The task of selecting robotic mechanic assembly technologies (RMAT) is considered as a multi-criteria optimization task, which in this formulation is solved on the set of previously obtained solutions regarding the se...The task of selecting robotic mechanic assembly technologies (RMAT) is considered as a multi-criteria optimization task, which in this formulation is solved on the set of previously obtained solutions regarding the selection of RMAT. The purpose of the paper is to increase the efficiency of technological preparation of robotic mechanical assembly production of machine and instrument engineering due to a new approach to the selection of RMAT using Pareto optimization and the peculiarities of the selection task formulation. The novelty consists in the further development of a science-based approach to solving multi-criteria selection task, based on the first proposed formalisms of the specified process, which reflect the peculiarities of the selection task formulation, its meaningful essence and the content of the Pareto optimization method. The practical value of the research lies in the proposed engineering-acceptable approach to solving applied multi-criteria selection tasks on the example of RMAT selection, which is invariant to the statement of the selection task, the dimension of the task, and its meaningful essence. The methods of discrete optimization, fuzzy multi-criteria selection of alternatives, and the Pareto optimization method were used for the research. The main results of this work consist of the development of formalisms and the demonstration of the efficiency of the proposed approach for the applied task of RMAT selection. The peculiarity of the developed approach is the combination of Pareto optimization, performed on a discrete set of local criteria. Directions for further research are presented.展开更多
The numerical calculation method is widely used in the evaluation of slope stability,but it cannot take the randomness and fuzziness into account that exist in rock and soil engineering objectively.The fuzzy optimizat...The numerical calculation method is widely used in the evaluation of slope stability,but it cannot take the randomness and fuzziness into account that exist in rock and soil engineering objectively.The fuzzy optimization theory is thus introduced to the evaluation of slope stability by this paper and a method of fuzzy optimal selection of similar slopes is put forward to analyze slope stability.By comparing the relative membership degrees that the evaluated object sample of slope is similar to the source samples of which the stabilities are detected clearly,the source sample with the maximal relative membership degree will be chosen as the best similar one to the object sample,and the stability of the object sample can be evaluated by that of the best similar source sample.In the process many uncertain influential factors are considered and characteristics and knowledge of the source samples are obtained.The practical calculation indicates that it can achieve good results to evaluate slope stability by using this method.展开更多
Mining method selection is the first and the most critical problem in mine design and depends on some parameters such as geotechnical and geological features and economic and geographic factors. In this paper, the fac...Mining method selection is the first and the most critical problem in mine design and depends on some parameters such as geotechnical and geological features and economic and geographic factors. In this paper, the factors affecting mining method selection are determined. These factors include shape, thick- ness, depth, slope, RMR and RSS of the orebody, RMR and RSS of the hanging wall and footwall. Then, the priorities of these factors are calculated. In order to calculate the priorities of factors and select the best mining method for Qapiliq salt mine, Iran, based on these priorities, fuzzy analytical hierarchy process (AHP) technique is used. For this purpose, a questionnaire was prepared and was given to the associated experts. Finally, after a comparison carried out based on the effective factors, between the four mining methods including area mining, room and pillar, cut and fill and stope and pillar methods, the stope and nillar mining method was selected as the most suitable method to this mine.展开更多
The implementation of energy balanced routing is an effective way to prolong the lifetime of wireless sensor networks (WSNs). To balance energy consumption, fuzzy next-hop selecting strategy was designed: nodes of ...The implementation of energy balanced routing is an effective way to prolong the lifetime of wireless sensor networks (WSNs). To balance energy consumption, fuzzy next-hop selecting strategy was designed: nodes of different gradients are fuzzily classified into relevant levels; each level has a chance to provide a node with maximum residual energy as the next-hop. Based on the above strategy and directed diffusion (DD), fuzzy next-hop selection based energy balance (FNSEB) routing protocol was proposed. The simulation results showed that FNSEB utilized the limited energy more thoroughly and rationally, decreased the average energy consumption and prolonged the lifetime of WSNs.展开更多
At the beginning, this paper briefly introduces the evolution of information system development approach (ISDA), which can be divided into five categories: life cycle approach (LCA), structured approach (SA),prototypi...At the beginning, this paper briefly introduces the evolution of information system development approach (ISDA), which can be divided into five categories: life cycle approach (LCA), structured approach (SA),prototyping approach (PA), object oriented approach (OOA) and soft system methodology (SSM). After we make a comparative analysis of them,the main factors resulting in failure of information system development (ISD) in China are explained in detail. Consequently, such an assertion that false selection of unsuitable ISDA is the most important reason leading to unsuccessful ISD is reached. In order to avoid it, based on the fuzzy decision making theory, this article demonstrates a method of evaluating alternative ISDAes to select relatively satisfactory one out of them, for which a fuzzy synthetic discrimination model is created. In particular, a typical summarized evaluation index system is established, too. Finally, the application of the above method to a practical information system (IS) is illustrated.展开更多
The reasonable calculation of ground appropriateness index in permafrost region is the precondition of highway route design in permafrost region. The theory of knowledge base and fuzzy mathematics are applied, and the...The reasonable calculation of ground appropriateness index in permafrost region is the precondition of highway route design in permafrost region. The theory of knowledge base and fuzzy mathematics are applied, and the damage effect of permafrost is considered in the paper. Based on the idea of protecting permafrost the calculation method of ground appro- priateness index is put forward. Firstly, based on the actual environment conditions, the paper determines the factors affecting the road layout in permafrost areas by qualitative and quantitative analysis, including the annual slope, the average annual ground temperature of permafrost, the amount of ice in frozen soil, and the interference engineering. Secondly, based on the knowledge base theory and the use of Delphi method, the paper establishes the knowledge base, the rule base of the permafrost region and inference mechanism. The method of selecting the road in permafrost region is completed and realized by using the software platform. Thirdly, taking the Tuotuo River to Kaixin Mountain section of permafrost region as an example, the application of the method is studied by using an ArcGIS platform. Results show that the route plan determined by the method of selecting the road in perma-frost region can avoid the high temperature and high ice content area, conform the terrain changes and evade the heat disturbance among the existing projects. A reasonable route plan can be achieved, and it can provide the basis for the next engineering construction.展开更多
文摘The task of selecting robotic mechanic assembly technologies (RMAT) is considered as a multi-criteria optimization task, which in this formulation is solved on the set of previously obtained solutions regarding the selection of RMAT. The purpose of the paper is to increase the efficiency of technological preparation of robotic mechanical assembly production of machine and instrument engineering due to a new approach to the selection of RMAT using Pareto optimization and the peculiarities of the selection task formulation. The novelty consists in the further development of a science-based approach to solving multi-criteria selection task, based on the first proposed formalisms of the specified process, which reflect the peculiarities of the selection task formulation, its meaningful essence and the content of the Pareto optimization method. The practical value of the research lies in the proposed engineering-acceptable approach to solving applied multi-criteria selection tasks on the example of RMAT selection, which is invariant to the statement of the selection task, the dimension of the task, and its meaningful essence. The methods of discrete optimization, fuzzy multi-criteria selection of alternatives, and the Pareto optimization method were used for the research. The main results of this work consist of the development of formalisms and the demonstration of the efficiency of the proposed approach for the applied task of RMAT selection. The peculiarity of the developed approach is the combination of Pareto optimization, performed on a discrete set of local criteria. Directions for further research are presented.
基金Sponsored by the Natural Science Foundation of Liaoning Province in China(Grant No.20022106).
文摘The numerical calculation method is widely used in the evaluation of slope stability,but it cannot take the randomness and fuzziness into account that exist in rock and soil engineering objectively.The fuzzy optimization theory is thus introduced to the evaluation of slope stability by this paper and a method of fuzzy optimal selection of similar slopes is put forward to analyze slope stability.By comparing the relative membership degrees that the evaluated object sample of slope is similar to the source samples of which the stabilities are detected clearly,the source sample with the maximal relative membership degree will be chosen as the best similar one to the object sample,and the stability of the object sample can be evaluated by that of the best similar source sample.In the process many uncertain influential factors are considered and characteristics and knowledge of the source samples are obtained.The practical calculation indicates that it can achieve good results to evaluate slope stability by using this method.
文摘Mining method selection is the first and the most critical problem in mine design and depends on some parameters such as geotechnical and geological features and economic and geographic factors. In this paper, the factors affecting mining method selection are determined. These factors include shape, thick- ness, depth, slope, RMR and RSS of the orebody, RMR and RSS of the hanging wall and footwall. Then, the priorities of these factors are calculated. In order to calculate the priorities of factors and select the best mining method for Qapiliq salt mine, Iran, based on these priorities, fuzzy analytical hierarchy process (AHP) technique is used. For this purpose, a questionnaire was prepared and was given to the associated experts. Finally, after a comparison carried out based on the effective factors, between the four mining methods including area mining, room and pillar, cut and fill and stope and pillar methods, the stope and nillar mining method was selected as the most suitable method to this mine.
基金Supported by the Research Fund for the Doctoral Program of Higher Education (20040486049)the Key Project of National Natural Science Foundation of China (60132030)
文摘The implementation of energy balanced routing is an effective way to prolong the lifetime of wireless sensor networks (WSNs). To balance energy consumption, fuzzy next-hop selecting strategy was designed: nodes of different gradients are fuzzily classified into relevant levels; each level has a chance to provide a node with maximum residual energy as the next-hop. Based on the above strategy and directed diffusion (DD), fuzzy next-hop selection based energy balance (FNSEB) routing protocol was proposed. The simulation results showed that FNSEB utilized the limited energy more thoroughly and rationally, decreased the average energy consumption and prolonged the lifetime of WSNs.
文摘At the beginning, this paper briefly introduces the evolution of information system development approach (ISDA), which can be divided into five categories: life cycle approach (LCA), structured approach (SA),prototyping approach (PA), object oriented approach (OOA) and soft system methodology (SSM). After we make a comparative analysis of them,the main factors resulting in failure of information system development (ISD) in China are explained in detail. Consequently, such an assertion that false selection of unsuitable ISDA is the most important reason leading to unsuccessful ISD is reached. In order to avoid it, based on the fuzzy decision making theory, this article demonstrates a method of evaluating alternative ISDAes to select relatively satisfactory one out of them, for which a fuzzy synthetic discrimination model is created. In particular, a typical summarized evaluation index system is established, too. Finally, the application of the above method to a practical information system (IS) is illustrated.
基金support provide by Special Fund for Basic Scientific Research of Central Col leges, Changan University (310821172002)Postdoctoral Science Foundation of China (2016M590915)+2 种基金Basic Research Func of Ministry of Transportation (2014319812170)National Sci Tech Support Plan (2014BAG05B01)Basic Research Program of Natural Science in Shaanxi Province (S2017-ZRJJ-MS0603)
文摘The reasonable calculation of ground appropriateness index in permafrost region is the precondition of highway route design in permafrost region. The theory of knowledge base and fuzzy mathematics are applied, and the damage effect of permafrost is considered in the paper. Based on the idea of protecting permafrost the calculation method of ground appro- priateness index is put forward. Firstly, based on the actual environment conditions, the paper determines the factors affecting the road layout in permafrost areas by qualitative and quantitative analysis, including the annual slope, the average annual ground temperature of permafrost, the amount of ice in frozen soil, and the interference engineering. Secondly, based on the knowledge base theory and the use of Delphi method, the paper establishes the knowledge base, the rule base of the permafrost region and inference mechanism. The method of selecting the road in permafrost region is completed and realized by using the software platform. Thirdly, taking the Tuotuo River to Kaixin Mountain section of permafrost region as an example, the application of the method is studied by using an ArcGIS platform. Results show that the route plan determined by the method of selecting the road in perma-frost region can avoid the high temperature and high ice content area, conform the terrain changes and evade the heat disturbance among the existing projects. A reasonable route plan can be achieved, and it can provide the basis for the next engineering construction.