We propose a surrogate model-assisted algorithm by using a directed fuzzy graph to extract a user’s cognition on evaluated individuals in order to alleviate user fatigue in interactive genetic algorithms with an indi...We propose a surrogate model-assisted algorithm by using a directed fuzzy graph to extract a user’s cognition on evaluated individuals in order to alleviate user fatigue in interactive genetic algorithms with an individual’s fuzzy and stochastic fitness. We firstly present an approach to construct a directed fuzzy graph of an evolutionary population according to individuals’ dominance relations, cut-set levels and interval dominance probabilities, and then calculate an individual’s crisp fitness based on the out-degree and in-degree of the fuzzy graph. The approach to obtain training data is achieved using the fuzzy entropy of the evolutionary system to guarantee the credibilities of the samples which are used to train the surrogate model. We adopt a support vector regression machine as the surrogate model and train it using the sampled individuals and their crisp fitness. Then the surrogate model is optimized using the traditional genetic algorithm for some generations, and some good individuals are submitted to the user for the subsequent evolutions so as to guide and accelerate the evolution. Finally, we quantitatively analyze the performance of the presented algorithm in alleviating user fatigue and increasing more opportunities to find the satisfactory individuals, and also apply our algorithm to a fashion evolutionary design system to demonstrate its efficiency.展开更多
This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in boa...This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum.展开更多
Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex str...Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex structural optimization problems, if the structural reanalysis technique is not adopted, the more the number of finite element analysis (FEA) is, the more the consuming time is. In the conventional structural optimization the number of FEA can be reduced by the structural reanalysis technique based on the approximation techniques and sensitivity analysis. With these techniques, this paper provides a new approximation model-segment approximation model, adopted for the GA application. This segment approximation model can decrease the number of FEA and increase the convergence rate of GA. So it can apparently decrease the computation time of GA. Two examples demonstrate the availability of the new segment approximation model.展开更多
In optimization theory,the adaptive control of the optimization process is an important goal that people pursue.To solve this problem,this study introduces the idea of neutrosophic decision-making into classical heuri...In optimization theory,the adaptive control of the optimization process is an important goal that people pursue.To solve this problem,this study introduces the idea of neutrosophic decision-making into classical heuristic algorithm,and proposes a novel neutrosophic adaptive clustering optimization thought,which is applied in a novel neutrosophic genetic algorithm(NGA),for example.The main feature of NGA is that the NGA treats the crossover effect as a neutrosophic fuzzy set,the variation ratio as a structural parameter,the crossover effect as a benefit parameter and the variation effect as a cost parameter,and then a neutrosophic fitness function value is created.Finally,a high order assignment problem in warehousemanagement is taken to illustrate the effectiveness of NGA.展开更多
This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different he...This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different heuristic optimization techniques including PID-PSO, Fuzzy-PSO and GA-PSO to improve the DSIM speed controlled loop behavior. The GA and PSO algorithms are developed and implemented into MATLAB. As a result, fuzzy-PSO is the most appropriate scheme. The main performance of fuzzy-PSO is reducing high torque ripples, improving rise time and avoiding disturbances that affect the drive performance.展开更多
It is very difficult to estimate exact values of time and cost of an activity in project scheduling process because many uncertain factors, such as weather, productivity level, human factors etc. , dynamically affect ...It is very difficult to estimate exact values of time and cost of an activity in project scheduling process because many uncertain factors, such as weather, productivity level, human factors etc. , dynamically affect them during project implementation process. A GAs-based fully fuzzy optimal time-cost trade-off model is presented based on fuzzy sets and genetic algorithms (GAs). In tihs model all parameters and variables are characteristics by fuzzy numbers. And then GAs is adopted to search for the optimal solution to this model. The method solves the time-cost trade-off problems under an uncertain environment and is proved practicable through a giving example in ship building scheduling.展开更多
Vortex induced vibration(VIV)is a challenge in ocean engineering.Several devices including fairings have been designed to suppress VIV.However,how to optimize the design of suppression devices is still a problem to be...Vortex induced vibration(VIV)is a challenge in ocean engineering.Several devices including fairings have been designed to suppress VIV.However,how to optimize the design of suppression devices is still a problem to be solved.In this paper,an optimization design methodology is presented based on data-driven models and genetic algorithm(GA).Data-driven models are introduced to substitute complex physics-based equations.GA is used to rapidly search for the optimal suppression device from all possible solutions.Taking fairings as example,VIV response database for different fairings is established based on parameterized models in which model sections of fairings are controlled by several control points and Bezier curves.Then a data-driven model,which can predict the VIV response of fairings with different sections accurately and efficiently,is trained through BP neural network.Finally,a comprehensive optimization method and process is proposed based on GA and the data-driven model.The proposed method is demonstrated by its application to a case.It turns out that the proposed method can perform the optimization design of fairings effectively.VIV can be reduced obviously through the optimization design.展开更多
This paper presents a new approach to the analysis of complex distribution problems under capacity constraints. These problems are known in the literature as CVRPs (Capacitated Vehicle Routing Problems). The procedure...This paper presents a new approach to the analysis of complex distribution problems under capacity constraints. These problems are known in the literature as CVRPs (Capacitated Vehicle Routing Problems). The procedure introduced in this paper optimizes a transformed variant of a CVRP. It starts generating feasible clusters and codifies their ordering. In the next stage the procedure feeds this information into a genetic algorithm for its optimization. This makes the algorithm independent of the constraints and improves its performance. Van Breedam problems have been used to test this technique. While the results obtained are similar to those in other works, the processing times are longer.展开更多
For an optimal design of a surface-mounted permanent magnet synchronous motor(SPMSM),many objective functions should be considered.The classical optimization methods,which have been habitually designed based on magnet...For an optimal design of a surface-mounted permanent magnet synchronous motor(SPMSM),many objective functions should be considered.The classical optimization methods,which have been habitually designed based on magnetic circuit law or finite element analysis(FEA),have inaccuracy or calculation time problems when solving the multi-objective problems.To address these problems,the multi-independent-population genetic algorithm(MGA)combined with subdomain(SD)model are proposed to improve the performance of SPMSM such as magnetic field distribution,cost and efficiency.In order to analyze the flux density harmonics accurately,the accurate SD model is first established.Then,the MGA with time-saving SD model are employed to search for solutions which belong to the Pareto optimal set.Finally,for the purpose of validation,the electromagnetic performance of the new design motor are investigated by FEA,comparing with the initial design and conventional GA optimal design to demonstrate the advantage of MGA optimization method.展开更多
This research paper presents a comprehensive investigation into the effectiveness of the DeepSurNet-NSGA II(Deep Surrogate Model-Assisted Non-dominated Sorting Genetic Algorithm II)for solving complex multiobjective o...This research paper presents a comprehensive investigation into the effectiveness of the DeepSurNet-NSGA II(Deep Surrogate Model-Assisted Non-dominated Sorting Genetic Algorithm II)for solving complex multiobjective optimization problems,with a particular focus on robotic leg-linkage design.The study introduces an innovative approach that integrates deep learning-based surrogate models with the robust Non-dominated Sorting Genetic Algorithm II,aiming to enhance the efficiency and precision of the optimization process.Through a series of empirical experiments and algorithmic analyses,the paper demonstrates a high degree of correlation between solutions generated by the DeepSurNet-NSGA II and those obtained from direct experimental methods,underscoring the algorithm’s capability to accurately approximate the Pareto-optimal frontier while significantly reducing computational demands.The methodology encompasses a detailed exploration of the algorithm’s configuration,the experimental setup,and the criteria for performance evaluation,ensuring the reproducibility of results and facilitating future advancements in the field.The findings of this study not only confirm the practical applicability and theoretical soundness of the DeepSurNet-NSGA II in navigating the intricacies of multi-objective optimization but also highlight its potential as a transformative tool in engineering and design optimization.By bridging the gap between complex optimization challenges and achievable solutions,this research contributes valuable insights into the optimization domain,offering a promising direction for future inquiries and technological innovations.展开更多
Considering the indefinite character of the value of design parameters and being satisfied with load-bearing capacity and stiffness, the fuzzy optimization mathematical model is set up to minimize the volume of tooth ...Considering the indefinite character of the value of design parameters and being satisfied with load-bearing capacity and stiffness, the fuzzy optimization mathematical model is set up to minimize the volume of tooth corona of a worm gear in an elevator mechanism. The method of second-class comprehensive evaluation was used based on the optimal level cut set, thus the optimal level value of every fuzzy constraint can be attained; the fuzzy optimization is transformed into the usual optimization. The Fast Back Propagation of the neural networks algorithm are adopted to train feed-forward networks so as to fit a relative coefficient. Then the fitness function with penalty terms is built by a penalty strategy, a neural networks program is recalled, and solver functions of the Genetic Algorithm Toolbox of Matlab software are adopted to solve the optimization model.展开更多
In this paper, a simple and practicable algorithm for optimization of membership function (MF) is proposed. As it is known that MF is very important in the fuzzy control. Unfortunately, to find, especially to optimize...In this paper, a simple and practicable algorithm for optimization of membership function (MF) is proposed. As it is known that MF is very important in the fuzzy control. Unfortunately, to find, especially to optimize MF is always rather complex even difficult. So, to study and develop an effectual aglorithm for MF optimization is a good topic. Allow for the inner advantages of genetic algorithm (GA), it is adopted in the algorithm .The principle and executive procdeure are first presented. Then it is applied in the fuzzy control system of a typical plant. Results of real time run show that the control strategy is encouraging, and the developed algorithm is practicable.展开更多
In this paper, a new optimization system based genetic algorithm is presented. Our approach integrates the merits of both ant colony optimization and genetic algorithm and it has two characteristic features. Firstly, ...In this paper, a new optimization system based genetic algorithm is presented. Our approach integrates the merits of both ant colony optimization and genetic algorithm and it has two characteristic features. Firstly, since there is instabilities in the global market, implications of global financial crisis and the rapid fluctuations of prices, a fuzzy representation of the optimal power flow problem has been defined, where the input data involve many parameters whose possible values may be assigned by the expert. Secondly, by enhancing ant colony optimization through genetic algorithm, a strong robustness and more effectively algorithm was created. Also, stable Pareto set of solutions has been detected, where in a practical sense only Pareto optimal solutions that are stable are of interest since there are always uncertainties associated with efficiency data. The results on the standard IEEE systems demonstrate the capabilities of the proposed approach to generate true and well-distributed Pareto optimal nondominated solutions of the multiobjective OPF.展开更多
The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the slid...The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the sliding crack or so called, “wing crack” model. Fairhurst-Cook model explains this specific type of failure which starts by a pre-crack and finally breaks the rock by propagating 2-D cracks under uniaxial compression. In this paper, optimization of this model has been considered and the process has been done by a complete sensitivity analysis on the main parameters of the model and excluding the trends of their changes and also their limits and “peak points”. Later on this paper, three artificial intelligence algorithms including Particle Swarm Intelligence (PSO), Ant Colony Optimization (ACO) and genetic algorithm (GA) has been used and compared in order to achieve optimized sets of parameters resulting in near-maximum or near-minimum amounts of wedging forces creating a wing crack.展开更多
An optimization design was conducted for the shape of the pressure vessel with a thin-shell shell. During this process, the optimization calculation was performed with the aid of the genetic algorithm toolbox included...An optimization design was conducted for the shape of the pressure vessel with a thin-shell shell. During this process, the optimization calculation was performed with the aid of the genetic algorithm toolbox included in Matlab. Firstly, through the parametric modeling function of APDL, models such as arc-shaped, parabolic, elliptical, and those generated by the fitting curve command were successfully constructed. Meanwhile, the relevant settings of material properties were accomplished, and the static analysis was conducted. Secondly, the optimization calculation process was initiated using the genetic algorithm toolbox in Matlab. Eventually, through analysis and judgment, the model generated by the fitting curve command was relatively superior within the category of the best shape.展开更多
Rough set philosophy hinges on the granularity of data, which is used to build all its basic concepts, like approximations, dependencies, reduction etc. Genetic Algorithms provides a general frame to optimize problem ...Rough set philosophy hinges on the granularity of data, which is used to build all its basic concepts, like approximations, dependencies, reduction etc. Genetic Algorithms provides a general frame to optimize problem solution of complex system without depending on the domain of problem.It is robust to many kinds of problems.The paper combines Genetic Algorithms and rough sets theory to compute granular of knowledge through an example of information table. The combination enable us to compute granular of knowledge effectively.It is also useful for computer auto-computing and information processing.展开更多
Solving the nonlinear model of an aeroengine is converted to an optimization problem, and thus some optimization search methods can be used. An approach to solving the nonlinear model of an aeroengine by use of the g...Solving the nonlinear model of an aeroengine is converted to an optimization problem, and thus some optimization search methods can be used. An approach to solving the nonlinear model of an aeroengine by use of the genetic algorithm (GA) is developed. By comparison with N R algorithm, the accuracy of the values of initial guesses is not required for GA. Especially, the approach developed can be used when no priori knowledges of the values of initial guesses are availabe, and the convergence is improved significantly. GA properly combined with N R algorithm can increase the convergence speed.展开更多
This paper presents a model that can aid planners in defining the total allowable pollutant discharge in the planning region, accounting for the dynamic and stochastic character of meteorological conditions. This is a...This paper presents a model that can aid planners in defining the total allowable pollutant discharge in the planning region, accounting for the dynamic and stochastic character of meteorological conditions. This is accomplished by integrating Monte Carlo simulation and using genetic algorithm to solve the model. The model is demonstrated by using a realistic air urban scale SO 2 control problem in the Yuxi City of China. To evaluate effectiveness of the model, results of the approach are shown to compare with those of the linear deterministic procedures. This paper also provides a valuable insight into how air quality targets should be made when the air pollutant will not threat the residents' health. Finally, a discussion of the areas for further research are briefly delineated.展开更多
This paper puts forward a new integrated design met ho d based on fuzzy matter-element optimization.On the based of analyzing the mod el of multi-objective fuzzy matter-element , the paper defines the m atter-element ...This paper puts forward a new integrated design met ho d based on fuzzy matter-element optimization.On the based of analyzing the mod el of multi-objective fuzzy matter-element , the paper defines the m atter-element weightily and changes solving multi-objective fuzzy optimization into solving dependent function K(x) of the single-objective optimization according to the optimization criterion. The paper particularly describes the realization approach of GA process of multi -objective fuzzy matter-element optimization: encode, produce initial populati on, confirm fitness function, select operator, etc. In the process, the adaptive macro genetic algorithms (AMGA) is applied to enhancing the evolution speed. Th e paper improves the two genetic operators: crossover and mutation operator. The modified adaptive macro genetic algorithms (MAMGA) is put forward simultane ously. It is adopted to solve the optimization problem. Three optimization methods, namely fuzzy matter-element optimization method, li nearity weighted method and fuzzy optimization method, are compared by using the table and figure, it shows that not only MAMGA is a little better than the AMGA , but also it reaches the extent to which the effective iteration generation is 62.2% of simple genetic algorithms (SGA). By the calculation of optimum exam ple, the improved method of genetic in the paper is much better than the method in reference of paper.展开更多
基金supported by National Natural Science Foundation of China (No.60775044)the Program for New Century Excellent Talentsin University (No.NCET-07-0802)
文摘We propose a surrogate model-assisted algorithm by using a directed fuzzy graph to extract a user’s cognition on evaluated individuals in order to alleviate user fatigue in interactive genetic algorithms with an individual’s fuzzy and stochastic fitness. We firstly present an approach to construct a directed fuzzy graph of an evolutionary population according to individuals’ dominance relations, cut-set levels and interval dominance probabilities, and then calculate an individual’s crisp fitness based on the out-degree and in-degree of the fuzzy graph. The approach to obtain training data is achieved using the fuzzy entropy of the evolutionary system to guarantee the credibilities of the samples which are used to train the surrogate model. We adopt a support vector regression machine as the surrogate model and train it using the sampled individuals and their crisp fitness. Then the surrogate model is optimized using the traditional genetic algorithm for some generations, and some good individuals are submitted to the user for the subsequent evolutions so as to guide and accelerate the evolution. Finally, we quantitatively analyze the performance of the presented algorithm in alleviating user fatigue and increasing more opportunities to find the satisfactory individuals, and also apply our algorithm to a fashion evolutionary design system to demonstrate its efficiency.
基金This paper is supported by the Nature Science Foundation of Heilongjiang Province.
文摘This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum.
文摘Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex structural optimization problems, if the structural reanalysis technique is not adopted, the more the number of finite element analysis (FEA) is, the more the consuming time is. In the conventional structural optimization the number of FEA can be reduced by the structural reanalysis technique based on the approximation techniques and sensitivity analysis. With these techniques, this paper provides a new approximation model-segment approximation model, adopted for the GA application. This segment approximation model can decrease the number of FEA and increase the convergence rate of GA. So it can apparently decrease the computation time of GA. Two examples demonstrate the availability of the new segment approximation model.
基金supported by Shanghai Pujiang Pro-gram(2019PJC062)the Natural Science Foundation of Shandong Province(ZR2021MG003)+2 种基金the Research Project on Undergraduate Teaching Reform of Higher Education in Shandong Province(No.Z2021046)the National Natural Science Foundation of China(51508319)the Nature and Science Fund from Zhejiang Province Ministry of Education(Y201327642).
文摘In optimization theory,the adaptive control of the optimization process is an important goal that people pursue.To solve this problem,this study introduces the idea of neutrosophic decision-making into classical heuristic algorithm,and proposes a novel neutrosophic adaptive clustering optimization thought,which is applied in a novel neutrosophic genetic algorithm(NGA),for example.The main feature of NGA is that the NGA treats the crossover effect as a neutrosophic fuzzy set,the variation ratio as a structural parameter,the crossover effect as a benefit parameter and the variation effect as a cost parameter,and then a neutrosophic fitness function value is created.Finally,a high order assignment problem in warehousemanagement is taken to illustrate the effectiveness of NGA.
基金Project supported by Faculty of Technology,Department of Electrical Engineering,University of Batna,Algeria
文摘This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different heuristic optimization techniques including PID-PSO, Fuzzy-PSO and GA-PSO to improve the DSIM speed controlled loop behavior. The GA and PSO algorithms are developed and implemented into MATLAB. As a result, fuzzy-PSO is the most appropriate scheme. The main performance of fuzzy-PSO is reducing high torque ripples, improving rise time and avoiding disturbances that affect the drive performance.
基金Supported by the National High-Tech. R&D Program for CIMS (NO. 2003AA414060).
文摘It is very difficult to estimate exact values of time and cost of an activity in project scheduling process because many uncertain factors, such as weather, productivity level, human factors etc. , dynamically affect them during project implementation process. A GAs-based fully fuzzy optimal time-cost trade-off model is presented based on fuzzy sets and genetic algorithms (GAs). In tihs model all parameters and variables are characteristics by fuzzy numbers. And then GAs is adopted to search for the optimal solution to this model. The method solves the time-cost trade-off problems under an uncertain environment and is proved practicable through a giving example in ship building scheduling.
基金supported by the National Natural Science Foundation of China(Grant No.51809279)the Major National Science and Technology Program(Grant No.2016ZX05028-001-05)+1 种基金Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT14R58)the Fundamental Research Funds for the Central Universities,that is,the Opening Fund of National Engineering Laboratory of Offshore Geophysical and Exploration Equipment(Grant No.20CX02302A).
文摘Vortex induced vibration(VIV)is a challenge in ocean engineering.Several devices including fairings have been designed to suppress VIV.However,how to optimize the design of suppression devices is still a problem to be solved.In this paper,an optimization design methodology is presented based on data-driven models and genetic algorithm(GA).Data-driven models are introduced to substitute complex physics-based equations.GA is used to rapidly search for the optimal suppression device from all possible solutions.Taking fairings as example,VIV response database for different fairings is established based on parameterized models in which model sections of fairings are controlled by several control points and Bezier curves.Then a data-driven model,which can predict the VIV response of fairings with different sections accurately and efficiently,is trained through BP neural network.Finally,a comprehensive optimization method and process is proposed based on GA and the data-driven model.The proposed method is demonstrated by its application to a case.It turns out that the proposed method can perform the optimization design of fairings effectively.VIV can be reduced obviously through the optimization design.
文摘This paper presents a new approach to the analysis of complex distribution problems under capacity constraints. These problems are known in the literature as CVRPs (Capacitated Vehicle Routing Problems). The procedure introduced in this paper optimizes a transformed variant of a CVRP. It starts generating feasible clusters and codifies their ordering. In the next stage the procedure feeds this information into a genetic algorithm for its optimization. This makes the algorithm independent of the constraints and improves its performance. Van Breedam problems have been used to test this technique. While the results obtained are similar to those in other works, the processing times are longer.
基金This work was supported in part by the National Natural Science Foundation of China under Grant51507016。
文摘For an optimal design of a surface-mounted permanent magnet synchronous motor(SPMSM),many objective functions should be considered.The classical optimization methods,which have been habitually designed based on magnetic circuit law or finite element analysis(FEA),have inaccuracy or calculation time problems when solving the multi-objective problems.To address these problems,the multi-independent-population genetic algorithm(MGA)combined with subdomain(SD)model are proposed to improve the performance of SPMSM such as magnetic field distribution,cost and efficiency.In order to analyze the flux density harmonics accurately,the accurate SD model is first established.Then,the MGA with time-saving SD model are employed to search for solutions which belong to the Pareto optimal set.Finally,for the purpose of validation,the electromagnetic performance of the new design motor are investigated by FEA,comparing with the initial design and conventional GA optimal design to demonstrate the advantage of MGA optimization method.
文摘This research paper presents a comprehensive investigation into the effectiveness of the DeepSurNet-NSGA II(Deep Surrogate Model-Assisted Non-dominated Sorting Genetic Algorithm II)for solving complex multiobjective optimization problems,with a particular focus on robotic leg-linkage design.The study introduces an innovative approach that integrates deep learning-based surrogate models with the robust Non-dominated Sorting Genetic Algorithm II,aiming to enhance the efficiency and precision of the optimization process.Through a series of empirical experiments and algorithmic analyses,the paper demonstrates a high degree of correlation between solutions generated by the DeepSurNet-NSGA II and those obtained from direct experimental methods,underscoring the algorithm’s capability to accurately approximate the Pareto-optimal frontier while significantly reducing computational demands.The methodology encompasses a detailed exploration of the algorithm’s configuration,the experimental setup,and the criteria for performance evaluation,ensuring the reproducibility of results and facilitating future advancements in the field.The findings of this study not only confirm the practical applicability and theoretical soundness of the DeepSurNet-NSGA II in navigating the intricacies of multi-objective optimization but also highlight its potential as a transformative tool in engineering and design optimization.By bridging the gap between complex optimization challenges and achievable solutions,this research contributes valuable insights into the optimization domain,offering a promising direction for future inquiries and technological innovations.
文摘Considering the indefinite character of the value of design parameters and being satisfied with load-bearing capacity and stiffness, the fuzzy optimization mathematical model is set up to minimize the volume of tooth corona of a worm gear in an elevator mechanism. The method of second-class comprehensive evaluation was used based on the optimal level cut set, thus the optimal level value of every fuzzy constraint can be attained; the fuzzy optimization is transformed into the usual optimization. The Fast Back Propagation of the neural networks algorithm are adopted to train feed-forward networks so as to fit a relative coefficient. Then the fitness function with penalty terms is built by a penalty strategy, a neural networks program is recalled, and solver functions of the Genetic Algorithm Toolbox of Matlab software are adopted to solve the optimization model.
文摘In this paper, a simple and practicable algorithm for optimization of membership function (MF) is proposed. As it is known that MF is very important in the fuzzy control. Unfortunately, to find, especially to optimize MF is always rather complex even difficult. So, to study and develop an effectual aglorithm for MF optimization is a good topic. Allow for the inner advantages of genetic algorithm (GA), it is adopted in the algorithm .The principle and executive procdeure are first presented. Then it is applied in the fuzzy control system of a typical plant. Results of real time run show that the control strategy is encouraging, and the developed algorithm is practicable.
文摘In this paper, a new optimization system based genetic algorithm is presented. Our approach integrates the merits of both ant colony optimization and genetic algorithm and it has two characteristic features. Firstly, since there is instabilities in the global market, implications of global financial crisis and the rapid fluctuations of prices, a fuzzy representation of the optimal power flow problem has been defined, where the input data involve many parameters whose possible values may be assigned by the expert. Secondly, by enhancing ant colony optimization through genetic algorithm, a strong robustness and more effectively algorithm was created. Also, stable Pareto set of solutions has been detected, where in a practical sense only Pareto optimal solutions that are stable are of interest since there are always uncertainties associated with efficiency data. The results on the standard IEEE systems demonstrate the capabilities of the proposed approach to generate true and well-distributed Pareto optimal nondominated solutions of the multiobjective OPF.
文摘The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the sliding crack or so called, “wing crack” model. Fairhurst-Cook model explains this specific type of failure which starts by a pre-crack and finally breaks the rock by propagating 2-D cracks under uniaxial compression. In this paper, optimization of this model has been considered and the process has been done by a complete sensitivity analysis on the main parameters of the model and excluding the trends of their changes and also their limits and “peak points”. Later on this paper, three artificial intelligence algorithms including Particle Swarm Intelligence (PSO), Ant Colony Optimization (ACO) and genetic algorithm (GA) has been used and compared in order to achieve optimized sets of parameters resulting in near-maximum or near-minimum amounts of wedging forces creating a wing crack.
文摘An optimization design was conducted for the shape of the pressure vessel with a thin-shell shell. During this process, the optimization calculation was performed with the aid of the genetic algorithm toolbox included in Matlab. Firstly, through the parametric modeling function of APDL, models such as arc-shaped, parabolic, elliptical, and those generated by the fitting curve command were successfully constructed. Meanwhile, the relevant settings of material properties were accomplished, and the static analysis was conducted. Secondly, the optimization calculation process was initiated using the genetic algorithm toolbox in Matlab. Eventually, through analysis and judgment, the model generated by the fitting curve command was relatively superior within the category of the best shape.
文摘Rough set philosophy hinges on the granularity of data, which is used to build all its basic concepts, like approximations, dependencies, reduction etc. Genetic Algorithms provides a general frame to optimize problem solution of complex system without depending on the domain of problem.It is robust to many kinds of problems.The paper combines Genetic Algorithms and rough sets theory to compute granular of knowledge through an example of information table. The combination enable us to compute granular of knowledge effectively.It is also useful for computer auto-computing and information processing.
基金Aeronautic Science Foundation of China ( 0 0 C5 2 0 3 0 ) and National Doctoral Education Foundation ( 2 0 0 0 0 2 870 1)
文摘Solving the nonlinear model of an aeroengine is converted to an optimization problem, and thus some optimization search methods can be used. An approach to solving the nonlinear model of an aeroengine by use of the genetic algorithm (GA) is developed. By comparison with N R algorithm, the accuracy of the values of initial guesses is not required for GA. Especially, the approach developed can be used when no priori knowledges of the values of initial guesses are availabe, and the convergence is improved significantly. GA properly combined with N R algorithm can increase the convergence speed.
文摘This paper presents a model that can aid planners in defining the total allowable pollutant discharge in the planning region, accounting for the dynamic and stochastic character of meteorological conditions. This is accomplished by integrating Monte Carlo simulation and using genetic algorithm to solve the model. The model is demonstrated by using a realistic air urban scale SO 2 control problem in the Yuxi City of China. To evaluate effectiveness of the model, results of the approach are shown to compare with those of the linear deterministic procedures. This paper also provides a valuable insight into how air quality targets should be made when the air pollutant will not threat the residents' health. Finally, a discussion of the areas for further research are briefly delineated.
文摘This paper puts forward a new integrated design met ho d based on fuzzy matter-element optimization.On the based of analyzing the mod el of multi-objective fuzzy matter-element , the paper defines the m atter-element weightily and changes solving multi-objective fuzzy optimization into solving dependent function K(x) of the single-objective optimization according to the optimization criterion. The paper particularly describes the realization approach of GA process of multi -objective fuzzy matter-element optimization: encode, produce initial populati on, confirm fitness function, select operator, etc. In the process, the adaptive macro genetic algorithms (AMGA) is applied to enhancing the evolution speed. Th e paper improves the two genetic operators: crossover and mutation operator. The modified adaptive macro genetic algorithms (MAMGA) is put forward simultane ously. It is adopted to solve the optimization problem. Three optimization methods, namely fuzzy matter-element optimization method, li nearity weighted method and fuzzy optimization method, are compared by using the table and figure, it shows that not only MAMGA is a little better than the AMGA , but also it reaches the extent to which the effective iteration generation is 62.2% of simple genetic algorithms (SGA). By the calculation of optimum exam ple, the improved method of genetic in the paper is much better than the method in reference of paper.