期刊文献+
共找到2,067篇文章
< 1 2 104 >
每页显示 20 50 100
Long non-coding RNA CDKN2B-AS1 promotes hepatocellular carcinoma progression via E2F transcription factor 1/G protein subunit alpha Z axis
1
作者 Zhi-Gang Tao Yu-Xiao Yuan Guo-Wei Wang 《World Journal of Gastrointestinal Oncology》 SCIE 2023年第11期1974-1987,共14页
BACKGROUND A series of long non-coding RNAs(lncRNAs)have been reported to play a crucial role in cancer biology.Some previous studies report that lncRNA CDKN2B-AS1 is involved in some human malignancies.However,its ro... BACKGROUND A series of long non-coding RNAs(lncRNAs)have been reported to play a crucial role in cancer biology.Some previous studies report that lncRNA CDKN2B-AS1 is involved in some human malignancies.However,its role in hepatocellular carcinoma(HCC)has not been fully deciphered.AIM To decipher the role of CDKN2B-AS1 in the progression of HCC.METHODS CDKN2B-AS1 expression in HCC was detected by quantitative real-time polymerase chain reaction.The malignant phenotypes of Li-7 and SNU-182 cells were detected by the CCK-8 method,EdU method,and flow cytometry,respectively.RNA immunoprecipitation was executed to confirm the interaction between CDKN2B-AS1 and E2F transcription factor 1(E2F1).Luciferase reporter assay and chromatin immunoprecipitation were performed to verify the binding of E2F1 to the promoter of G protein subunit alpha Z(GNAZ).E2F1 and GNAZ were detected by western blot in HCC cells.RESULTS In HCC tissues,CDKN2B-AS1 was upregulated.Depletion of CDKN2B-AS1 inhibited the proliferation of HCC cells,and the depletion of CDKN2B-AS1 also induced cell cycle arrest and apoptosis.CDKN2B-AS1 could interact with E2F1.Depletion of CDKN2B-AS1 inhibited the binding of E2F1 to the GNAZ promoter region.Overexpression of E2F1 reversed the biological effects of depletion of CDKN2B-AS1 on the malignant behaviors of HCC cells.CONCLUSION CDKN2B-AS1 recruits E2F1 to facilitate GNAZ transcription to promote HCC progression. 展开更多
关键词 Hepatocellular carcinoma CDKN2B-AS1 E2F transcription factor 1 g protein subunit alpha Z Proliferation
下载PDF
Gene Cloning and Expression Analysis of G Protein αq Subunit from Helicoverpa assulta (Guenée) 被引量:3
2
作者 QIAO Qi LI Hai-chao YUAN Guo-hui GUO Xian-ru LUO Mei-hao 《Agricultural Sciences in China》 CAS CSCD 2008年第2期187-192,共6页
The cDNA encoding the G protein αq subunit was isolated from the antennae of Helicoverpa assulta (Guen6e) by reverse transcription polymerase chain reaction (RT-PCR) and named as HassGαq. Sequencing analysis sho... The cDNA encoding the G protein αq subunit was isolated from the antennae of Helicoverpa assulta (Guen6e) by reverse transcription polymerase chain reaction (RT-PCR) and named as HassGαq. Sequencing analysis showed that the fulllength of HassGαq open reading frame (ORF) is 1 062 bp, 353 amino acid residues are encoded. The predicted molecular weights (MW) and isoelectric point (PI) are 41.5 kD and 5.15, respectively. HassGαq gene was then constructed into expression vector pGEX-4T-2 for over expression in prokaryotic cells. The SDS-PAGE and Western blot analysis showed that induced by Isopropyl-β-D-Thiogalactoside (IPTG), the GST-HassGαq fusion protein is expressed in Escherichia coil BL21, and its MW was found to be about 66 kD nearly equal to the predicted. In addition, RT-PCR analysis showed that the expressions of HassGαq are not tissue specific. 展开更多
关键词 Helicoverpa assulta g protein α subunit gene cloning prokaryotic expression expression pattern
下载PDF
Acupuncture at the San Jiao meridian affects brain stem tissue G protein content in a rat migraine model 被引量:1
3
作者 Sue Wang Wei Li Guangwei Zhong Zhenyan Li Lingbo Wen 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第9期958-961,共4页
BACKGROUND: G protein is closely associated with vasomotion. Vasomotor dysfunction accompanies migraine attack. OBJECTIVE: To investigate the effects of the San Jiao meridian acupuncture on G protein content in a ra... BACKGROUND: G protein is closely associated with vasomotion. Vasomotor dysfunction accompanies migraine attack. OBJECTIVE: To investigate the effects of the San Jiao meridian acupuncture on G protein content in a rat migraine model. DESIGN, TIME AND SETTING: The present randomized grouping, cellular and molecular biological level trial was performed at the Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University & Key Laboratory for Tumor Proteomics of Ministry of Health between October 2003 and June 2004. MATERIALS: Forty healthy, male, Sprague Dawtey rats were included in this study. The G6805-2A electro-acupuncture apparatus was a product of Shanghai Huayi Medical Instrument Factory, China. Nitroglycerin was produced by Guangzhou Mingxing Pharmaceutical Factory, China. Antibodies against inhibitory and stimulatory G proteins were purchased from Sigma Chemical Company, USA. METHODS: All 40 rats were randomly and evenly divided into 4 groups. In the blank control group, the rats remained untouched. Rats from the normal control group were subcutaneously administered 2 mL/kg physiological saline. In the model group, migraine was induced with a subcutaneous injection of 10 mg/kg nitroglycerin (5 g/L), and the rats received no further treatment. In the acupuncture-treated group, 30 minutes after migraine induction, acupuncture was performed at the bilateral Waiguan (SJ 5) and Yifeng (SJ 17) points, with an acupuncture depth of 1 mm. Electric-stimulation parameters of 20 Hz for low frequency, 40 Hz for high frequency, and 0.5-1.0 mA for current intensity were set. Ten acupuncture sessions were applied, with 20-minute low-frequency and 20-minute high-frequency stimulation and 3 seconds of interval time. MAIN OUTCOME MEASURES: Inhibitory and stimulatory G protein contents were detected by Western blot analysis. RESULTS: At 4 hours after migraine induction, compared with the blank control and normal control groups stimulatory G protein concentration was significantly increased, while inhibitory G protein levels were significantly decreased in the model group (P 〈 0.01 ). In the acupuncture-treated group, both stimulatory and inhibitory G protein concentrations were significantly increased following acupuncture treatment (P 〈 0.01), but stimulatory G protein levels were less and the inhibitory G protein concentrations were greater compared to the model group (P 〈 0.01 ). There was no significant difference in stimulatory and inhibitory G protein levels between the blank control and normal control groups (P 〉 0.05). CONCLUSION: Dysfunctional G protein signal transductions in the rat brain stem may be responsible tor migraine attack. Acupuncture at the San Jiao meridian ameliorates migraines by mediating the G protein signal transduction pathway. 展开更多
关键词 ACUPUNCTURE g protein migraine San Jiao meridian Western blot
下载PDF
Gene Cloning and Tissue-Specific Expression of G Protein β Subunit in Microplitis mediator (Hymenoptera: Braconidae) 被引量:1
4
作者 ZHANG Shuai ZHANG Yong-jun +2 位作者 CUI Jin-jie GAO Xi-wu GUO Yu-yuan 《Agricultural Sciences in China》 CAS CSCD 2010年第4期568-576,共9页
A gene encoding a novel G protein β subunit of β1 subclass, GβMmed was isolated from Microplitis mediator (Hymenoptera: Braconidae). The full-length sequence of GβMmed is 1 119 bp, the cDNA contains a 1 023 bp... A gene encoding a novel G protein β subunit of β1 subclass, GβMmed was isolated from Microplitis mediator (Hymenoptera: Braconidae). The full-length sequence of GβMmed is 1 119 bp, the cDNA contains a 1 023 bp open reading frame that encodes a protein with 340 amino acids, and the predicted molecular weight of GβMmed is 37.23 kDa and isoelectric point is 5.86. By the quantitative real-time RT-PCR method, the tissue-specific expression and quantitative changes in the developmental expression profile of GβMmed were detected. It was found that GβMmed was abundantly expressed in M. mediator antennae, head (without antennae), thorax, abdomen, legs and the wings, and especially at high levels in abdomen. In antennae, expression varied through 1st day before emergence to 5-d-old adults, and had equal expression levels detected in females and males in total. In head, GβMmed expresses while initially high in females, and have another peaked in stage 4 and 1st day, in males showed a peak of GβMmed expression prior to emergence and relatively low levels after emergence. In female abdomen GβMmed expression levels have two peaks in stage 1 and the 5th d, but just have one peak in male abdomen in stage 1. In all other tissues expression was low and stable. 展开更多
关键词 Microplitis mediator g protein β subunit quantitative real-time RT-PCR expression pattern
下载PDF
Physiological and pharmacological functions of G protein coupled receptor 124:A review
5
作者 Yi-Qian Xu Hao-Lin Wu +3 位作者 Xing-Yue Fan Hao-Fei Fan Rui Wang Qi-Bing Liu 《Journal of Hainan Medical University》 2022年第14期47-52,共6页
G protein-coupled receptors(GPCRs)are the largest protein superfamily in the body,expressed in various tissues and organs,and are currently one of the most important clinical drug targets.Recently,a class of GPCRs wit... G protein-coupled receptors(GPCRs)are the largest protein superfamily in the body,expressed in various tissues and organs,and are currently one of the most important clinical drug targets.Recently,a class of GPCRs without endogenous ligands(orphan GPCRs)have been discovered.They exhibit different physiological functions in the body and act extensively on the cardiovascular and cerebrovascular systems.Among them,G protein-coupled receptor 124(GPR124)is an orphaned member of the G protein coupled receptor adhesion family that has attracted much attention.It plays a key role in promoting cerebral angiogenesis and maintaining the stability of the blood-brain barrier.It also associated with cardiovascular and cerebrovascular diseases such as cerebral ischemia and atherosclerosis.However,the role of GPR124 in these diseases,the associated signaling pathways,and possible drug intervention targets are still unclear.This article summarizes the physiological effects,pharmacological effects and related signal pathways of GPR124 published in the field of cardiovascular and cerebrovascular diseases published in recent years,in order to provide a reference for the study of the role of GPR124 in the occurrence and development of diseases. 展开更多
关键词 g protein coupled receptor Signal transduction Physiological effect Pharmacological function Cardio-cerebrovascular disease
下载PDF
Functionally diverse ligands modulate different activation states of the formyl peptide receptor 2,a G protein-coupled receptor
6
作者 Shuo ZHANG Hao GONG Richard Dequan YE 《中国药理学与毒理学杂志》 CSCD 北大核心 2017年第10期981-982,共2页
OBJECTIVE To identify the mechanisms by which the formyl peptide receptor 2(FPR2)mediates both inflammatory and anti-inflammatory signaling in an agonist-dependent manner.METHODS Cells expressing FPR2 were incubated w... OBJECTIVE To identify the mechanisms by which the formyl peptide receptor 2(FPR2)mediates both inflammatory and anti-inflammatory signaling in an agonist-dependent manner.METHODS Cells expressing FPR2 were incubated with weak agonists,Aβ42 and Ac2-26,before stimulation with a strong agonist,WKYMVm.Calcium mobilization,c AMP inhibition and MAP kinase activation were measured.Intramolecular FRET were determined using FPR2 constructs with an ECFP attached to the C-terminus and a Fl As H binding motif embedded in the first or third intracellular loop(IL1 or IL3,respectively).RESULTS Aβ42 did not induce significant Ca^(2+) mobilization,but positively modulated WKYMVm-induced Ca^(2+) mobilization and c AMP reduction in a dose-variable manner within a narrow range of ligand concentrations.Treating FPR2-expressing cells with Ac2-26,a peptide with anti-inflammatory activity,negatively modulated WKYMVm-induced Ca^(2+) mobilization and c AMP reduction.Intramolecular FRET assay showed that stimulation of the receptor constructs with Aβ42 brought the C-terminal domain closer to IL1 but away from IL3.An opposite conformational change was induced by Ac2-26.The FPR2 conformation induced by Aβ42 corresponded to enhanced ERK phosphorylation and attenuated p38 MAPK phosphorylation,whereas Ac2-26 induced FPR2 conformational change corresponding to elevated p38 MAPK phosphorylation and reduced ERK phosphorylation.CONCLUSION Aβ42 and Ac2-26 induce different conformational changes in FPR2.These findings provide a structural basis for FPR2 mediation of inflammatory vs anti-inflammatory functions and identify a type of receptor modulation that differs from the classic positive and negative allosteric modulation. 展开更多
关键词 g protein-coupled receptors allosteric modulation fluorescent resonance energy transfer formyl peptide receptor 2 conformational changes
下载PDF
Heterotrimeric G protein α subunit is involved in rice brassinosteroid response 被引量:29
7
作者 Lei Wang Yun-Yuan Xu +3 位作者 Qi-Bin Ma Dan Li Zhi-Hong Xu Kang Chong 《Cell Research》 SCIE CAS CSCD 2006年第12期916-922,共7页
Heterotrimeric G proteins are known to function as messengers in numerous signal transduction pathways.The nullmutation of RGA(rice heterotrimeric G protein α subunit),which encodes the α subunit of heterotrimeric G... Heterotrimeric G proteins are known to function as messengers in numerous signal transduction pathways.The nullmutation of RGA(rice heterotrimeric G protein α subunit),which encodes the α subunit of heterotrimeric G proteinin rice,causes severe dwarfism and reduced responsiveness to gibberellic acid in rice.However,less is known aboutheterotrimeric G protein in brassinosteroid(BR)signaling,one of the well-understood phytohormone pathways.In thepresent study,we used root elongation inhibition assay,lamina inclination assay and coleoptile elongation analysis todemonstrated reduced sensitivity of dl mutant plants(caused by the null mutation of RGA)to 24-epibrassinolide(24-epiBL),which belongs to brassinosteroids and plays a wide variety of roles in plant growth and development.Moreover,RGA transcript level was decreased in 24-epiBL-treated seedlings in a dose-dependent manner.Our results show thatRGA is involved in rice brassinosteroid response,which may be beneficial to elucidate the molecular mechanisms of Gprotein signaling and provide a novel perspective to understand BR signaling in higher plants. 展开更多
关键词 异三聚g蛋白质 Α亚基 dl突变异种 BR信号
下载PDF
Increased endothelin receptor B and G protein coupled kinase-2 in the mesentery of portal hypertensive rats 被引量:7
8
作者 Qing-Hong Du Lin Han +3 位作者 Jun-Jie Jiang Peng-Tao Li Xin-Yue Wang Xu Jia 《World Journal of Gastroenterology》 SCIE CAS 2013年第13期2065-2072,共8页
AIM: To elucidate the mechanisms of mesenteric vasodilation in portal hypertension (PHT), with a focus on endothelin signaling. METHODS: PHT was induced in rats by common bile duct ligation (CBDL). Portal pressure (PP... AIM: To elucidate the mechanisms of mesenteric vasodilation in portal hypertension (PHT), with a focus on endothelin signaling. METHODS: PHT was induced in rats by common bile duct ligation (CBDL). Portal pressure (PP) was measured directly via catheters placed in the portal vein tract. The level of endothelin-1 (ET-1) in the mesenteric circulation was determined by radioimmunoassay, and the expression of the endothelin A receptor (ETAR) and endothelin B receptor (ETBR) was assessed by immunofluorescence and Western blot. Additionally, expression of G protein coupled kinase-2 (GRK2) and β-arrestin 2, which influence endothelin receptor sensitivity, were also studied by Western blot. RESULTS: PP of CBDL rats increased significantly (11.89 ± 1.38 mmHg vs 16.34 ± 1.63 mmHg). ET-1 expression decreased in the mesenteric circulation 2 and 4 wk after CBDL. ET-1 levels in the systemic circulation of CBDL rats were increased at 2 wk and decreased at 4 wk. There was no change in ETAR expression in response to CBDL; however, increased expression of ETBR in the endothelial cells of mesenteric arterioles and capillaries was observed. In sham-operated rats, ETBR was mainly expressed in the CD31+ endothelial cells of the arterioles. With development of PHT, in addition to the endothelial cells, ETBR expression was noticeably detectable in the SMA+ smooth muscle cells of arterioles and in the CD31+ capillaries. Following CBDL, increased expression of GRK2 was also found in mesenteric tissue, though there was no change in the level of β-arrestin 2. CONCLUSION: Decreased levels of ET-1 and increased ETBR expression in the mesenteric circulation following CBDL in rats may underlie mesenteric vasodilation in individuals with PHT. Mechanistically, increased GRK2 expression may lead to desensitization of ETAR, as well as other vasoconstrictors, promoting this vasodilatory effect. 展开更多
关键词 PORTAL hypertension MESENTERY ENDOTHELIN ENDOTHELIN B receptor g protein COUPLED kinase-2
下载PDF
G protein-coupled estrogen receptor in colon function, immune regulation and carcinogenesis 被引量:6
9
作者 Damian Jacenik Ellen J Beswick +1 位作者 Wanda M Krajewska Eric R Prossnitz 《World Journal of Gastroenterology》 SCIE CAS 2019年第30期4092-4104,共13页
Estrogens play important roles in the development and progression of multiple tumor types.Accumulating evidence points to the significance of estrogen action not only in tumors of hormonally regulated tissues such as ... Estrogens play important roles in the development and progression of multiple tumor types.Accumulating evidence points to the significance of estrogen action not only in tumors of hormonally regulated tissues such as the breast,endometrium and ovary,but also in the development of colorectal cancer(CRC).The effects of estrogens in physiological and pathophysiological conditions are mediated by the nuclear estrogen receptorsαandβ,as well as the membranebound G protein-coupled estrogen receptor(GPER).The roles of GPER in CRC development and progression,however,remain poorly understood.Studies on the functions of GPER in the colon have shown that this estrogen receptor regulates colonic motility as well as immune responses in CRC-associated diseases,such as Crohn’s disease and ulcerative colitis.GPER is also involved in cell cycle regulation,endoplasmic reticulum stress,proliferation,apoptosis,vascularization,cell migration,and the regulation of fatty acid and estrogen metabolism in CRC cells.Thus,multiple lines of evidence suggest that GPER may play an important role in colorectal carcinogenesis.In this review,we present the current state of knowledge regarding the contribution of GPER to colon function and CRC. 展开更多
关键词 g protein-coupled ESTROgEN receptor Colorectal cancer Proliferation Migration COLONIC MOTILITY Inflammatory BOWEL disease
下载PDF
Adrenal G protein-coupled receptor kinase-2 in regulation of sympathetic nervous system activity in heart failure 被引量:4
10
作者 Katie A Mc Crink Ava Brill Anastasios Lymperopoulos 《World Journal of Cardiology》 CAS 2015年第9期539-543,共5页
Heart failure(HF), the number one cause of death in the western world, is caused by the insufficient performance of the heart leading to tissue underperfusion in response to an injury or insult. It comprises complex i... Heart failure(HF), the number one cause of death in the western world, is caused by the insufficient performance of the heart leading to tissue underperfusion in response to an injury or insult. It comprises complex interactions between important neurohormonal mechanisms that try but ultimately fail to sustain cardiac output. The most prominent such mechanism is the sympathetic(adrenergic) nervous system(SNS), whose activity and outflow are greatly elevated in HF. SNS hyperactivity confers significant toxicity to the failing heart and markedly increases HF morbidity and mortality via excessive activation of adrenergic receptors, which are G protein-coupled receptors. Thus, ligand binding induces their coupling to heterotrimeric G proteins that transduce intracellular signals. G protein signaling is turned-off by the agonist-bound receptor phosphorylation courtesy of G protein-coupled receptor kinases(GRKs), followed by βarrestin binding, which prevents the GRK-phosphorylated receptor from further interaction with the G proteins and simultaneously leads it inside the cell(receptor sequestration). Recent evidence indicates that adrenal GRK2 and βarrestins can regulate adrenal catecholamine secretion, thereby modulating SNS activity in HF. The present review gives an account of all these studies on adrenal GRKs and βarrestins in HF and discusses the exciting new therapeutic possibilities for chronic HF offered by targeting these proteins pharmacologically. 展开更多
关键词 g protein-coupled RECEPTOR g protein-coupled recep
下载PDF
Roles of G protein-coupled receptors in inflammatory bowel disease 被引量:5
11
作者 Zhen Zeng Arjudeb Mukherjee +3 位作者 Adwin Pidiyath Varghese Xiao-Li Yang Sha Chen Hu Zhang 《World Journal of Gastroenterology》 SCIE CAS 2020年第12期1242-1261,共20页
Inflammatory bowel disease(IBD)is a complex disease with multiple pathogenic factors.Although the pathogenesis of IBD is still unclear,a current hypothesis suggests that genetic susceptibility,environmental factors,a ... Inflammatory bowel disease(IBD)is a complex disease with multiple pathogenic factors.Although the pathogenesis of IBD is still unclear,a current hypothesis suggests that genetic susceptibility,environmental factors,a dysfunctional immune system,the microbiome,and the interactions of these factors substantially contribute to the occurrence and development of IBD.Although existing and emerging drugs have been proven to be effective in treating IBD,none can cure IBD permanently.G protein-coupled receptors(GPCRs)are critical signaling molecules implicated in the immune response,cell proliferation,inflammation regulation and intestinal barrier maintenance.Breakthroughs in the understanding of the structures and functions of GPCRs have provided a driving force for exploring the roles of GPCRs in the pathogenesis of diseases,thereby leading to the development of GPCR-targeted medication.To date,a number of GPCRs have been shown to be associated with IBD,significantly advancing the drug discovery process for IBD.The associations between GPCRs and disease activity,disease severity,and disease phenotypes have also paved new avenues for the precise management of patients with IBD.In this review,we mainly focus on the roles of the most studied proton-sensing GPCRs,cannabinoid receptors,and estrogen-related GPCRs in the pathogenesis of IBD and their potential clinical values in IBD and some other diseases. 展开更多
关键词 g protein-coupled RECEPTORS INFLAMMATORY BOWEL disease PATHOgENESIS Signaling pathway Drug discovery
下载PDF
MicroRNA-760 acts as a tumor suppressor in gastric cancer development via inhibiting G-protein-coupled receptor kinase interacting protein-1 transcription 被引量:5
12
作者 Liang Ge Yu Wang +2 位作者 Quan-Hong Duan Song-Shan Liu Guo-Jing Liu 《World Journal of Gastroenterology》 SCIE CAS 2019年第45期6619-6633,共15页
BACKGROUND Gastric cancer(GC)has become a serious threat to people's health.Accumulative evidence reveals that dysregulation of numerous microRNAs(miRNAs)has been found during malignant formation.So far,the role o... BACKGROUND Gastric cancer(GC)has become a serious threat to people's health.Accumulative evidence reveals that dysregulation of numerous microRNAs(miRNAs)has been found during malignant formation.So far,the role of microRNA-760(miR-760)in the development of GC is largely unknown.AIM To measure the expression level of miR-760 in GC and investigate its role in gastric tumorigenesis.METHODS Real-time quantitative polymerase chain reaction and Western blot analysis were used to measure the expression of miR-760 and G-protein-coupled receptor kinase interacting protein-1(GIT1).Cell growth was detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide(MTT)and cell colony formation assays.Apoptosis was assessed by flow cytometric analysis.The relationship between miR-760 and GIT1 was verified by luciferase reporter assay.RESULTS The results showed that the expression of miR-760 was decreased in GC and associated with poor clinical outcomes in GC patients.Furthermore,miR-760 restrained cell proliferation and cell colony formation and induced apoptosis in GC cells.In addition,miR-760 directly targeted GIT1 and negatively regulated its expression in GC.GIT1 was upregulated in GC and predicted a worse prognosis in GC patients.We also found that upregulation of GIT1 weakened the inhibitory CONCLUSION In conclusion,miR-760 targets GIT1 to inhibit cell growth and promote apoptosis in GC cells.Our data demonstrate that miR-760 may be a potential target for the treatment of GC. 展开更多
关键词 gastric cancer g-protein-coupled receptor KINASE INTERACTINg protein-1 Invasion Migration MicroRNA-760 Proliferation
下载PDF
Variations on conserved signaling pathways in biocontrol and development: G protein and MAPK genes of Trichoderma. atroviride and T. virens 被引量:1
13
作者 Benjiamin A Horwitz 《浙江大学学报(农业与生命科学版)》 CAS CSCD 北大核心 2004年第4期444-444,共1页
Filamentous fungi employ conserved eukaryotic signaling pathway to detect and respond to environmental signals, including the presence of the host. Genetic experiment in which a particular signaling protein is lost, o... Filamentous fungi employ conserved eukaryotic signaling pathway to detect and respond to environmental signals, including the presence of the host. Genetic experiment in which a particular signaling protein is lost, or its activity enhanced, have defined some of the function of heterotrimeric G proteins and MAP kinases in development and virulence. A hallmark of these studies is that orthologs in different species may have different functions. Antagonistic fungal-fungal interactions form the basis for biological control of plant disease. These interactions may employ novel modes of regulation by conserved signaling elements. Tag1, a G protein α subunit of Trichoderma. atroviride belonging to fungal Gi class, is involved in repression of sporulation and hyphal coiling(1). Deletion of ortholog of this gene, TgaA, in Trichoderma (Gliocladium) virens, however, did not affect sporulation and growth, yet tgaA mutants are unable to parasitize S. rolfsii sclerotia(2). Mutation of a second G α subunit gene is now under study. TmkA, a MAPK gene of T. virens, is involved in biocontrol properties and repression of conidiation(3). Using suppression-subtraction hybridization and other approaches, we are beginning to identify additional elements of the signaling cascades and their downsteam targets. The role of G protein and MAPK genes are sometimes specific to a particular host fungus or to parasitism of mycelia or sclerotia(2,3). Also of relevance to biocontrol, signal transduction pathway provide a means to alter the balance between sporulation, mycelial growth and hyphal coiling. 展开更多
关键词 木霉属 真菌 基因 变异 信号通道 g蛋白 生物防治
下载PDF
G protein and MAPK signaling pathways control the ability of <i>Cochliobolus heterostrophus</i>to exploit different carbon sources 被引量:2
14
作者 Ofir Degani 《Advances in Biological Chemistry》 2014年第1期40-50,共11页
Phytopathogenic fungi are heterotrophic organisms that excrete a complex array of enzymes for digestion of plant host tissues. Regulation and coordination of extracellular enzyme production, according to growth condit... Phytopathogenic fungi are heterotrophic organisms that excrete a complex array of enzymes for digestion of plant host tissues. Regulation and coordination of extracellular enzyme production, according to growth conditions and fungus nutritional needs, may be controlled by conserved eukaryotic signaling elements such as G-protein subunits and mitogen-activated protein kinase (MAPK). These pathways are known to mediate a complex set of responses in fungi involved in development, reproduction and pathogenicity. Here, we used a series of mutants, deficient in G-protein α (cga1) or/and β subunits or in MAPK, to test their contribution to the ability of Cochliobolus heterostrophus to utilize different carbon sources. In saprophytic culture, the G-protein α subunit mutant strains had WT levels of cellulase, pectinase and protease degradation activities, but it grew significantly slower on minimal medium containing maltose. This weakened ability implies an essential role of the CGA1 signaling in some poor nutritional environments. Remarkably, the MAPK null mutant failed to achieve the WT (and cga1) growth rate on cellulose as a sole carbon and did not grow at all for the first seven days of culture. An enzymatic activity test revealed that this strain significantly reduced cellulose extracellular degradation activity when grew on this medium. Deficiency in the MAPK encoding gene also led to reduced ability to grow on pectin, protein sources and maltose as a sole carbon. The evidence presented indicates a significant and nutrient-specific role of the G-protein and MAPK pathways in mediating growth of this fungus in different environments. 展开更多
关键词 COCHLIOBOLUS Carbon Sources EXTRACELLULAR Enzymes g-protein MAPK Plant Pathogen
下载PDF
G protein signalling involved in host recognition and mycoparasitism-related chitinase expression in Trichoderma atroviride
15
作者 Susanne Zeilinger Barbara Reithner +4 位作者 Kurt Brunner Valeria Scala Isabel Peiβl Matteo Lorito Robert L Mach 《浙江大学学报(农业与生命科学版)》 CAS CSCD 北大核心 2004年第4期448-448,共1页
Mycoparasitic species of Trichoderma are commercially applied as biological control agents against various fungal pathogens. The mycoparasitic interaction is host specific and includes recognition, attack and subseque... Mycoparasitic species of Trichoderma are commercially applied as biological control agents against various fungal pathogens. The mycoparasitic interaction is host specific and includes recognition, attack and subsequent penetration and killing of the host. Investigations on the underlying events revealed that Trichoderma responds to multiple signals from the host (e.g. lectins or other ligands such as low molecular weight components released from the host’s cell wall) and host attack is accompanied by morphological changes and the secretion of hydrolytic enzymes and antibiotics. Degradation of the cell wall of the host fungus is-besides glucanases and proteases-mainly achieved by chitinases. In vivo studies showed that the ech42 gene (encoding endochitinase 42) is expressed before physical contact of Trichoderma with its host, probably representing one of the earliest events in mycoparasitism, whereas Nag1 (N-acetylglucosaminidase) plays a key role in the general induction of the chitinolytic enzyme system of T. atroviride . Investigations on the responsible signal transduction pathways of T. atroviride led to the isolation of several genes encoding key components of the cAMP and MAP kinase signaling pathways, as alpha and β subunits of heterotrimeric G proteins, the regulatory subunit of cAMP-dependent protein kinase, adenylate cyclase, and three MAP kinases. Analysis of knockout mutants, generated by Agrobacterium-mediated transformation, revealed that at least two alpha-subunits of heterotrimeric G proteins are participating in mycoparasitism-related signal transduction. The Tga1 G alpha subunit was shown to be involved in mycoparasitism-related processes such as chitinase expression and overproduction of toxic secondary metabolites, whereas Tga3 was found to be completely avirulent showing defects in chitinase formation and host recognition. 展开更多
关键词 真菌寄生现象 g蛋白 信号识别 宿主 几丁质酶 表达 真菌
下载PDF
Overexpression of G protein-coupled receptor 31 as a poor prognosticator in human colorectal cancer
16
作者 Yu-Ming Rong Xiao-Ming Huang +7 位作者 De-Jun Fan Xu-Tao Lin Feng Zhang Jian-Cong Hu Ying-Xin Tan Xi Chen Yi-Feng Zou Ping Lan 《World Journal of Gastroenterology》 SCIE CAS 2018年第41期4679-4690,共12页
AIM To investigate the expression of G protein-coupled receptor 31 (GPR31) and its clinical significance in human colorectal cancer (CRC).METHODS To determine the association between the GPR31 expression and the progn... AIM To investigate the expression of G protein-coupled receptor 31 (GPR31) and its clinical significance in human colorectal cancer (CRC).METHODS To determine the association between the GPR31 expression and the prognosis of patients, we obtained paraffin-embedded pathological specimens from 466 CRC patients who underwent initial resection. A total of 321 patients from the First Affiliated Hospital of Sun Yat-sen University from January 1996 to December 2008 were included as a training cohort, whereas 145 patients from the Sixth Affiliated Hospital of Sun Yat-sen University from January 2007 to November 2008 were included as a validation cohort. We examined GPR31 expression levels in CRC tissues from two independent cohorts via immunohistochemical staining. All patients were categorized into either a GPR31 low expression group or a GPR31 high expression group. The clinicopathological factors and the prognosis of patients in the GPR31 low expression group and GPR31 high expression group were compared.RESULTS We compared the clinicopathological factors and the prognosis of patients in the GPR31 low expression group and GPR31 high expression group. Significant differences were observed in the number of patients in pM classification between patients in the GPR31 low expression group and GPR31 high expression group (P = 0.007). The five-year survival and tumor-free survival rates of patients were 84.3% and 82.2% in the GPR31 low expression group, respectively, and both rates were 59.7% in the GPR31 high expression group (P < 0.05). Results of the Cox proportional hazard regression model revealed that GPR31 upregulation was associated with shorter overall survival and tumor-free survival of patients with CRC (P < 0.05). Multivariate analysis identified GPR31 expression in colorectal cancer as an independent predictive factor of CRC patient survival (P < 0.05).CONCLUSION High GPR31 expression levels were found to be correlated with pM classification of CRC and to serve as an independent predictive factor of poor survival of CRC patients. 展开更多
关键词 g protein-coupled receptor 31 COLORECTAL cancer PREDICTIVE factor METASTASIS Clinical significance
下载PDF
The action of ethanol on G protein. <i>In silico</i>and cellular/molecular evidences
17
作者 Pamela Fernandez Jessica Moreno +8 位作者 Claudio Barrientos Sergio A. Aguila Daniela Leon Sebastián Ortiz Ramon Silva Francisco Rodriguez Maritza Leonardi Violeta Morin Ximena Romo 《Advances in Bioscience and Biotechnology》 2013年第5期665-673,共9页
Ethanol (EtOH) enhances glycinergic currents in the central nervous system (CNS). Because evidence for an interaction between the α1 subunit of the glycine receptor (α1GlyR) and the G protein Gβγ subunit exists in... Ethanol (EtOH) enhances glycinergic currents in the central nervous system (CNS). Because evidence for an interaction between the α1 subunit of the glycine receptor (α1GlyR) and the G protein Gβγ subunit exists in vitro and because cAMP levels are known to increase in response to EtOH, we wanted to investigate the interaction between Gβγ and α1GlyR in response to EtOH treatment in HEK293 cells and to explore the possible sites of interaction between EtOH and the Gαs subunit. His pull-down assays in GlyR-His6-transfected HEK293 cells incubated with ethanol or propofol revealed that only EtOH treatment increased the binding of Gβγ heterodimers to α1GlyR. Using molecular modelling (protein structure prediction), was modelled the hGαs protein for the first time and validated this model by site-directed mutagenesis. By molecular docking, we identified some potential regions of interaction between hGαs and EtOH that are located on the SIII and SI regions of the Gαs. Therefore, we conclude that ethanol increases the interaction between α1GlyR and Gβγ in HEK293 cells, an effect that might be attributed to the interaction between EtOH and hGαs, which consequently stimulates hGαs. 展开更多
关键词 ALCOHOLISM ETHANOL gLYCINE Receptor g proteins Signals TRANSDUCTION
下载PDF
Targeting G protein-coupled receptors for the treatment of autoimmune diseases
18
作者 Xin XIE 《中国药理学与毒理学杂志》 CAS CSCD 北大核心 2017年第10期943-944,共2页
下载PDF
Arabidopsis EXTRA-LARGE G PROTEIN 1(XLG1) functions together with XLG2 and XLG3 in PAMP-triggered MAPK activation and immunity 被引量:1
19
作者 Yiping Wang Hailei Zhang +6 位作者 Pengxi Wang Huan Zhong Wuzhen Liu Shoudong Zhang Liming Xiong Yingying Wu Yiji Xia 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2023年第3期825-837,共13页
Pattern-triggered immunity(PTI) is an essential strategy used by plants to deploy broad-spectrum resistance against pathogen attacks. Heterotrimeric G proteins have been reported to contribute to PTI.Of the three non-... Pattern-triggered immunity(PTI) is an essential strategy used by plants to deploy broad-spectrum resistance against pathogen attacks. Heterotrimeric G proteins have been reported to contribute to PTI.Of the three non-canonical EXTRA-LARGE G PROTEINs(XLGs) in Arabidopsis thaliana, XLG2 and XLG3 were shown to positively regulate immunity,but XLG1 was not considered to function in defense,based on the analysis of a weak xlg1 allele.In this study, we characterized the xlg1 xlg2 xlg3 triple knockout mutants generated from an xlg1 knockout allele. The strong xlg1 xlg2 xlg3 triple mutants compromised pathogen-associated molecular pattern(PAMP)-triggered activation of mitogen-activated protein kinases(MAPKs) and resistance to pathogen infection. The three XLGs interacted with MAPK cascade proteins involved in defense signaling, including the MAPK kinase kinases MAPKKK3 and MAPKKK5, the MAPK kinases MKK4 and MKK5, and the MAPKs MPK3 and MPK6. Expressing a constitutively active form of MKK4 restored MAPK activation and partially recovered the compromised disease resistance seen in the strong xlg1 xlg2 xlg3 triple mutant. Furthermore, mutations of all three XLGs largely restored the phenotype of the autoimmunity mutant bak1-interacting receptor-like kinase 1. Our study reveals that all three XLGs function redundantly in PAMP-triggered MAPK activation and plant immunity. 展开更多
关键词 ARABIDOPSIS heterotrimeric g protein MAPK cascade plant immunity XLg1 XLg2
原文传递
Promotion of structural plasticity in area V2 of visual cortex prevents against object recognition memory deficits in aging and Alzheimer's disease rodents
20
作者 Irene Navarro-Lobato Mariam Masmudi-Martín +8 位作者 Manuel F.López-Aranda Juan F.López-Téllez Gloria Delgado Pablo Granados-Durán Celia Gaona-Romero Marta Carretero-Rey Sinforiano Posadas María E.Quiros-Ortega Zafar U.Khan 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1835-1841,共7页
Memory deficit,which is often associated with aging and many psychiatric,neurological,and neurodegenerative diseases,has been a challenging issue for treatment.Up till now,all potential drug candidates have failed to ... Memory deficit,which is often associated with aging and many psychiatric,neurological,and neurodegenerative diseases,has been a challenging issue for treatment.Up till now,all potential drug candidates have failed to produce satisfa ctory effects.Therefore,in the search for a solution,we found that a treatment with the gene corresponding to the RGS14414protein in visual area V2,a brain area connected with brain circuits of the ventral stream and the medial temporal lobe,which is crucial for object recognition memory(ORM),can induce enhancement of ORM.In this study,we demonstrated that the same treatment with RGS14414in visual area V2,which is relatively unaffected in neurodegenerative diseases such as Alzheimer s disease,produced longlasting enhancement of ORM in young animals and prevent ORM deficits in rodent models of aging and Alzheimer’s disease.Furthermore,we found that the prevention of memory deficits was mediated through the upregulation of neuronal arbo rization and spine density,as well as an increase in brain-derived neurotrophic factor(BDNF).A knockdown of BDNF gene in RGS14414-treated aging rats and Alzheimer s disease model mice caused complete loss in the upregulation of neuronal structural plasticity and in the prevention of ORM deficits.These findings suggest that BDNF-mediated neuronal structural plasticity in area V2 is crucial in the prevention of memory deficits in RGS14414-treated rodent models of aging and Alzheimer’s disease.Therefore,our findings of RGS14414gene-mediated activation of neuronal circuits in visual area V2 have therapeutic relevance in the treatment of memory deficits. 展开更多
关键词 behavioral performance brain-derived neurotrophic factor cognitive dysfunction episodic memory memory circuit activation memory deficits memory enhancement object recognition memory prevention of memory loss regulator of g protein signaling
下载PDF
上一页 1 2 104 下一页 到第
使用帮助 返回顶部