terms of shorter settling time and lesser overshoot.
基金Funded by the National Natural Science Foundation of China (NO.50135030)
文摘On the basis of analyzing the system constitution of vehicle semi-active suspension, a 4-DOF (degree of freedom) dynamic model is established. A tunable fuzzy logic controller is designed by using without quantification method and taking into account the uncertainty, nonlinearity and complexity of parameters for a vehicle suspension system. Simulation to test the performance of this controller is performed under random excitations and definite disturbances of a C grade road, and the effects of time delay and changes of system parameters on the vehicle suspension system are researched. The numerical simulation shows that the performance of the designed tunable fuzzy logic controller is effective, stable and reliable.
文摘In this paper, implantation of fuzzy logic controller for parallel hybrid electric vehicles (PHEV) is presented. In PHEV the required torque is generated by a combination of internal-combustion engine (ICE) and an electric motor. The controller simulated using the SIMULINK/MATLAB package. The controller is designed based on the desired speed for driving and the state of speed error. In the other hand, performance of PHEV and ICE under different road cycle is given. The hardware setup is done for electric propulsion system; the system contains the induction motor, the three phase IGBT inverter with control circuit using microcontroller. The closed loop control system used a DC permanent generator whose output voltage is related to motor speed. Comparison between simulation and experimental results show accurate matching.
文摘The main objective of implementing charging stations is to ensure the good charging to theElectric Vehicles by using a solar PV array which is interconnected to the battery energy storagesystems. The charging station regulates the supply voltage and frequency without the use of amechanical speed governor. It also assures that energy gained from grid or by the DG set willhave the unity power factor (UPF) when the load is nonlinear. Besides this, the Point of CommonCoupling (PCC) voltage is synchronised with the grid/generator voltage in order to providecontinuous charging. In order to increase the optimal efficiency of the charging stations, thecharging stations will perform the active/reactive power transfer from the vehicle to grid, vehicleto house and vehicle to vehicle (V2V) power transfer. The operational experiment of the chargingstation is simulated and verified by using MATLAB/SIMULINK.
基金funded by the National Natural Science Foundation of China:Research on the Energy Management Strategy of Li-Ion Battery and Sc Hybrid Energy Storage System for Electric Vehicle(51677058).
文摘In order to solve the problem of inconsistent energy in the charging and discharging cycles of lithium-ion battery packs,a new multilayer equilibrium topology is designed in this paper.The structure adopts a hierarchical structure design,which includes intra-group equilibrium,primary inter-group equilibrium and secondary inter-group equilibrium.This structure greatly increases the number of equilibrium paths for lithium-ion batteries,thus shortening the time required for equilibrium,and improving the overall efficiency.In terms of control strategy,fuzzy logic control(FLC)is chosen to control the size of the equilibrium current during the equilibrium process.We performed rigorous modeling and simulation of the proposed system by MATLAB and Simulink software.Experiments show that the multilayer equilibrium circuit structure greatly exceeds the traditional single-layer equilibrium circuit in terms of efficacy,specifically,the Li-ion battery equilibrium speed is improved by 12.71%in static equilibrium,14.48%in charge equilibrium,and 11.19%in discharge equilibrium.In addition,compared with the maximum value algorithm,the use of the FLC algorithm reduces the equalization time by about 3.27%and improves the energy transfer efficiency by about 66.49%under the stationary condition,which verifies the feasibility of the equalization scheme.
文摘In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transforming the three-phase currents and voltages into a rotating reference frame, commonly referred to as the “dq” frame. In this frame, the torque/speed and flux components are decoupled, allowing for independent control, by doing so, the motor’s speed can be regulated accurately and maintain a constant flux which is crucial to ensure optimal motor performance and efficiency. The research focused on studying and simulating a field-oriented control system using fuzzy control techniques for an induction motor. The aim was to address the issue of parameter variations, particularly the change in rotor resistance during motor operation, which causes the control system to deviate from the desired direction. This deviation implies to an increase in the magnetic flux value, specifically the flux component on the q-axis. By employing fuzzy logic techniques to regulate flux vector’s components in the dq frame, this problem was successfully resolved, ensuring that the magnetic flux value remains within the nominal limits. To enhance the control system’s performance, response speed, and efficiency of the motor, sliding mode controllers were implemented to regulate the current in the inner loop. The simulation results demonstrated the proficiency of the proposed methodology.
文摘In this paper, a sender-initiated protocol is applied which uses fuzzy logic control method to improve computer networks performance by balancing loads among computers. This new model devises sender-initiated protocol for load transfer for load balancing. Groups are formed and every group has a node called a designated representative (DR). During load transferring processes, loads are transferred using the DR in each group to achieve load balancing purposes. The simulation results show that the performance of the protocol proposed is better than the compared conventional method. This protocol is more stable than the method without using the fuzzy logic control.
文摘The position control system of an electro-hydraulic actuator system (EHAS) is investigated in this paper. The EHAS is developed by taking into consideration the nonlinearities of the system: the friction and the internal leakage. A variable load that simulates a realistic load in robotic excavator is taken as the trajectory reference. A method of control strategy that is implemented by employing a fuzzy logic controller (FLC) whose parameters are optimized using particle swarm optimization (PSO) is proposed. The scaling factors of the fuzzy inference system are tuned to obtain the optimal values which yield the best system performance. The simulation results show that the FLC is able to track the trajectory reference accurately for a range of values of orifice opening. Beyond that range, the orifice opening may introduce chattering, which the FLC alone is not sufficient to overcome. The PSO optimized FLC can reduce the chattering significantly. This result justifies the implementation of the proposed method in position control of EHAS.
基金The author extends their appreciation to the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project number(IFPSAU-2021/01/18128).
文摘The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant model has been used to validate the ANFIS combined FOPID control scheme.In the pro-posed adaptive control structure,the intelligent ANFIS was designed such that it will dynamically adjust the fractional order factors(λandµ)of the FOPID(also known as PIλDµ)controller to achieve better control performance.When the plant experiences uncertainties like external load disturbances or sudden changes in the input parameters,the stability and robustness of the system can be achieved effec-tively with the proposed control scheme.Also,a modified structure of the FOPID controller has been used in the present system to enhance the dynamic perfor-mance of the controller.An extensive MATLAB software simulation study was made to verify the usefulness of the proposed control scheme.The study has been carried out under different operating conditions such as external disturbances and sudden changes in input parameters.The results obtained using the ANFIS-FOPID control scheme are also compared to the classical fractional order PIλDµand conventional PID control schemes to validate the advantages of the control-lers.The simulation results confirm the effectiveness of the ANFIS combined FOPID controller for the chosen plant model.Also,the proposed control scheme outperformed traditional control methods in various performance metrics such as rise time,settling time and error criteria.
文摘This paper presents a novel method of power quality enrichment in a grid-connected photovoltaic(PV) system using a distribution static compensator(DSTATCOM). The paper consists of two-step control processes. In the primary step, a fuzzy logic controller(FLC) is employed in the DC-DC converter to extract the peak power point from the PV panel, where the FLC produces a switching signal for the DC-DC converter.In the secondary step, a unit vector template(UVT)/adaptive linear neuron(ADALINE)-based least mean square(LMS) controller is adopted in the DC-AC converter, i. e., voltage source converter(VSC). The input to this VSC is the boosted DC voltage, which originates from the PV panel as a result of DC-DC conversion. The VSC shunted with the power grid is known as a DSTATCOM, which can maintain the power quality in the distribution system. The UVT controller generates reference source currents from the grid voltages and DC-link voltages.The ADALINE-based LMS controller calculates the online weight according to the previous weights by the sensed load current. The UVT/ADALINE-based LMS controller of a DSTATCOM performs several tasks such as maintaining the sinusoidal source current, achieving a unity power factor, and performing reactive power compensation. The reference current extracted from the UVT/ADALINE-based LMS controller is fed to the hysteresis current controller to obtain the desired switching signal for the VSC. A 100 k W solar PV system integrated into a three-phase four-wire distribution system through a four-leg VSC is designed in MATLAB/Simulink. The performances of the FLC and UVT/ADALINE-based LMS controllers are demonstrated under various irradiances as well as constant temperature and nonlinear loading conditions.
文摘Among the available options for renewable energy integration in existing power system, wind power is being considered as one of the suited options for future electrical power generation. The major constraint of wind power generating system (WPGS) is that it does not provide inertial support because of power electronic converters between the grid and the WPGS to facilitate frequency stabilization. The proposed control strategy suggests a substantial contribution to system inertia in terms of short-term active power support in a two area restructured power system. The control scheme uses fuzzy logic based design and takes frequency deviation as input to provide quick active power support, which balances the drop in frequency and tie-line power during transient conditions. This paper presents a comprehensive study of the wind power impact with increasing wind power penetration on frequency stabilization in restructured power system scenario. Variation of load conditions are also analyzed in simulation studies for the same power system model with the proposed control scheme. Simula- tion results advocates the justification of control scheme over other schemes.
文摘In supply chain management (SCM) environment, we consider a resource-constrained project scheduling problem (rcPSP) model as one of advanced scheduling problems considered by a constraint programming technique. We develop a hybrid genetic algorithm (hGA) with a fuzzy logic controller (FLC) to solve the rcPSP which is the well known NP-hard problem. This new approach is based on the design of genetic operators with FLC through initializing the serial method which is superior for a large rcPSP scale. For solving these rcPSP problems, we first demonstrate that our hGA with FLC (flc-hGA) yields better results than several heuristic procedures presented in the literature. We have revealed a fact that flc-hGA has the evolutionary behaviors of average fitness better than hGA without FLC.
文摘In industrial process control, fluid level control is one of the most basic aspects. Many control methods such as on-off, linear and PID (Proportional Integral Derivative) were developed time by time and used for precise controlling of fluid level. Due to flaws of PID controller in non-linear type processes such as inertial lag, time delay and time varying etc., there is a need of alternative design methodology that can be applied in both linear and non-linear systems and it can be execute with fuzzy concept. By using fuzzy logic, designer can realize lower development cost, superior feature and better end product. In this paper, level of fluid in tank is control by using fuzzy logic concept. For this purpose, a simulation system of fuzzy logic controller for fluid level control is designed using simulation packages of MATLAB software such as Fuzzy Logic Toolbox and Simulink. The designed fuzzy logic controller first takes information about inflow and outflow of fluid in tank than maintain the level of fluid in tank by controlling its output valve. In this paper, a controller is designed on five rules using two-input and one-output parameters. At the end, simulation results of fuzzy logic based controller are compared with classical PID controller and it shows that fuzzy logic controller has better stability, fast response and small overshoot.
文摘In this paper an interval type-2 fuzzy logic controller (IT2FLC) was proposed for thyristor controlled series capacitor (TCSC) to improve power system damping. For controller design, memberships of system variables were represented using interval type-2 fuzzy sets. The three-dimensional membership function of type-2 fuzzy sets provided additional degree of freedom that made it possible to directly model and handle uncertainties. Simulations conducted on a single machine infinite bus (SMIB) power system showed that the proposed controller was more effective than particle swarm optimization (PSO) tuned and type-1 fuzzy logic (T1FL) based damping controllers. Robust performance of the proposed controller was also validated at different operating conditions, various disturbances and parameter variation of the transmission line parameters.
基金Supported by the School of Engineering,Monash University Malaysia and Ministry of Higher Education(MoHE),Malaysia(FRGS/1/2019/TK07/MUSM/03/1).
文摘In recent years,renewable energy sources,specifically solar power systems,have developed rapidly owing to their technological maturity and cost effectiveness.However,its grid integration deteriorates frequency stability because of insufficient rotating masses and inertial response.Hence,a synchronverter,which is an inverter that mimics the operation of a synchronous generator,is crucial to interface solar power in a power grid.It stabilizes the power grid by emulating a virtual inertia.However,a conventional proportional-integral(PI)-based synchronverter is not equipped with an adaptive damping factor(Dp)or a digitalized smart controller to manage fast-responding solar inputs.Hence,a novel fuzzy logic controller(FLC)framework is proposed such that the synchronverter can operate in a grid-connected solar power system.In this study,Dp is controlled in real time using an FLC to achieve balance between speed and stability for frequency error correction based on frequency difference.Results of four case studies performed in Matlab/Simulink show that the proposed FLC-based synchronverter can stabilize the grid frequency by reducing the frequency deviation by at least 0.2 Hz(0.4%),as compared with the conventional PI-based synchronverter.
文摘Most of the controllers of IM (induction motor) for industrial applications have been designed based on PI controller without consideration of CL (core loss) and SLL (stray load loss). To get the precise performances of torque as well as rotor speed and flux, the above mentioned losses should be considered. Conventional PI controller has overshoot effect at the transient period of the speed response curve. On the other hand, fuzzy logic and ANN (artificial neural network) based controllers can minimize the overshoot effect at the transient period because they have the abilities to deal with the nonlinear systems. In this paper, a comparative analysis is done between PI, fuzzy logic and ANN based speed controllers to find the suitable control strategy for IM with consideration of CL and SLL. The simulation analysis is done by using Matlab/Simulink software. The simulation results show that the fuzzy logic based speed controller gives better responses than ANN and conventional PI based speed controllers in terms of rotor speed, electromagnetic torque and rotor flux of IM.