C.L. Chang’s introduction of fuzzy topology in 1981 opened up new avenues for parallel theories in topology. However, Chang’s work appears to focus more on the topology of fuzzy sets rather than fuzzy topology itsel...C.L. Chang’s introduction of fuzzy topology in 1981 opened up new avenues for parallel theories in topology. However, Chang’s work appears to focus more on the topology of fuzzy sets rather than fuzzy topology itself. In 1975, Michálek presented a functional definition of ordinary topology and later developed fuzzy topology as a distinct extension of this idea, setting it apart from Chang’s approach. While there has been significant research on Chang’s fuzzy topology, Michálek’s version has not received as much attention. This paper introduces the concept of fuzzy regularly closed filters, or FRCM filters, within Michálek’s fuzzy topological space and explores some properties of FRCM ultrafilters.展开更多
The aging prediction of railway catenary is of profound significance for ensuring the regular operation of electrified trains.However,in real-world scenarios,accurate predictions are challenging due to various interfe...The aging prediction of railway catenary is of profound significance for ensuring the regular operation of electrified trains.However,in real-world scenarios,accurate predictions are challenging due to various interferences.This paper addresses this challenge by proposing a novel method for predicting the aging of railway catenary based on an improved Kalman filter(KF).The proposed method focuses on modifying the priori state estimate covariance and measurement error covariance of the KF to enhance accuracy in complex environments.By comparing the optimal displacement value with the theoretically calculated value based on the thermal expansion effect of metals,it becomes possible to ascertain the aging status of the catenary.To improve prediction accuracy,a railway catenary aging prediction model is constructed by integrating the Takagi-Sugeno(T-S)fuzzy neural network(FNN)and KF.In this model,an adaptive training method is introduced,allowing the FNN to use fewer fuzzy rules.The inputs of the model include time,temperature,and historical displacement,while the output is the predicted displacement.Furthermore,the KF is enhanced by modifying its prior state estimate covariance and measurement error covariance.These modifications contribute to more accurate predictions.Lastly,a low-power experimental platform based on FPGA is implemented to verify the effectiveness of the proposed method.The test results demonstrate that the proposed method outperforms the compared method,showcasing its superior performance.展开更多
As more and more variable frequency drives (VFDs), electronic ballasts, battery chargers, and static Var compensators are installed in facilities, the problems related to harmonics are expected to get worse. As a resu...As more and more variable frequency drives (VFDs), electronic ballasts, battery chargers, and static Var compensators are installed in facilities, the problems related to harmonics are expected to get worse. As a result Active power filter (APF) gains much more attention due to excellent harmonic compensation. But still the performance of the active filter seems to be in contradictions with different control strategies. This paper presents detailed analysis to compare and elevate the performance of two control strategies for ex-tracting reference currents of shunt active filters under balanced, un-balanced and non-sinusoidal conditions by using Fuzzy controller. The well known methods, instantaneous real active and reactive power method (p-q) and active and reactive current method (id-iq) are two control methods which are extensively used in active filters. Extensive Simulations are carried out with fuzzy controller for both p-q and Id-Iq methods for different voltage conditions and adequate results were presented. Simulation results validate the superior per-formance of active and reactive current control strategy (id-iq) with fuzzy controller over active and reactive power control strategy (p-q) with fuzzy controller.展开更多
In this article,the problem of state estimation is addressed for discrete-time nonlinear systems subject to additive unknown-but-bounded noises by using fuzzy set-membership filtering.First,an improved T-S fuzzy model...In this article,the problem of state estimation is addressed for discrete-time nonlinear systems subject to additive unknown-but-bounded noises by using fuzzy set-membership filtering.First,an improved T-S fuzzy model is introduced to achieve highly accurate approximation via an affine model under each fuzzy rule.Then,compared to traditional prediction-based ones,two types of fuzzy set-membership filters are proposed to effectively improve filtering performance,where the structure of both filters consists of two parts:prediction and filtering.Under the locally Lipschitz continuous condition of membership functions,unknown membership values in the estimation error system can be treated as multiplicative noises with respect to the estimation error.Real-time recursive algorithms are given to find the minimal ellipsoid containing the true state.Finally,the proposed optimization approaches are validated via numerical simulations of a one-dimensional and a three-dimensional discrete-time nonlinear systems.展开更多
Automated collaborative filtering has become a popular technique for reducing information overload. We have developed a new method for recommending items using multiple agents. The agents were established by employing...Automated collaborative filtering has become a popular technique for reducing information overload. We have developed a new method for recommending items using multiple agents. The agents were established by employing the fuzzy C-means clustering technique. We employ these agents collaborating each other to get recommendation for users. The results were evaluated by using MovieLens movie's rating data. It is shown that the algorithm is an effective metrics in collaborative filtering.展开更多
To deal with fault detection and diagnosis with incomplete model for dead reckoning system of mobile robot,an integrative framework of particle filter detection and fuzzy logic diagnosis was devised.Firstly,an adaptiv...To deal with fault detection and diagnosis with incomplete model for dead reckoning system of mobile robot,an integrative framework of particle filter detection and fuzzy logic diagnosis was devised.Firstly,an adaptive fault space is designed for recognizing both known faults and unknown faults,in corresponding modes of modeled and model-free.Secondly,the particle filter is utilized to diagnose the modeled faults and detect model-free fault according to the low particle weight and reliability.Especially,the proposed fuzzy logic diagnosis can further analyze model-free modes and identify some soft faults in unknown fault space.The MORCS-1 experimental results show that the fuzzy diagnosis particle filter(FDPF) combinational framework improves fault detection and identification completeness.Specifically speaking,FDPF is feasible to diagnose the modeled faults in known space.Furthermore,the types of model-free soft faults can also be further identified and diagnosed in unknown fault space.展开更多
This paper proposes a new adaptive post-filtering algorithm to remove coding artifacts in block-based video coder. The proposed method concentrates on blocking and ringing artifacts removal. For de-blocking, the block...This paper proposes a new adaptive post-filtering algorithm to remove coding artifacts in block-based video coder. The proposed method concentrates on blocking and ringing artifacts removal. For de-blocking, the blocking strength is identified to determine the filtering range, and the maximum quantization parameter of the image is used to adapt the 1D fuzzy filter. For de-ringing, besides the edge detection, a complementary ringing detection method is proposed to locate the neglected ringing blocks, and the gradient threshold is adopted to adjust the parameter of 2D fuzzy filter. Experiments are performed on the MPEG-4 sequences. Compared with other methods, the proposed one achieves better detail preservation and artifacts removal performance with lower computational cost.展开更多
Considering the soft constraint characteristics of voltage constraints, the Interior-Point Filter Algorithm is applied to solve the formulation of fuzzy model for the power system reactive power optimization with a la...Considering the soft constraint characteristics of voltage constraints, the Interior-Point Filter Algorithm is applied to solve the formulation of fuzzy model for the power system reactive power optimization with a large number of equality and inequality constraints. Based on the primal-dual interior-point algorithm, the algorithm maintains an updating “filter” at each iteration in order to decide whether to admit correction of iteration point which can avoid effectively oscillation due to the conflict between the decrease of objective function and the satisfaction of constraints and ensure the global convergence. Moreover, the “filter” improves computational efficiency because it filters the unnecessary iteration points. The calculation results of a practical power system indicate that the algorithm can effectively deal with the large number of inequality constraints of the fuzzy model of reactive power optimization and satisfy the requirement of online calculation which realizes to decrease the network loss and maintain specified margins of voltage.展开更多
Pure inertial navigation system(INS) has divergent localization errors after a long time. In order to compensate the disadvantage, wireless sensor network(WSN) associated with the INS was applied to estimate the mobil...Pure inertial navigation system(INS) has divergent localization errors after a long time. In order to compensate the disadvantage, wireless sensor network(WSN) associated with the INS was applied to estimate the mobile target positioning. Taking traditional Kalman filter(KF) as the framework, the system equation of KF was established by the INS and the observation equation of position errors was built by the WSN. Meanwhile, the observation equation of velocity errors was established by the velocity difference between the INS and WSN, then the covariance matrix of Kalman filter measurement noise was adjusted with fuzzy inference system(FIS), and the fuzzy adaptive Kalman filter(FAKF) based on the INS/WSN was proposed. The simulation results show that the FAKF method has better accuracy and robustness than KF and EKF methods and shows good adaptive capacity with time-varying system noise. Finally, experimental results further prove that FAKF has the fast convergence error, in comparison with KF and EKF methods.展开更多
In this paper,the topological space(PF_(MP)(X),T) based on prime MP-filters of a lattice FI-algebra X is constructed firstly and we proved that it is a compact T_0-space if X with condition(P).Secondly,we restricted T...In this paper,the topological space(PF_(MP)(X),T) based on prime MP-filters of a lattice FI-algebra X is constructed firstly and we proved that it is a compact T_0-space if X with condition(P).Secondly,we restricted T to the set of all maximal MP-filters MF_(MP)(X) of X and concluded that(PF_(MP)(X),T |_(PF_(MP)(X)) )is a compact T_2 space if X with conditions(P) and(S).展开更多
The measurement accuracy of speed and distance in high speed train directly affects the control precision and driving efficiency of train control system. To improve the capability of train self control, a combined spe...The measurement accuracy of speed and distance in high speed train directly affects the control precision and driving efficiency of train control system. To improve the capability of train self control, a combined speed measurement and positioning method based on speed sensor and radar which is assisted by global positioning system(GPS) is proposed to improve the accuracy of measurement and reduce the dependence on the ground equipment. In consideration of the fact that the filtering precision of Kalman filter will decrease when the statistical characteristics are changing, this paper uses fuzzy comprehensive evaluation method to evaluate the sub filter, and information distribution coefficients are dynamically adjusted according to filtering reliability, which can improve the fusion accuracy and fault tolerance of the system. The sub filter is required to carry on the covariance shaping adaptive filtering when it is in the suboptimal state. The adjustment factor of error covariance is obtained according to the minimized cost function, which can improve the matching degree between the measured residual variance and the system recursive residual. The simulation results show that the improved filter algorithm can track the changes of the system effectively, enhance the filtering accuracy significantly, and improve the measurement accuracies of train speed and distance.展开更多
The paper describes the operation principles of the evolutive neuro fuzzy filtering (ENFF) properties, which based on back propagation fuzzy neural net, this filter adaptively choose and emit a decision according with...The paper describes the operation principles of the evolutive neuro fuzzy filtering (ENFF) properties, which based on back propagation fuzzy neural net, this filter adaptively choose and emit a decision according with the reference signal changes of an external reference process, in order to actualize the best correct new conditions updating a process. This neural net fuzzy filter mechanism selects the best parameter values into the knowledge base (KB), to update the filter weights giving a good enough answers in accordance with the reference signal in natural sense. The filter architecture includes a decision making stage using an inference into its structure to deduce the filter decisions in accordance with the previous and actual filter answer in order to updates the new decision with respect to the new reference system con-ditions. The filtering process states require that bound into its own time limit as real time system, considering the Ny-quist and Shannon criteria. The characterization of the membership functions builds the knowledge base in probabilis-tic sense with respect to the rules set inference to describe the reference system and deduce the new filter decision, per-forming the ENFF answers. Moreover, the paper describes schematically the neural net architecture and the deci-sion-making stages in order to integrate them into the filter architecture as intelligent system. The results expressed in formal sense use the concepts into the paper references with a simulation of the ENFF into a Kalman filter structure using the Matlab? tool.展开更多
Infrared small target detection technology plays a pivotal role in critical military applications,including early warning systems and precision guidance for missiles and other defense mechanisms.Nevertheless,existing ...Infrared small target detection technology plays a pivotal role in critical military applications,including early warning systems and precision guidance for missiles and other defense mechanisms.Nevertheless,existing traditional methods face several significant challenges,including low background suppression ability,low detection rates,and high false alarm rates when identifying infrared small targets in complex environments.This paper proposes a novel infrared small target detection method based on a transformed Gaussian filter kernel and clustering approach.The method provides improved background suppression and detection accuracy compared to traditional techniques while maintaining simplicity and lower computational costs.In the first step,the infrared image is filtered by a new filter kernel and the results of filtering are normalized.In the second step,an adaptive thresholding method is utilized to determine the pixels in small targets.In the final step,a fuzzy C-mean clustering algorithm is employed to group pixels in the same target,thus yielding the detection results.The results obtained from various real infrared image datasets demonstrate the superiority of the proposed method over traditional approaches.Compared with the traditional method of state of the arts detection method,the detection accuracy of the four sequences is increased by 2.06%,0.95%,1.03%,and 1.01%,respectively,and the false alarm rate is reduced,thus providing a more effective and robust solution.展开更多
文摘C.L. Chang’s introduction of fuzzy topology in 1981 opened up new avenues for parallel theories in topology. However, Chang’s work appears to focus more on the topology of fuzzy sets rather than fuzzy topology itself. In 1975, Michálek presented a functional definition of ordinary topology and later developed fuzzy topology as a distinct extension of this idea, setting it apart from Chang’s approach. While there has been significant research on Chang’s fuzzy topology, Michálek’s version has not received as much attention. This paper introduces the concept of fuzzy regularly closed filters, or FRCM filters, within Michálek’s fuzzy topological space and explores some properties of FRCM ultrafilters.
基金supported by the Science and Technology Research Project of Henan Province (No.222102210087)the Science and Technology Research Project of Henan Province (No.222102220102).
文摘The aging prediction of railway catenary is of profound significance for ensuring the regular operation of electrified trains.However,in real-world scenarios,accurate predictions are challenging due to various interferences.This paper addresses this challenge by proposing a novel method for predicting the aging of railway catenary based on an improved Kalman filter(KF).The proposed method focuses on modifying the priori state estimate covariance and measurement error covariance of the KF to enhance accuracy in complex environments.By comparing the optimal displacement value with the theoretically calculated value based on the thermal expansion effect of metals,it becomes possible to ascertain the aging status of the catenary.To improve prediction accuracy,a railway catenary aging prediction model is constructed by integrating the Takagi-Sugeno(T-S)fuzzy neural network(FNN)and KF.In this model,an adaptive training method is introduced,allowing the FNN to use fewer fuzzy rules.The inputs of the model include time,temperature,and historical displacement,while the output is the predicted displacement.Furthermore,the KF is enhanced by modifying its prior state estimate covariance and measurement error covariance.These modifications contribute to more accurate predictions.Lastly,a low-power experimental platform based on FPGA is implemented to verify the effectiveness of the proposed method.The test results demonstrate that the proposed method outperforms the compared method,showcasing its superior performance.
文摘As more and more variable frequency drives (VFDs), electronic ballasts, battery chargers, and static Var compensators are installed in facilities, the problems related to harmonics are expected to get worse. As a result Active power filter (APF) gains much more attention due to excellent harmonic compensation. But still the performance of the active filter seems to be in contradictions with different control strategies. This paper presents detailed analysis to compare and elevate the performance of two control strategies for ex-tracting reference currents of shunt active filters under balanced, un-balanced and non-sinusoidal conditions by using Fuzzy controller. The well known methods, instantaneous real active and reactive power method (p-q) and active and reactive current method (id-iq) are two control methods which are extensively used in active filters. Extensive Simulations are carried out with fuzzy controller for both p-q and Id-Iq methods for different voltage conditions and adequate results were presented. Simulation results validate the superior per-formance of active and reactive current control strategy (id-iq) with fuzzy controller over active and reactive power control strategy (p-q) with fuzzy controller.
基金supported in part by the National Natural Science Foundation of China(61973219,61933007,62073158)the China Scholarship Council(201908310148)。
文摘In this article,the problem of state estimation is addressed for discrete-time nonlinear systems subject to additive unknown-but-bounded noises by using fuzzy set-membership filtering.First,an improved T-S fuzzy model is introduced to achieve highly accurate approximation via an affine model under each fuzzy rule.Then,compared to traditional prediction-based ones,two types of fuzzy set-membership filters are proposed to effectively improve filtering performance,where the structure of both filters consists of two parts:prediction and filtering.Under the locally Lipschitz continuous condition of membership functions,unknown membership values in the estimation error system can be treated as multiplicative noises with respect to the estimation error.Real-time recursive algorithms are given to find the minimal ellipsoid containing the true state.Finally,the proposed optimization approaches are validated via numerical simulations of a one-dimensional and a three-dimensional discrete-time nonlinear systems.
基金Project supported by the National Natural Science Foundation of China (Grant No.69975001)
文摘Automated collaborative filtering has become a popular technique for reducing information overload. We have developed a new method for recommending items using multiple agents. The agents were established by employing the fuzzy C-means clustering technique. We employ these agents collaborating each other to get recommendation for users. The results were evaluated by using MovieLens movie's rating data. It is shown that the algorithm is an effective metrics in collaborative filtering.
基金Project(90820302) supported by the National Natural Science Foundation of ChinaProject(20110491272) supported by China Postdoctoral Science Foundation of China+2 种基金Project(2012QNZT060) supported by the Fundamental Research Fund for the Central Universities of ChinaProject(11B070) supported by the Science Research Foundation of Education Bureau of Hunan Province,ChinaProject(2010-2012) supported by the Postdoctoral Science Foundation of Central South University,China
文摘To deal with fault detection and diagnosis with incomplete model for dead reckoning system of mobile robot,an integrative framework of particle filter detection and fuzzy logic diagnosis was devised.Firstly,an adaptive fault space is designed for recognizing both known faults and unknown faults,in corresponding modes of modeled and model-free.Secondly,the particle filter is utilized to diagnose the modeled faults and detect model-free fault according to the low particle weight and reliability.Especially,the proposed fuzzy logic diagnosis can further analyze model-free modes and identify some soft faults in unknown fault space.The MORCS-1 experimental results show that the fuzzy diagnosis particle filter(FDPF) combinational framework improves fault detection and identification completeness.Specifically speaking,FDPF is feasible to diagnose the modeled faults in known space.Furthermore,the types of model-free soft faults can also be further identified and diagnosed in unknown fault space.
文摘This paper proposes a new adaptive post-filtering algorithm to remove coding artifacts in block-based video coder. The proposed method concentrates on blocking and ringing artifacts removal. For de-blocking, the blocking strength is identified to determine the filtering range, and the maximum quantization parameter of the image is used to adapt the 1D fuzzy filter. For de-ringing, besides the edge detection, a complementary ringing detection method is proposed to locate the neglected ringing blocks, and the gradient threshold is adopted to adjust the parameter of 2D fuzzy filter. Experiments are performed on the MPEG-4 sequences. Compared with other methods, the proposed one achieves better detail preservation and artifacts removal performance with lower computational cost.
文摘Considering the soft constraint characteristics of voltage constraints, the Interior-Point Filter Algorithm is applied to solve the formulation of fuzzy model for the power system reactive power optimization with a large number of equality and inequality constraints. Based on the primal-dual interior-point algorithm, the algorithm maintains an updating “filter” at each iteration in order to decide whether to admit correction of iteration point which can avoid effectively oscillation due to the conflict between the decrease of objective function and the satisfaction of constraints and ensure the global convergence. Moreover, the “filter” improves computational efficiency because it filters the unnecessary iteration points. The calculation results of a practical power system indicate that the algorithm can effectively deal with the large number of inequality constraints of the fuzzy model of reactive power optimization and satisfy the requirement of online calculation which realizes to decrease the network loss and maintain specified margins of voltage.
基金Project(2013AA06A411)supported by the National High Technology Research and Development Program of ChinaProject(CXZZ14_1374)supported by the Graduate Education Innovation Program of Jiangsu Province,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Pure inertial navigation system(INS) has divergent localization errors after a long time. In order to compensate the disadvantage, wireless sensor network(WSN) associated with the INS was applied to estimate the mobile target positioning. Taking traditional Kalman filter(KF) as the framework, the system equation of KF was established by the INS and the observation equation of position errors was built by the WSN. Meanwhile, the observation equation of velocity errors was established by the velocity difference between the INS and WSN, then the covariance matrix of Kalman filter measurement noise was adjusted with fuzzy inference system(FIS), and the fuzzy adaptive Kalman filter(FAKF) based on the INS/WSN was proposed. The simulation results show that the FAKF method has better accuracy and robustness than KF and EKF methods and shows good adaptive capacity with time-varying system noise. Finally, experimental results further prove that FAKF has the fast convergence error, in comparison with KF and EKF methods.
基金Supported by the NSF of China(10371106,60774073)
文摘In this paper,the topological space(PF_(MP)(X),T) based on prime MP-filters of a lattice FI-algebra X is constructed firstly and we proved that it is a compact T_0-space if X with condition(P).Secondly,we restricted T to the set of all maximal MP-filters MF_(MP)(X) of X and concluded that(PF_(MP)(X),T |_(PF_(MP)(X)) )is a compact T_2 space if X with conditions(P) and(S).
基金National Natural Science Foundation of China(Nos.61763023,61164010)
文摘The measurement accuracy of speed and distance in high speed train directly affects the control precision and driving efficiency of train control system. To improve the capability of train self control, a combined speed measurement and positioning method based on speed sensor and radar which is assisted by global positioning system(GPS) is proposed to improve the accuracy of measurement and reduce the dependence on the ground equipment. In consideration of the fact that the filtering precision of Kalman filter will decrease when the statistical characteristics are changing, this paper uses fuzzy comprehensive evaluation method to evaluate the sub filter, and information distribution coefficients are dynamically adjusted according to filtering reliability, which can improve the fusion accuracy and fault tolerance of the system. The sub filter is required to carry on the covariance shaping adaptive filtering when it is in the suboptimal state. The adjustment factor of error covariance is obtained according to the minimized cost function, which can improve the matching degree between the measured residual variance and the system recursive residual. The simulation results show that the improved filter algorithm can track the changes of the system effectively, enhance the filtering accuracy significantly, and improve the measurement accuracies of train speed and distance.
文摘The paper describes the operation principles of the evolutive neuro fuzzy filtering (ENFF) properties, which based on back propagation fuzzy neural net, this filter adaptively choose and emit a decision according with the reference signal changes of an external reference process, in order to actualize the best correct new conditions updating a process. This neural net fuzzy filter mechanism selects the best parameter values into the knowledge base (KB), to update the filter weights giving a good enough answers in accordance with the reference signal in natural sense. The filter architecture includes a decision making stage using an inference into its structure to deduce the filter decisions in accordance with the previous and actual filter answer in order to updates the new decision with respect to the new reference system con-ditions. The filtering process states require that bound into its own time limit as real time system, considering the Ny-quist and Shannon criteria. The characterization of the membership functions builds the knowledge base in probabilis-tic sense with respect to the rules set inference to describe the reference system and deduce the new filter decision, per-forming the ENFF answers. Moreover, the paper describes schematically the neural net architecture and the deci-sion-making stages in order to integrate them into the filter architecture as intelligent system. The results expressed in formal sense use the concepts into the paper references with a simulation of the ENFF into a Kalman filter structure using the Matlab? tool.
基金supported by the Funding of Jiangsu University of Science and Technology,under the grant number:1132921208.
文摘Infrared small target detection technology plays a pivotal role in critical military applications,including early warning systems and precision guidance for missiles and other defense mechanisms.Nevertheless,existing traditional methods face several significant challenges,including low background suppression ability,low detection rates,and high false alarm rates when identifying infrared small targets in complex environments.This paper proposes a novel infrared small target detection method based on a transformed Gaussian filter kernel and clustering approach.The method provides improved background suppression and detection accuracy compared to traditional techniques while maintaining simplicity and lower computational costs.In the first step,the infrared image is filtered by a new filter kernel and the results of filtering are normalized.In the second step,an adaptive thresholding method is utilized to determine the pixels in small targets.In the final step,a fuzzy C-mean clustering algorithm is employed to group pixels in the same target,thus yielding the detection results.The results obtained from various real infrared image datasets demonstrate the superiority of the proposed method over traditional approaches.Compared with the traditional method of state of the arts detection method,the detection accuracy of the four sequences is increased by 2.06%,0.95%,1.03%,and 1.01%,respectively,and the false alarm rate is reduced,thus providing a more effective and robust solution.