Field experiments were carried out to study the effects of different nitroge- napplication rates and application times on biological traits and physiological indexes of directly-sown rapeseed (Brassica napus L.) at ...Field experiments were carried out to study the effects of different nitroge- napplication rates and application times on biological traits and physiological indexes of directly-sown rapeseed (Brassica napus L.) at the seedling stage and investigate the relationship between these biological traits or physiological indexes at the seedling stage and yield, so as to provide scientific theoretical support for high yield and efficient fertilization management in production of winter rapeseed. Field trials were conducted in Chengdu plain of Sichuan Province under rice-rapeseed rotation system during the period of 2011-2012. The nitrogen application rate trial consisted of five nitrogen levels (0, 90, 180, 270 and 360 kg/hm2) and the nitrogen application time trial included NTl(single application as base fertilized), NT2 (bottom application +one time of topdressing at seedling stage) and NT3 (bottom application+two times of topdressing at seedling stage) under the same nitrogen rate (225 kg/hm2). The results indicated that compared with no nitrogen application (NO) treatment, the in- crease of nitrogen fertilizer is beneficial to the increase of biological traits including plant height, green leaf number, leaf area index and dry weight of rapeseed at the seedling stage, the improvement of physiological indexes including total nitrogen content, chlorophyll content and soluble protein content of functional leaves, and the reduction of soluble sugar content. Nitrogen rate was linearly correlated with various biological traits at the seedling stage and physiological indexes including total nitro- gen content, chlorophyll content and soluble sugar content in functional leaves over- a/I, but in parabolic correlation with soluble protein content. Under the same nitrogen rate, NT2 treatment exhibited biological traits remarkably or significantly higher than NT1 treatment and NT3 treatment. The nitrogen application times were linearly cor- related with the physiological indexes of functional leaves at the seedling stage. The various biological traits and physiological index of functional leaves at the seedlings stage were in quadratic function parabolic correlation with seed yield, and the corre- lation was significant (P〈0.05). Therefore, under the rice-rapeseed rotation system in Chengdu plain, the economic rational nitrogen rate is 180-225 kg/hm2, and the mode of bottom application + one time of topdressing (NT2) is suitable.展开更多
The relationships between photochemical reflectance index (PRI) and the chlorophyll fluorescence parameters were examined to assess suitability of PRI as a remote-sensing tool for the chlorophyll fluorescence parame...The relationships between photochemical reflectance index (PRI) and the chlorophyll fluorescence parameters were examined to assess suitability of PRI as a remote-sensing tool for the chlorophyll fluorescence parameters. A greenhouse experiment was conducted using cotton and peanut crops under water stress condition. Five cotton and six peanut cultivars were grown using Andosole soil in pots maintained at two water levels; the control and water stress treatment (WS) of 100 and 50% of the daily transpiration, respectively. Higher non-photochemical quenching (NPQ) was exhibited by peanut than that of cotton by the water stress. On the other hand, the decreases of the actual quantum yield of photosystem II (△F/F'm) and PRI by the water stress in cotton were larger than those in peanut. There were positively significant correlation coefficients between PRI and △F/F'm in cotton at noon and in the afternoon including the control and WS. The correlations of PRI with NPQ were negatively significant at noon and in the afternoon for cotton, and in the afternoon for peanut. No clear relationship was found among these parameters in the morning probably due to the diurnal increase in global solar radiation. It was concluded that there would be a possibility to detect the effects of water stress on △F/F'm and NPQ by PRI with some exceptions, although PRI could not note varietals differences in △F/F'm and NPQ for each treatment.展开更多
The effects of leaf water status in a wheat canopy on the accuracy of estimating leaf area index (LAI) and N were determined in this study using extracted spectral characteristics in the 2 000-2 300 nm region of the s...The effects of leaf water status in a wheat canopy on the accuracy of estimating leaf area index (LAI) and N were determined in this study using extracted spectral characteristics in the 2 000-2 300 nm region of the short wave infrared (SWI) band. A newly defined spectral index, relative adsorptive index in the 2000-2300 nm region (RAI2000-2300), which can be calculated by RAI2000-2300 = (R2224 - R2054) (R2224 + R2054)-1 with R being the reflectance at 2224 or 2054 nm, was utilized. This spectral index, RAI2000-2300, was significantly correlated (P < 0.01) with green LAI and leaf N concentration and proved to be potentially valuable for monitoring plant green LAI and leaf N at the field canopy scale. Moreover, plant LAI could be monitored more easily and more successfully than plant leaf N. The study also showed that leaf water had a strong masking effect on the 2 000-2 300 nm spectral characteristics and both the coefficient between RAI2000-2300 and green LAI and that between RAI2000-2300 and leaf N content decreased as leaf water content increased.展开更多
[Objective] Based on the cotton variety high yielding potential, fiber quality traits, disease resistance, and early maturity characters, a cultivar registration index model was developed to simplify the tedious calcu...[Objective] Based on the cotton variety high yielding potential, fiber quality traits, disease resistance, and early maturity characters, a cultivar registration index model was developed to simplify the tedious calculation process in national cotton registration procedure, and thus to enhance the practical application of cultivar regis- tration index in cotton breeding ancl cotton recommending. [Method] By means of correlation analysis, partial correlation analysis and path analysis methods, the cor- relation of cotton main properties and their effects on cultivar registration index were explored using the dataset of national cotton regional trials in Yangtze River Valley during 1996-2013. The cultivar registration index model was constructed with step- wise regression statistical technique to ascertain the quantitative relationship of main characters with cultivar registration index, and the regional cotton trial dataset in 2013 was used to validate the model. [Result] Several characters with larger deter- minants to cultivar registration index were screened out,ie. lint yield increase ratio, pro-frost yield ratio, verticillium wilt index, fiber strength, fusarium wilt index and mi- cronaire value. The cultivar registration index model defined the functional relation- ship of cultivar registration index with the selected main characters, among which lint yield increase ratio, fiber strength and micronaire value contributed most to culti- var registration index. The model validation with regional cotton trials in 2013 indi- cated the root mean square error, RMSE was only 2.77, and the variation coeffi- cient was 6.77%, which confirmed the model prediction effect was quite perfect. [Conclusion] The developed cultivar registration index model was reliable enough to simulate the complicated scoring system in cultivar registration procedure, also sim- plified cotton registration process, and enhanced the practicability of the cultivar reg- istration index.展开更多
BACKGROUND Crohn’s disease(CD)is a chronic inflammatory bowel disorder that progresses to bowel damage(BD)over time.An image-based index,the Lémann index(LI),has been developed to measure cumulative BD.AIM To ch...BACKGROUND Crohn’s disease(CD)is a chronic inflammatory bowel disorder that progresses to bowel damage(BD)over time.An image-based index,the Lémann index(LI),has been developed to measure cumulative BD.AIM To characterize the long-term progression of BD in CD based on changes in the LI and to determine risk factors for long-term progression.METHODS This was a single-center longitudinal cohort study.Patients who had participated in prospective studies on the accuracy of magnetic resonance imaging using endoscopy as a gold standard and who had a follow-up of at least 5 years were reevaluated after 5-12 years.RESULTS Seventy-two patients were included.LI increased in 38 patients(52.8%),remained unchanged in 9 patients(12.5%),and decreased in 25 patients(34.7%).The small bowel score and surgery subscale significantly increased(P=0.002 and P=0.001,respectively),whereas the fistulizing subscale significantly decreased(P=0.001).Baseline parameters associated with BD progression were ileal location(P=0.026),CD phenotype[stricturing,fistulizing,or both(P=0.007,P=0.006,and P=0.035,respectively)],disease duration>10 years(P=0.019),and baseline LI stricturing score(P=0.049).No correlation was observed between BD progression and baseline clinical activity,biological markers,or severity of endoscopic lesions.CONCLUSION BD,as assessed by the LI,progressed in half of the patients with CD over a period of 5-12 years.The main determinants of BD progression were ileal location,stricturing/fistulizing phenotype,and disease duration.展开更多
F_(10.7)指数是太阳活动的重要指标,准确预测F_(10.7)指数有助于预防和缓解太阳活动对无线电通信、导航和卫星通信等领域的影响.基于F_(10.7)射电流量的特性,在双向长短时记忆网络(Bidirectional Long Short-Term Memory Network,BiLSTM...F_(10.7)指数是太阳活动的重要指标,准确预测F_(10.7)指数有助于预防和缓解太阳活动对无线电通信、导航和卫星通信等领域的影响.基于F_(10.7)射电流量的特性,在双向长短时记忆网络(Bidirectional Long Short-Term Memory Network,BiLSTM)基础上融入注意力机制(Attention),提出了一种基于BiLSTM-Attention的F_(10.7)预报模型.在加拿大DRAO数据集上其平均绝对误差(MAE)为5.38,平均绝对百分比误差(MAPE)控制在5%以内,相关系数(R)高达0.987,与其他RNN模型相比拥有优越的预测性能.针对中国廊坊L&S望远镜观测的F_(10.7)数据集,提出了一种转换平均校准(Conversion Average Calibration,CAC)方法进行数据预处理,处理后的数据与DRAO数据集具有较高的相关性.基于该数据集对比分析了RNN系列模型的预报效果,实验结果表明,BiLSTM-Attention和BiLSTM两种模型在预测F_(10.7)指数方面具有较好的优势,表现出较好的预测性能和稳定性.展开更多
Drought(water shortage)can substantially limit the yield and economic value of rose plants(Rosa spp.).Here,we characterized the effect of exogenous calcium(Ca^(2+))on the antioxidant system and photosynthesis-related ...Drought(water shortage)can substantially limit the yield and economic value of rose plants(Rosa spp.).Here,we characterized the effect of exogenous calcium(Ca^(2+))on the antioxidant system and photosynthesis-related properties of rose under polyethylene glycol 6000(PEG6000)-induced drought stress.Chlorophyll levels,as well as leaf and root biomass,were significantly reduced by drought;drought also had a major effect on the enzymatic antioxidant system and increased concentrations of reactive oxygen species.Application of exogenous Ca^(2+)increased the net photosynthetic rate and stomatal conductance of leaves,enhanced water-use efficiency,and increased the length and width of stomata following exposure to drought.Organ-specific physiological responses were observed under different concentrations of Ca^(2+).Application of 5 mmol·L^(-1)Ca^(2+)promoted photosynthesis and antioxidant activity in the leaves,and application of 10 mmol·L^(-1)Ca^(2+)promoted antioxidant activity in the roots.Application of exogenous Ca^(2+)greatly enhanced the phenotype and photosynthetic capacity of potted rose plants following exposure to drought stress.Overall,our findings indicate that the application of exogenous Ca^(2+)enhances the drought resistance of roses by promoting physiological adaptation and that it could be used to aid the cultivation of rose plants.展开更多
Shade tolerance is essential for soybeans in inter/relay cropping systems.A genome-wide association study(GWAS)integrated with transcriptome sequencing was performed to identify genes and construct a genetic network g...Shade tolerance is essential for soybeans in inter/relay cropping systems.A genome-wide association study(GWAS)integrated with transcriptome sequencing was performed to identify genes and construct a genetic network governing the trait in a set of recombinant inbred lines derived from two soybean parents with contrasting shade tolerance.An improved GWAS procedure,restricted two-stage multi-locus genome-wide association study based on gene/allele sequence markers(GASM-RTM-GWAS),identified 140 genes and their alleles associated with shade-tolerance index(STI),146 with relative pith cell length(RCL),and nine with both.Annotation of these genes by biological categories allowed the construction of a protein–protein interaction network by 187 genes,of which half were differentially expressed under shading and non-shading conditions as well as at different growth stages.From the identified genes,three ones jointly identified for both traits by both GWAS and transcriptome and two genes with maximum links were chosen as beginners for entrance into the network.Altogether,both STI and RCL gene systems worked for shade-tolerance with genes interacted each other,this confirmed that shadetolerance is regulated by more than single group of interacted genes,involving multiple biological functions as a gene network.展开更多
文摘Field experiments were carried out to study the effects of different nitroge- napplication rates and application times on biological traits and physiological indexes of directly-sown rapeseed (Brassica napus L.) at the seedling stage and investigate the relationship between these biological traits or physiological indexes at the seedling stage and yield, so as to provide scientific theoretical support for high yield and efficient fertilization management in production of winter rapeseed. Field trials were conducted in Chengdu plain of Sichuan Province under rice-rapeseed rotation system during the period of 2011-2012. The nitrogen application rate trial consisted of five nitrogen levels (0, 90, 180, 270 and 360 kg/hm2) and the nitrogen application time trial included NTl(single application as base fertilized), NT2 (bottom application +one time of topdressing at seedling stage) and NT3 (bottom application+two times of topdressing at seedling stage) under the same nitrogen rate (225 kg/hm2). The results indicated that compared with no nitrogen application (NO) treatment, the in- crease of nitrogen fertilizer is beneficial to the increase of biological traits including plant height, green leaf number, leaf area index and dry weight of rapeseed at the seedling stage, the improvement of physiological indexes including total nitrogen content, chlorophyll content and soluble protein content of functional leaves, and the reduction of soluble sugar content. Nitrogen rate was linearly correlated with various biological traits at the seedling stage and physiological indexes including total nitro- gen content, chlorophyll content and soluble sugar content in functional leaves over- a/I, but in parabolic correlation with soluble protein content. Under the same nitrogen rate, NT2 treatment exhibited biological traits remarkably or significantly higher than NT1 treatment and NT3 treatment. The nitrogen application times were linearly cor- related with the physiological indexes of functional leaves at the seedling stage. The various biological traits and physiological index of functional leaves at the seedlings stage were in quadratic function parabolic correlation with seed yield, and the corre- lation was significant (P〈0.05). Therefore, under the rice-rapeseed rotation system in Chengdu plain, the economic rational nitrogen rate is 180-225 kg/hm2, and the mode of bottom application + one time of topdressing (NT2) is suitable.
文摘The relationships between photochemical reflectance index (PRI) and the chlorophyll fluorescence parameters were examined to assess suitability of PRI as a remote-sensing tool for the chlorophyll fluorescence parameters. A greenhouse experiment was conducted using cotton and peanut crops under water stress condition. Five cotton and six peanut cultivars were grown using Andosole soil in pots maintained at two water levels; the control and water stress treatment (WS) of 100 and 50% of the daily transpiration, respectively. Higher non-photochemical quenching (NPQ) was exhibited by peanut than that of cotton by the water stress. On the other hand, the decreases of the actual quantum yield of photosystem II (△F/F'm) and PRI by the water stress in cotton were larger than those in peanut. There were positively significant correlation coefficients between PRI and △F/F'm in cotton at noon and in the afternoon including the control and WS. The correlations of PRI with NPQ were negatively significant at noon and in the afternoon for cotton, and in the afternoon for peanut. No clear relationship was found among these parameters in the morning probably due to the diurnal increase in global solar radiation. It was concluded that there would be a possibility to detect the effects of water stress on △F/F'm and NPQ by PRI with some exceptions, although PRI could not note varietals differences in △F/F'm and NPQ for each treatment.
基金Project supported by the National High Technology Research and Development Program of China (863 Program)(No. 2002AA243011)the National Key Basic Research Support Foundation of China (No. G2000077907)
文摘The effects of leaf water status in a wheat canopy on the accuracy of estimating leaf area index (LAI) and N were determined in this study using extracted spectral characteristics in the 2 000-2 300 nm region of the short wave infrared (SWI) band. A newly defined spectral index, relative adsorptive index in the 2000-2300 nm region (RAI2000-2300), which can be calculated by RAI2000-2300 = (R2224 - R2054) (R2224 + R2054)-1 with R being the reflectance at 2224 or 2054 nm, was utilized. This spectral index, RAI2000-2300, was significantly correlated (P < 0.01) with green LAI and leaf N concentration and proved to be potentially valuable for monitoring plant green LAI and leaf N at the field canopy scale. Moreover, plant LAI could be monitored more easily and more successfully than plant leaf N. The study also showed that leaf water had a strong masking effect on the 2 000-2 300 nm spectral characteristics and both the coefficient between RAI2000-2300 and green LAI and that between RAI2000-2300 and leaf N content decreased as leaf water content increased.
基金Supported by National Major Projects for the GMO Cultivation of New Varieties in China(2012ZX08013015)
文摘[Objective] Based on the cotton variety high yielding potential, fiber quality traits, disease resistance, and early maturity characters, a cultivar registration index model was developed to simplify the tedious calculation process in national cotton registration procedure, and thus to enhance the practical application of cultivar regis- tration index in cotton breeding ancl cotton recommending. [Method] By means of correlation analysis, partial correlation analysis and path analysis methods, the cor- relation of cotton main properties and their effects on cultivar registration index were explored using the dataset of national cotton regional trials in Yangtze River Valley during 1996-2013. The cultivar registration index model was constructed with step- wise regression statistical technique to ascertain the quantitative relationship of main characters with cultivar registration index, and the regional cotton trial dataset in 2013 was used to validate the model. [Result] Several characters with larger deter- minants to cultivar registration index were screened out,ie. lint yield increase ratio, pro-frost yield ratio, verticillium wilt index, fiber strength, fusarium wilt index and mi- cronaire value. The cultivar registration index model defined the functional relation- ship of cultivar registration index with the selected main characters, among which lint yield increase ratio, fiber strength and micronaire value contributed most to culti- var registration index. The model validation with regional cotton trials in 2013 indi- cated the root mean square error, RMSE was only 2.77, and the variation coeffi- cient was 6.77%, which confirmed the model prediction effect was quite perfect. [Conclusion] The developed cultivar registration index model was reliable enough to simulate the complicated scoring system in cultivar registration procedure, also sim- plified cotton registration process, and enhanced the practicability of the cultivar reg- istration index.
基金Supported by the Helmsley Charitable Trust Grant,No.2015PG-IBD005.
文摘BACKGROUND Crohn’s disease(CD)is a chronic inflammatory bowel disorder that progresses to bowel damage(BD)over time.An image-based index,the Lémann index(LI),has been developed to measure cumulative BD.AIM To characterize the long-term progression of BD in CD based on changes in the LI and to determine risk factors for long-term progression.METHODS This was a single-center longitudinal cohort study.Patients who had participated in prospective studies on the accuracy of magnetic resonance imaging using endoscopy as a gold standard and who had a follow-up of at least 5 years were reevaluated after 5-12 years.RESULTS Seventy-two patients were included.LI increased in 38 patients(52.8%),remained unchanged in 9 patients(12.5%),and decreased in 25 patients(34.7%).The small bowel score and surgery subscale significantly increased(P=0.002 and P=0.001,respectively),whereas the fistulizing subscale significantly decreased(P=0.001).Baseline parameters associated with BD progression were ileal location(P=0.026),CD phenotype[stricturing,fistulizing,or both(P=0.007,P=0.006,and P=0.035,respectively)],disease duration>10 years(P=0.019),and baseline LI stricturing score(P=0.049).No correlation was observed between BD progression and baseline clinical activity,biological markers,or severity of endoscopic lesions.CONCLUSION BD,as assessed by the LI,progressed in half of the patients with CD over a period of 5-12 years.The main determinants of BD progression were ileal location,stricturing/fistulizing phenotype,and disease duration.
文摘F_(10.7)指数是太阳活动的重要指标,准确预测F_(10.7)指数有助于预防和缓解太阳活动对无线电通信、导航和卫星通信等领域的影响.基于F_(10.7)射电流量的特性,在双向长短时记忆网络(Bidirectional Long Short-Term Memory Network,BiLSTM)基础上融入注意力机制(Attention),提出了一种基于BiLSTM-Attention的F_(10.7)预报模型.在加拿大DRAO数据集上其平均绝对误差(MAE)为5.38,平均绝对百分比误差(MAPE)控制在5%以内,相关系数(R)高达0.987,与其他RNN模型相比拥有优越的预测性能.针对中国廊坊L&S望远镜观测的F_(10.7)数据集,提出了一种转换平均校准(Conversion Average Calibration,CAC)方法进行数据预处理,处理后的数据与DRAO数据集具有较高的相关性.基于该数据集对比分析了RNN系列模型的预报效果,实验结果表明,BiLSTM-Attention和BiLSTM两种模型在预测F_(10.7)指数方面具有较好的优势,表现出较好的预测性能和稳定性.
基金supported by the National Key Research and Development Program of China(Grant No.2018YFD1000400)Innovative Program for Graduate Student of Qingdao Agricultural University(Grant No.QNYCX22045).
文摘Drought(water shortage)can substantially limit the yield and economic value of rose plants(Rosa spp.).Here,we characterized the effect of exogenous calcium(Ca^(2+))on the antioxidant system and photosynthesis-related properties of rose under polyethylene glycol 6000(PEG6000)-induced drought stress.Chlorophyll levels,as well as leaf and root biomass,were significantly reduced by drought;drought also had a major effect on the enzymatic antioxidant system and increased concentrations of reactive oxygen species.Application of exogenous Ca^(2+)increased the net photosynthetic rate and stomatal conductance of leaves,enhanced water-use efficiency,and increased the length and width of stomata following exposure to drought.Organ-specific physiological responses were observed under different concentrations of Ca^(2+).Application of 5 mmol·L^(-1)Ca^(2+)promoted photosynthesis and antioxidant activity in the leaves,and application of 10 mmol·L^(-1)Ca^(2+)promoted antioxidant activity in the roots.Application of exogenous Ca^(2+)greatly enhanced the phenotype and photosynthetic capacity of potted rose plants following exposure to drought stress.Overall,our findings indicate that the application of exogenous Ca^(2+)enhances the drought resistance of roses by promoting physiological adaptation and that it could be used to aid the cultivation of rose plants.
基金This work was financially supported by the grants from the National Key Research and Development Program of China(2021YFF1001204,2021YFD1201602)the MOE 111 Project(B08025)+2 种基金the MOA CARS-04 program,the Program of Jiangsu province(JBGS-2021-014)the Guangxi Scientific Research and Technology Development Plan(14125008-2-16)the Guidance Foundation of Sanya Institute of Nanjing Agricultural University(NAUSY-ZZ02,NAUSY-MS05).
文摘Shade tolerance is essential for soybeans in inter/relay cropping systems.A genome-wide association study(GWAS)integrated with transcriptome sequencing was performed to identify genes and construct a genetic network governing the trait in a set of recombinant inbred lines derived from two soybean parents with contrasting shade tolerance.An improved GWAS procedure,restricted two-stage multi-locus genome-wide association study based on gene/allele sequence markers(GASM-RTM-GWAS),identified 140 genes and their alleles associated with shade-tolerance index(STI),146 with relative pith cell length(RCL),and nine with both.Annotation of these genes by biological categories allowed the construction of a protein–protein interaction network by 187 genes,of which half were differentially expressed under shading and non-shading conditions as well as at different growth stages.From the identified genes,three ones jointly identified for both traits by both GWAS and transcriptome and two genes with maximum links were chosen as beginners for entrance into the network.Altogether,both STI and RCL gene systems worked for shade-tolerance with genes interacted each other,this confirmed that shadetolerance is regulated by more than single group of interacted genes,involving multiple biological functions as a gene network.