Developing and optimizing fuzzy relation equations are of great relevance in system modeling,which involves analysis of numerous fuzzy rules.As each rule varies with respect to its level of influence,it is advocated t...Developing and optimizing fuzzy relation equations are of great relevance in system modeling,which involves analysis of numerous fuzzy rules.As each rule varies with respect to its level of influence,it is advocated that the performance of a fuzzy relation equation is strongly related to a subset of fuzzy rules obtained by removing those without significant relevance.In this study,we establish a novel framework of developing granular fuzzy relation equations that concerns the determination of an optimal subset of fuzzy rules.The subset of rules is selected by maximizing their performance of the obtained solutions.The originality of this study is conducted in the following ways.Starting with developing granular fuzzy relation equations,an interval-valued fuzzy relation is determined based on the selected subset of fuzzy rules(the subset of rules is transformed to interval-valued fuzzy sets and subsequently the interval-valued fuzzy sets are utilized to form interval-valued fuzzy relations),which can be used to represent the fuzzy relation of the entire rule base with high performance and efficiency.Then,the particle swarm optimization(PSO)is implemented to solve a multi-objective optimization problem,in which not only an optimal subset of rules is selected but also a parameterεfor specifying a level of information granularity is determined.A series of experimental studies are performed to verify the feasibility of this framework and quantify its performance.A visible improvement of particle swarm optimization(about 78.56%of the encoding mechanism of particle swarm optimization,or 90.42%of particle swarm optimization with an exploration operator)is gained over the method conducted without using the particle swarm optimization algorithm.展开更多
The problem of solving type-2 fuzzy relation equations is investigated. In order to apply semi-tensor product of matrices, a new matrix analysis method and tool, to solve type-2 fuzzy relation equations, a type-2 fuzz...The problem of solving type-2 fuzzy relation equations is investigated. In order to apply semi-tensor product of matrices, a new matrix analysis method and tool, to solve type-2 fuzzy relation equations, a type-2 fuzzy relation is decomposed into two parts as principal sub-matrices and secondary sub-matrices; an r-ary symmetrical-valued type-2 fuzzy relation model and its corresponding symmetrical-valued type-2 fuzzy relation equation model are established. Then, two algorithms are developed for solving type-2 fuzzy relation equations, one of which gives a theoretical description for general type-2 fuzzy relation equations; the other one can find all the solutions to the symmetrical-valued ones. The results can improve designing type-2 fuzzy controllers, because it provides knowledge to search the optimal solutions or to find the reason if there is no solution. Finally some numerical examples verify the correctness of the results/algorithms.展开更多
This paper shows that the problem of minimizing a linear fractional function subject to asystem of sup-T equations with a continuous Archimedean triangular norm T can be reduced to a 0-1linear fractional optimization ...This paper shows that the problem of minimizing a linear fractional function subject to asystem of sup-T equations with a continuous Archimedean triangular norm T can be reduced to a 0-1linear fractional optimization problem in polynomial time.Consequently,parametrization techniques,e.g.,Dinkelbach's algorithm,can be applied by solving a classical set covering problem in each iteration.Similar reduction can also be performed on the sup-T equation constrained optimization problems withan objective function being monotone in each variable separately.This method could be extended aswell to the case in which the triangular norm is non-Archimedean.展开更多
This paper considers solving a multi-objective optimization problem with sup-T equation constraints A set covering-based technique for order of preference by similarity to the ideal solution is proposed for solving su...This paper considers solving a multi-objective optimization problem with sup-T equation constraints A set covering-based technique for order of preference by similarity to the ideal solution is proposed for solving such a problem. It is shown that a compromise solution of the sup-T equation constrained multi-objective optimization problem can be obtained by "solving an associated set covering problem. A surrogate heuristic is then applied to solve the resulting optimization problem. Numerical experiments on solving randomly generated multi-objective optimization problems with sup-T equation constraints are included. Our computational results confirm the efficiency of the proposed method and show its potential for solving large scale sup-T equation constrained multi-objective optimization problems.展开更多
基金supported by the National Natural Sci-ence Foundation of China(62006184,62076189,61873277).
文摘Developing and optimizing fuzzy relation equations are of great relevance in system modeling,which involves analysis of numerous fuzzy rules.As each rule varies with respect to its level of influence,it is advocated that the performance of a fuzzy relation equation is strongly related to a subset of fuzzy rules obtained by removing those without significant relevance.In this study,we establish a novel framework of developing granular fuzzy relation equations that concerns the determination of an optimal subset of fuzzy rules.The subset of rules is selected by maximizing their performance of the obtained solutions.The originality of this study is conducted in the following ways.Starting with developing granular fuzzy relation equations,an interval-valued fuzzy relation is determined based on the selected subset of fuzzy rules(the subset of rules is transformed to interval-valued fuzzy sets and subsequently the interval-valued fuzzy sets are utilized to form interval-valued fuzzy relations),which can be used to represent the fuzzy relation of the entire rule base with high performance and efficiency.Then,the particle swarm optimization(PSO)is implemented to solve a multi-objective optimization problem,in which not only an optimal subset of rules is selected but also a parameterεfor specifying a level of information granularity is determined.A series of experimental studies are performed to verify the feasibility of this framework and quantify its performance.A visible improvement of particle swarm optimization(about 78.56%of the encoding mechanism of particle swarm optimization,or 90.42%of particle swarm optimization with an exploration operator)is gained over the method conducted without using the particle swarm optimization algorithm.
基金This work was partially supported by the Natural Science Foundation of China (No. 611 74094) the Tianjin Natural Science Foundation of China (No. 13JCYBJC1 7400) the Program for New Century Excellent Talents in University of China (No. NCET-10-0506).
文摘The problem of solving type-2 fuzzy relation equations is investigated. In order to apply semi-tensor product of matrices, a new matrix analysis method and tool, to solve type-2 fuzzy relation equations, a type-2 fuzzy relation is decomposed into two parts as principal sub-matrices and secondary sub-matrices; an r-ary symmetrical-valued type-2 fuzzy relation model and its corresponding symmetrical-valued type-2 fuzzy relation equation model are established. Then, two algorithms are developed for solving type-2 fuzzy relation equations, one of which gives a theoretical description for general type-2 fuzzy relation equations; the other one can find all the solutions to the symmetrical-valued ones. The results can improve designing type-2 fuzzy controllers, because it provides knowledge to search the optimal solutions or to find the reason if there is no solution. Finally some numerical examples verify the correctness of the results/algorithms.
基金supported by the National Science Foundation of the United States under Grant No. #DMI- 0553310
文摘This paper shows that the problem of minimizing a linear fractional function subject to asystem of sup-T equations with a continuous Archimedean triangular norm T can be reduced to a 0-1linear fractional optimization problem in polynomial time.Consequently,parametrization techniques,e.g.,Dinkelbach's algorithm,can be applied by solving a classical set covering problem in each iteration.Similar reduction can also be performed on the sup-T equation constrained optimization problems withan objective function being monotone in each variable separately.This method could be extended aswell to the case in which the triangular norm is non-Archimedean.
文摘This paper considers solving a multi-objective optimization problem with sup-T equation constraints A set covering-based technique for order of preference by similarity to the ideal solution is proposed for solving such a problem. It is shown that a compromise solution of the sup-T equation constrained multi-objective optimization problem can be obtained by "solving an associated set covering problem. A surrogate heuristic is then applied to solve the resulting optimization problem. Numerical experiments on solving randomly generated multi-objective optimization problems with sup-T equation constraints are included. Our computational results confirm the efficiency of the proposed method and show its potential for solving large scale sup-T equation constrained multi-objective optimization problems.