In this study an indirect adaptive sliding mode control (SMC) based on a fuzzy logic scheme is proposed to strengthen the tracking control performance of a general class of multi-input multi-output (MIMO) nonlinear un...In this study an indirect adaptive sliding mode control (SMC) based on a fuzzy logic scheme is proposed to strengthen the tracking control performance of a general class of multi-input multi-output (MIMO) nonlinear uncertain systems. Combining reaching law approach and fuzzy universal approximation theorem, the proposed design procedure combines the advantages of fuzzy logic control, adaptive control and sliding mode control. The stability of the control systems is proved in the sense of the Lyapunov second stability theorem. Two simulation studies are presented to demonstrate the effectiveness of our new hybrid control algorithm.展开更多
针对电池组存在单体不一致的现象,提出一种改进式Buck-Boost均衡拓扑结构,实现了相邻单体间能量快速转移。根据电池开路电压(open circuit voltage,OCV)与荷电状态(state of charge,SOC)曲线特性,采用基于荷电状态和电池电压的模糊逻辑...针对电池组存在单体不一致的现象,提出一种改进式Buck-Boost均衡拓扑结构,实现了相邻单体间能量快速转移。根据电池开路电压(open circuit voltage,OCV)与荷电状态(state of charge,SOC)曲线特性,采用基于荷电状态和电池电压的模糊逻辑控制策略(FLC)实现均衡控制。使用MATLAB/Simulink软件进行模型搭建和仿真,仿真结果表明,相比传统Buck-Boost电路在相邻单体间传递能量的拓扑,所提出的能量传递拓扑的均衡时间减少了68.27%。相较于最大值均衡策略,基于多变量融合FLC算法在充电和放电状态下的均衡时间分别减少了10.6%和16.2%,均衡后,电池单体SOC标准差分别为0.041%和0.026%,提高了电池组的单体一致性,验证了该方案的可行性。展开更多
文摘In this study an indirect adaptive sliding mode control (SMC) based on a fuzzy logic scheme is proposed to strengthen the tracking control performance of a general class of multi-input multi-output (MIMO) nonlinear uncertain systems. Combining reaching law approach and fuzzy universal approximation theorem, the proposed design procedure combines the advantages of fuzzy logic control, adaptive control and sliding mode control. The stability of the control systems is proved in the sense of the Lyapunov second stability theorem. Two simulation studies are presented to demonstrate the effectiveness of our new hybrid control algorithm.
文摘针对电池组存在单体不一致的现象,提出一种改进式Buck-Boost均衡拓扑结构,实现了相邻单体间能量快速转移。根据电池开路电压(open circuit voltage,OCV)与荷电状态(state of charge,SOC)曲线特性,采用基于荷电状态和电池电压的模糊逻辑控制策略(FLC)实现均衡控制。使用MATLAB/Simulink软件进行模型搭建和仿真,仿真结果表明,相比传统Buck-Boost电路在相邻单体间传递能量的拓扑,所提出的能量传递拓扑的均衡时间减少了68.27%。相较于最大值均衡策略,基于多变量融合FLC算法在充电和放电状态下的均衡时间分别减少了10.6%和16.2%,均衡后,电池单体SOC标准差分别为0.041%和0.026%,提高了电池组的单体一致性,验证了该方案的可行性。