[Objective] The matter of chemical fertilizer being overused but organic fertilizer being deficiently used causes environment pollution and soil fertility degradation and holds back agricultural sustainable developmen...[Objective] The matter of chemical fertilizer being overused but organic fertilizer being deficiently used causes environment pollution and soil fertility degradation and holds back agricultural sustainable development in China at present.[Method] A survey of 200 farmers selected from Shandong province was conducted in 2008 to identify the factors influencing farmers willingness to use organic fertilizer.[Result] Logit model results showed that the proportion of non-farm income in total income,awareness of...展开更多
Future 6G communications are envisioned to enable a large catalogue of pioneering applications.These will range from networked Cyber-Physical Systems to edge computing devices,establishing real-time feedback control l...Future 6G communications are envisioned to enable a large catalogue of pioneering applications.These will range from networked Cyber-Physical Systems to edge computing devices,establishing real-time feedback control loops critical for managing Industry 5.0 deployments,digital agriculture systems,and essential infrastructures.The provision of extensive machine-type communications through 6G will render many of these innovative systems autonomous and unsupervised.While full automation will enhance industrial efficiency significantly,it concurrently introduces new cyber risks and vulnerabilities.In particular,unattended systems are highly susceptible to trust issues:malicious nodes and false information can be easily introduced into control loops.Additionally,Denialof-Service attacks can be executed by inundating the network with valueless noise.Current anomaly detection schemes require the entire transformation of the control software to integrate new steps and can only mitigate anomalies that conform to predefined mathematical models.Solutions based on an exhaustive data collection to detect anomalies are precise but extremely slow.Standard models,with their limited understanding of mobile networks,can achieve precision rates no higher than 75%.Therefore,more general and transversal protection mechanisms are needed to detect malicious behaviors transparently.This paper introduces a probabilistic trust model and control algorithm designed to address this gap.The model determines the probability of any node to be trustworthy.Communication channels are pruned for those nodes whose probability is below a given threshold.The trust control algorithmcomprises three primary phases,which feed themodel with three different probabilities,which are weighted and combined.Initially,anomalous nodes are identified using Gaussian mixture models and clustering technologies.Next,traffic patterns are studied using digital Bessel functions and the functional scalar product.Finally,the information coherence and content are analyzed.The noise content and abnormal information sequences are detected using a Volterra filter and a bank of Finite Impulse Response filters.An experimental validation based on simulation tools and environments was carried out.Results show the proposed solution can successfully detect up to 92%of malicious data injection attacks.展开更多
Since land and labor force are primary resources to be used and controlled by rural households, the allocation of labor forces will influence land uses, and further lead to land use conversion. The present study used ...Since land and labor force are primary resources to be used and controlled by rural households, the allocation of labor forces will influence land uses, and further lead to land use conversion. The present study used the Binary Logit model to investigate the influence of labor force transfer, characteristics of rural households, location, and land market on agricultural land use conversion at rural household level. This study was conducted based on 329 valid questionnaires, which were obtained in Changshu, Rudong, and Tongshan counties, respectively representing the southern, middle and northern areas of Jiangsu Province. The results showed that land market participation, location, zonal difference and labor transfer had strong influences on agricultural land use conversion. The participation of land market had a strong positive effect on land use conversion, especially for the farmland converted to the fishpond. The nearer to the county seat, the more conversion of land use occurred. Particularly, the labor force transfer caused by wage employment decreased this conversion probability, while the labor transfer caused by self-employment led to more conversion; and the increasing of income from labor transfer increased the conversion. Moreover, land use con- versions demonstrated zonal difference, which were more in Rudong and Changshu counties than in Tongshan County, and the factors influencing this conversion were different in the three regions.展开更多
Purpose:The purpose of this study is to develop and compare model choice strategies in context of logistic regression.Model choice means the choice of the covariates to be included in the model.Design/methodology/appr...Purpose:The purpose of this study is to develop and compare model choice strategies in context of logistic regression.Model choice means the choice of the covariates to be included in the model.Design/methodology/approach:The study is based on Monte Carlo simulations.The methods are compared in terms of three measures of accuracy:specificity and two kinds of sensitivity.A loss function combining sensitivity and specificity is introduced and used for a final comparison.Findings:The choice of method depends on how much the users emphasize sensitivity against specificity.It also depends on the sample size.For a typical logistic regression setting with a moderate sample size and a small to moderate effect size,either BIC,BICc or Lasso seems to be optimal.Research limitations:Numerical simulations cannot cover the whole range of data-generating processes occurring with real-world data.Thus,more simulations are needed.Practical implications:Researchers can refer to these results if they believe that their data-generating process is somewhat similar to some of the scenarios presented in this paper.Alternatively,they could run their own simulations and calculate the loss function.Originality/value:This is a systematic comparison of model choice algorithms and heuristics in context of logistic regression.The distinction between two types of sensitivity and a comparison based on a loss function are methodological novelties.展开更多
Visible light communication(VLC)has attracted much attention in the research of sixthgeneration(6G)systems.Furthermore,channel modeling is the foundation for designing efficient and robust VLC systems.In this paper,we...Visible light communication(VLC)has attracted much attention in the research of sixthgeneration(6G)systems.Furthermore,channel modeling is the foundation for designing efficient and robust VLC systems.In this paper,we present extensive VLC channel measurement campaigns in indoor environments,i.e.,an office and a corridor.Based on the measured data,the large-scale fading characteristics and multipath-related characteristics,including omnidirectional optical path loss(OPL),K-factor,power angular spectrum(PAS),angle spread(AS),and clustering characteristics,are analyzed and modeled through a statistical method.Based on the extracted statistics of the above-mentioned channel characteristics,we propose a statistical spatial channel model(SSCM)capable of modeling multipath in the spatial domain.Furthermore,the simulated statistics of the proposed model are compared with the measured statistics.For instance,in the office,the simulated path loss exponent(PLE)and the measured PLE are 1.96and 1.97,respectively.And,the simulated medians of AS and measured medians of AS are 25.94°and 24.84°,respectively.Generally,the fact that the simulated results fit well with measured results has demonstrated the accuracy of our SSCM.展开更多
Unmanned aerial vehicle(UAV)-enabled edge computing is emerging as a potential enabler for Artificial Intelligence of Things(AIoT)in the forthcoming sixth-generation(6G)communication networks.With the use of flexible ...Unmanned aerial vehicle(UAV)-enabled edge computing is emerging as a potential enabler for Artificial Intelligence of Things(AIoT)in the forthcoming sixth-generation(6G)communication networks.With the use of flexible UAVs,massive sensing data is gathered and processed promptly without considering geographical locations.Deep neural networks(DNNs)are becoming a driving force to extract valuable information from sensing data.However,the lightweight servers installed on UAVs are not able to meet the extremely high requirements of inference tasks due to the limited battery capacities of UAVs.In this work,we investigate a DNN model placement problem for AIoT applications,where the trained DNN models are selected and placed on UAVs to execute inference tasks locally.It is impractical to obtain future DNN model request profiles and system operation states in UAV-enabled edge computing.The Lyapunov optimization technique is leveraged for the proposed DNN model placement problem.Based on the observed system overview,an advanced online placement(AOP)algorithm is developed to solve the transformed problem in each time slot,which can reduce DNN model transmission delay and disk I/O energy cost simultaneously while keeping the input data queues stable.Finally,extensive simulations are provided to depict the effectiveness of the AOP algorithm.The numerical results demonstrate that the AOP algorithm can reduce 18.14%of the model placement cost and 29.89%of the input data queue backlog on average by comparing it with benchmark algorithms.展开更多
文摘[Objective] The matter of chemical fertilizer being overused but organic fertilizer being deficiently used causes environment pollution and soil fertility degradation and holds back agricultural sustainable development in China at present.[Method] A survey of 200 farmers selected from Shandong province was conducted in 2008 to identify the factors influencing farmers willingness to use organic fertilizer.[Result] Logit model results showed that the proportion of non-farm income in total income,awareness of...
基金funding by Comunidad de Madrid within the framework of the Multiannual Agreement with Universidad Politécnica de Madrid to encourage research by young doctors(PRINCE project).
文摘Future 6G communications are envisioned to enable a large catalogue of pioneering applications.These will range from networked Cyber-Physical Systems to edge computing devices,establishing real-time feedback control loops critical for managing Industry 5.0 deployments,digital agriculture systems,and essential infrastructures.The provision of extensive machine-type communications through 6G will render many of these innovative systems autonomous and unsupervised.While full automation will enhance industrial efficiency significantly,it concurrently introduces new cyber risks and vulnerabilities.In particular,unattended systems are highly susceptible to trust issues:malicious nodes and false information can be easily introduced into control loops.Additionally,Denialof-Service attacks can be executed by inundating the network with valueless noise.Current anomaly detection schemes require the entire transformation of the control software to integrate new steps and can only mitigate anomalies that conform to predefined mathematical models.Solutions based on an exhaustive data collection to detect anomalies are precise but extremely slow.Standard models,with their limited understanding of mobile networks,can achieve precision rates no higher than 75%.Therefore,more general and transversal protection mechanisms are needed to detect malicious behaviors transparently.This paper introduces a probabilistic trust model and control algorithm designed to address this gap.The model determines the probability of any node to be trustworthy.Communication channels are pruned for those nodes whose probability is below a given threshold.The trust control algorithmcomprises three primary phases,which feed themodel with three different probabilities,which are weighted and combined.Initially,anomalous nodes are identified using Gaussian mixture models and clustering technologies.Next,traffic patterns are studied using digital Bessel functions and the functional scalar product.Finally,the information coherence and content are analyzed.The noise content and abnormal information sequences are detected using a Volterra filter and a bank of Finite Impulse Response filters.An experimental validation based on simulation tools and environments was carried out.Results show the proposed solution can successfully detect up to 92%of malicious data injection attacks.
基金Under the auspices of National Natural Science Foundation of China (No. 40801063, 70373029)Jiangsu Provincial Society Foundation (No. 06EYB004)
文摘Since land and labor force are primary resources to be used and controlled by rural households, the allocation of labor forces will influence land uses, and further lead to land use conversion. The present study used the Binary Logit model to investigate the influence of labor force transfer, characteristics of rural households, location, and land market on agricultural land use conversion at rural household level. This study was conducted based on 329 valid questionnaires, which were obtained in Changshu, Rudong, and Tongshan counties, respectively representing the southern, middle and northern areas of Jiangsu Province. The results showed that land market participation, location, zonal difference and labor transfer had strong influences on agricultural land use conversion. The participation of land market had a strong positive effect on land use conversion, especially for the farmland converted to the fishpond. The nearer to the county seat, the more conversion of land use occurred. Particularly, the labor force transfer caused by wage employment decreased this conversion probability, while the labor transfer caused by self-employment led to more conversion; and the increasing of income from labor transfer increased the conversion. Moreover, land use con- versions demonstrated zonal difference, which were more in Rudong and Changshu counties than in Tongshan County, and the factors influencing this conversion were different in the three regions.
文摘Purpose:The purpose of this study is to develop and compare model choice strategies in context of logistic regression.Model choice means the choice of the covariates to be included in the model.Design/methodology/approach:The study is based on Monte Carlo simulations.The methods are compared in terms of three measures of accuracy:specificity and two kinds of sensitivity.A loss function combining sensitivity and specificity is introduced and used for a final comparison.Findings:The choice of method depends on how much the users emphasize sensitivity against specificity.It also depends on the sample size.For a typical logistic regression setting with a moderate sample size and a small to moderate effect size,either BIC,BICc or Lasso seems to be optimal.Research limitations:Numerical simulations cannot cover the whole range of data-generating processes occurring with real-world data.Thus,more simulations are needed.Practical implications:Researchers can refer to these results if they believe that their data-generating process is somewhat similar to some of the scenarios presented in this paper.Alternatively,they could run their own simulations and calculate the loss function.Originality/value:This is a systematic comparison of model choice algorithms and heuristics in context of logistic regression.The distinction between two types of sensitivity and a comparison based on a loss function are methodological novelties.
基金supported by the National Science Fund for Distinguished Young Scholars(No.61925102)the National Natural Science Foundation of China(No.62201086,92167202,62201087,62101069)BUPT-CMCC Joint Innovation Center,and State Key Laboratory of IPOC(BUPT)(No.IPOC2023ZT02),China。
文摘Visible light communication(VLC)has attracted much attention in the research of sixthgeneration(6G)systems.Furthermore,channel modeling is the foundation for designing efficient and robust VLC systems.In this paper,we present extensive VLC channel measurement campaigns in indoor environments,i.e.,an office and a corridor.Based on the measured data,the large-scale fading characteristics and multipath-related characteristics,including omnidirectional optical path loss(OPL),K-factor,power angular spectrum(PAS),angle spread(AS),and clustering characteristics,are analyzed and modeled through a statistical method.Based on the extracted statistics of the above-mentioned channel characteristics,we propose a statistical spatial channel model(SSCM)capable of modeling multipath in the spatial domain.Furthermore,the simulated statistics of the proposed model are compared with the measured statistics.For instance,in the office,the simulated path loss exponent(PLE)and the measured PLE are 1.96and 1.97,respectively.And,the simulated medians of AS and measured medians of AS are 25.94°and 24.84°,respectively.Generally,the fact that the simulated results fit well with measured results has demonstrated the accuracy of our SSCM.
基金supported by the National Science Foundation of China(Grant No.62202118)the Top-Technology Talent Project from Guizhou Education Department(Qianjiao Ji[2022]073)+1 种基金the Natural Science Foundation of Hebei Province(Grant No.F2022203045 and F2022203026))the Central Government Guided Local Science and Technology Development Fund Project(Grant No.226Z0701G).
文摘Unmanned aerial vehicle(UAV)-enabled edge computing is emerging as a potential enabler for Artificial Intelligence of Things(AIoT)in the forthcoming sixth-generation(6G)communication networks.With the use of flexible UAVs,massive sensing data is gathered and processed promptly without considering geographical locations.Deep neural networks(DNNs)are becoming a driving force to extract valuable information from sensing data.However,the lightweight servers installed on UAVs are not able to meet the extremely high requirements of inference tasks due to the limited battery capacities of UAVs.In this work,we investigate a DNN model placement problem for AIoT applications,where the trained DNN models are selected and placed on UAVs to execute inference tasks locally.It is impractical to obtain future DNN model request profiles and system operation states in UAV-enabled edge computing.The Lyapunov optimization technique is leveraged for the proposed DNN model placement problem.Based on the observed system overview,an advanced online placement(AOP)algorithm is developed to solve the transformed problem in each time slot,which can reduce DNN model transmission delay and disk I/O energy cost simultaneously while keeping the input data queues stable.Finally,extensive simulations are provided to depict the effectiveness of the AOP algorithm.The numerical results demonstrate that the AOP algorithm can reduce 18.14%of the model placement cost and 29.89%of the input data queue backlog on average by comparing it with benchmark algorithms.