Lie group analysis method is applied to the extended(3+1)-dimensional Kadomtsev–Petviashvili–Boussinesq equation and the corresponding similarity reduction equations are obtained with various infinitesimal generator...Lie group analysis method is applied to the extended(3+1)-dimensional Kadomtsev–Petviashvili–Boussinesq equation and the corresponding similarity reduction equations are obtained with various infinitesimal generators.By selecting suitable arbitrary functions in the similarity reduction solutions,we obtain abundant invariant solutions,including the trigonometric solution,the kink-lump interaction solution,the interaction solution between lump wave and triangular periodic wave,the two-kink solution,the lump solution,the interaction between a lump and two-kink and the periodic lump solution in different planes.These exact solutions are also given graphically to show the detailed structures of this high dimensional integrable system.展开更多
Iron‐based pyrophosphates are attractive cathodes for sodium‐ion batteries due to their large framework,cost‐effectiveness,and high energy density.However,the understanding of the crystal structure is scarce and on...Iron‐based pyrophosphates are attractive cathodes for sodium‐ion batteries due to their large framework,cost‐effectiveness,and high energy density.However,the understanding of the crystal structure is scarce and only a limited candidates have been reported so far.In this work,we found for the first time that a continuous solid solution,Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2)(0≤α≤1,could be obtained by mutual substitution of cations at center‐symmetric Na3 and Na4 sites while keeping the crystal building blocks of anionic P_(2)O_(7) unchanged.In particular,a novel off‐stoichiometric Na_(3)Fe(2.5)(P_(2)O_(7))_(2)is thus proposed,and its structure,energy storage mechanism,and electrochemical performance are extensively investigated to unveil the structure–function relationship.The as‐prepared off‐stoichiometric electrode delivers appealing performance with a reversible discharge capacity of 83 mAh g^(−1),a working voltage of 2.9 V(vs.Na^(+)/Na),the retention of 89.2%of the initial capacity after 500 cycles,and enhanced rate capability of 51 mAh g^(−1)at a current density of 1600 mA g^(−1).This research shows that sodium ferric pyrophosphate could form extended solid solution composition and promising phase is concealed in the range of Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2),offering more chances for exploration of new cathode materials for the construction of high‐performance SIBs.展开更多
Starting from an extended mapping approach, a new type of variable separation solution with arbitrary functions of generalized (2+1)-dimensional Broer-Kaup system (GBK) system is derived. Then based on the derived sol...Starting from an extended mapping approach, a new type of variable separation solution with arbitrary functions of generalized (2+1)-dimensional Broer-Kaup system (GBK) system is derived. Then based on the derived solitary wave solution, we obtain some specific chaotic solitons to the (2+1)-dimensional GBK system.展开更多
In this work, an extended Jacobian elliptic function expansion method is proposed for constructing the exact solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its app...In this work, an extended Jacobian elliptic function expansion method is proposed for constructing the exact solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its applications to the system of shallow water wave equations and modified Liouville equation which play an important role in mathematical physics.展开更多
We give the bilinear form and n-soliton solutions of a(2+1)-dimensional [(2+1)-D] extended shallow water wave(eSWW) equation associated with two functions v and r by using Hirota bilinear method. We provide soli...We give the bilinear form and n-soliton solutions of a(2+1)-dimensional [(2+1)-D] extended shallow water wave(eSWW) equation associated with two functions v and r by using Hirota bilinear method. We provide solitons, breathers,and hybrid solutions of them. Four cases of a crucial φ(y), which is an arbitrary real continuous function appeared in f of bilinear form, are selected by using Jacobi elliptic functions, which yield a periodic solution and three kinds of doubly localized dormion-type solution. The first order Jacobi-type solution travels parallelly along the x axis with the velocity(3k12+ α, 0) on(x, y)-plane. If φ(y) = sn(y, 3/10), it is a periodic solution. If φ(y) = cn(y, 1), it is a dormion-type-Ⅰ solutions which has a maximum(3/4)k1p1 and a minimum-(3/4)k1p1. The width of the contour line is ln■. If φ(y) = sn(y, 1), we get a dormion-type-Ⅱ solution(26) which has only one extreme value-(3/2)k1p1. The width of the contour line is ln■. If φ(y) = sn(y, 1/2)/(1 + y2), we get a dormion-type-Ⅲ solution(21) which shows very strong doubly localized feature on(x, y) plane. Moreover, several interesting patterns of the mixture of periodic and localized solutions are also given in graphic way.展开更多
The extended F-expansion method or mapping method is used to construct exact solutions for the coupled KleinGordon Schr/Sdinger equations (K-G-S equations) by the aid of the symbolic computation system Mathematica. ...The extended F-expansion method or mapping method is used to construct exact solutions for the coupled KleinGordon Schr/Sdinger equations (K-G-S equations) by the aid of the symbolic computation system Mathematica. More solutions in the Jacobi elliptic function form are obtained, including the single Jacobi elliptic function solutions, combined Jacobi elliptic function solutions, rational solutions, triangular solutions, soliton solutions and combined soliton solutions.展开更多
The deterministic extended Korteweg-de Vries equation plays an essential role in the description of the creation and propagation of nonlinear waves in many fields. We study a stochastic extended Korteweg-de Vries equa...The deterministic extended Korteweg-de Vries equation plays an essential role in the description of the creation and propagation of nonlinear waves in many fields. We study a stochastic extended Korteweg-de Vries equation driven by a multiplicative noise in the form of a cylindrical Wiener process. We prove the existence of a martingale solution to the equation studied for all physically relevant initial conditions. The proof of the solution is based on two approximations of the problem considered and the compactness method.展开更多
In this paper, a new extended complex tanh-function method is presented for constructing traveling wave, non-traveling wave, and coefficient functions' soliton-like solutions of nonlinear equations. This method is mo...In this paper, a new extended complex tanh-function method is presented for constructing traveling wave, non-traveling wave, and coefficient functions' soliton-like solutions of nonlinear equations. This method is more powerful than the complex tanh-function method [Chaos, Solitons and Fractals 20 (2004) 1037]. Abundant new solutions o[ (2q-1)-dimensional Hirota equation are obtained by using this method and symbolic computation system Maple.展开更多
By using the generally projective Riccati equation method, more new exact travelling wave solutions to extended nonlinear Schrodinger equation (NLSE), which describes the femtosecond pulse propagation in monomode op...By using the generally projective Riccati equation method, more new exact travelling wave solutions to extended nonlinear Schrodinger equation (NLSE), which describes the femtosecond pulse propagation in monomode optical fiber, are found, which include bright soliton solution, dark soliton solution, new solitary waves, periodic solutions, and rational solutions. The finding of abundant solution structures for extended NLSE helps to study the movement rule of femtosecond pulse propagation in monomode optical fiber.展开更多
In this paper, we derive the analytical solutions in a three-dimensional anisotropic magnetoelectroelastic bimaterial space subject to uniform extended dislocations and tractions within a horizontal circular area. By ...In this paper, we derive the analytical solutions in a three-dimensional anisotropic magnetoelectroelastic bimaterial space subject to uniform extended dislocations and tractions within a horizontal circular area. By virtue of the Stroh formalism and Fourier transformation, the final expression of solutions in the physical domain contains only line integrals over [0, 2π] rather than infinite integrals. As the reduced cases, the half-space and homogeneous full-space solutions can be directly derived from the present solutions. Also, in terms of material domains, the present solutions can be reduced to the piezoelectric, piezomagnetic, purely elastic materials with different symmetries of material prop- erty. To carry out numerical calculations, Gauss quadrature is adopted. In the numerical examples, the effect of different loading locations on the response at the interface is analyzed. It is shown that, when the magnetic traction or electric dislocation is applied, the physical quantities on the interface may not decrease monotonically as the loading area moves away from the interface. The distributions of different in-plane physical quantities on the upper and lower interfaces under various extended horizontal loadings are compared and the differences are discussed. The work presented in this paper can serve as benchmarks for future numerical studies in related research fields.展开更多
This paper considers interfacial waves propagating along the interface between a two-dimensional two-fluid with a flat bottom and a rigid upper boundary. There is a light fluid layer overlying a heavier one in the sys...This paper considers interfacial waves propagating along the interface between a two-dimensional two-fluid with a flat bottom and a rigid upper boundary. There is a light fluid layer overlying a heavier one in the system, and a small density difference exists between the two layers. It just focuses on the weakly non-linear small amplitude waves by introducing two small independent parameters: the nonlinearity ratio ε, represented by the ratio of amplitude to depth, and the dispersion ratio μ, represented by the square of the ratio of depth to wave length, which quantify the relative importance of nonlinearity and dispersion. It derives an extended KdV equation of the interfacial waves using the method adopted by Dullin et al in the study of the surface waves when considering the order up to O(μ^2). As expected, the equation derived from the present work includes, as special cases, those obtained by Dullin et al for surface waves when the surface tension is neglected. The equation derived using an alternative method here is the same as the equation presented by Choi and Camassa. Also it solves the equation by borrowing the method presented by Marchant used for surface waves, and obtains its asymptotic solitary wave solutions when the weakly nonlinear and weakly dispersive terms are balanced in the extended KdV equation.展开更多
We study a forced variable-coefficient extended Korteweg-de Vries(KdV)equation in fluid dynamics with respect to internal solitary wave.Bäcklund transformations of the forced variable-coefficient extended KdV equ...We study a forced variable-coefficient extended Korteweg-de Vries(KdV)equation in fluid dynamics with respect to internal solitary wave.Bäcklund transformations of the forced variable-coefficient extended KdV equation are demonstrated with the help of truncated Painlevéexpansion.When the variable coefficients are time-periodic,the wave function evolves periodically over time.Symmetry calculation shows that the forced variable-coefficient extended KdV equation is invariant under the Galilean transformations and the scaling transformations.One-parameter group transformations and one-parameter subgroup invariant solutions are presented.Cnoidal wave solutions and solitary wave solutions of the forced variable-coefficient extended KdV equation are obtained by means of function expansion method.The consistent Riccati expansion(CRE)solvability of the forced variable-coefficient extended KdV equation is proved by means of CRE.Interaction phenomenon between cnoidal waves and solitary waves can be observed.Besides,the interaction waveform changes with the parameters.When the variable parameters are functions of time,the interaction waveform will be not regular and smooth.展开更多
Starting from a special variable transformation and with the help of an extended mapping approach, the high-order Schrodinger equation (n = 3, 4) is solved. A new family of variable separation solutions with arbitra...Starting from a special variable transformation and with the help of an extended mapping approach, the high-order Schrodinger equation (n = 3, 4) is solved. A new family of variable separation solutions with arbitrary functions is derived.展开更多
In this paper, we extend the mapping approach to the N-order Schrodinger equation. In terms of the extended mapping approach, new families of variable separation solutions with some arbitrary functions are derived.
The sinh-Gordon equation expansion method is further extended by generMizing the sinh-Gordon equation and constructing new ansatz solution of the considered equation. As its application, the (2+1)-dimensional Konop...The sinh-Gordon equation expansion method is further extended by generMizing the sinh-Gordon equation and constructing new ansatz solution of the considered equation. As its application, the (2+1)-dimensional Konopelchenko-Dubrovsky equation is investigated and abundant exact travelling wave solutions are explicitly obtained including solitary wave solutions, trigonometric function solutions and Jacobi elliptic doubly periodic function solutions, some of which are new exact solutions that we have never seen before within our knowledge. The method can be applied to other nonlinear evolution equations in mathematical physics.展开更多
Based on the Hirota bilinear method,the second extended(3+1)-dimensional Jimbo–Miwa equation is established.By Maple symbolic calculation,lump and lump-kink soliton solutions are obtained.The interaction solutions be...Based on the Hirota bilinear method,the second extended(3+1)-dimensional Jimbo–Miwa equation is established.By Maple symbolic calculation,lump and lump-kink soliton solutions are obtained.The interaction solutions between the lump and multi-kink soliton,and the interaction between the lump and triangular periodic soliton are derived by combining a multi-exponential function or trigonometric sine and cosine functions with quadratic functions.Furthermore,periodiclump wave solution is derived via the ansatz including hyperbolic and trigonometric functions.Finally,3D plots,2D curves,density plots,and contour plots with particular choices of the suitable parameters are depicted to illustrate the dynamical features of these solutions.展开更多
In this paper, we generalize the extended tanh-function approach, which was used to find new exact travelling wave solutions of nonlinear partial differential equations or coupled nonlinear partial differential equati...In this paper, we generalize the extended tanh-function approach, which was used to find new exact travelling wave solutions of nonlinear partial differential equations or coupled nonlinear partial differential equations, to nonlinear differential-difference equations. As illustration, two series of exact travelling wave solutions of the discrete sine-Gordon equation are obtained by means of the extended tanh-function approach.展开更多
First, two tanh-coth type solutions of a class of nonlinear wave equation are derived by using a simplified modified extended tanh-function method. Then, further analysis to some tanh-coth type solutions of nonlinear ...First, two tanh-coth type solutions of a class of nonlinear wave equation are derived by using a simplified modified extended tanh-function method. Then, further analysis to some tanh-coth type solutions of nonlinear evolution equations are given. The results show that when balance number m is one or two, the tanh-eoth type solutions obtained by the modified extended tanh-funetion method can be obtained by using the hyperbolic-function method.展开更多
This paper is to investigate the extended(2+1)-dimensional Konopelchenko-Dubrovsky equations,which can be applied to describing certain phenomena in the stratified shear flow,the internal and shallow-water waves, plas...This paper is to investigate the extended(2+1)-dimensional Konopelchenko-Dubrovsky equations,which can be applied to describing certain phenomena in the stratified shear flow,the internal and shallow-water waves, plasmas and other fields.Painleve analysis is passed through via symbolic computation.Bilinear-form equations are constructed and soliton solutions are derived.Soliton solutions and interactions are illustrated.Bilinear-form Backlund transformation and a type of solutions are obtained.展开更多
文摘Lie group analysis method is applied to the extended(3+1)-dimensional Kadomtsev–Petviashvili–Boussinesq equation and the corresponding similarity reduction equations are obtained with various infinitesimal generators.By selecting suitable arbitrary functions in the similarity reduction solutions,we obtain abundant invariant solutions,including the trigonometric solution,the kink-lump interaction solution,the interaction solution between lump wave and triangular periodic wave,the two-kink solution,the lump solution,the interaction between a lump and two-kink and the periodic lump solution in different planes.These exact solutions are also given graphically to show the detailed structures of this high dimensional integrable system.
基金National Natural Science Foundation of China,Grant/Award Numbers:21972108,U20A20249,U22A20438Changzhou Science and Technology Bureau,Grant/Award Number:CM20223017Innovation and Technology Commission(ITC)of Hong Kong,The Innovation&Technology Fund(ITF)with Project No.ITS/126/21。
文摘Iron‐based pyrophosphates are attractive cathodes for sodium‐ion batteries due to their large framework,cost‐effectiveness,and high energy density.However,the understanding of the crystal structure is scarce and only a limited candidates have been reported so far.In this work,we found for the first time that a continuous solid solution,Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2)(0≤α≤1,could be obtained by mutual substitution of cations at center‐symmetric Na3 and Na4 sites while keeping the crystal building blocks of anionic P_(2)O_(7) unchanged.In particular,a novel off‐stoichiometric Na_(3)Fe(2.5)(P_(2)O_(7))_(2)is thus proposed,and its structure,energy storage mechanism,and electrochemical performance are extensively investigated to unveil the structure–function relationship.The as‐prepared off‐stoichiometric electrode delivers appealing performance with a reversible discharge capacity of 83 mAh g^(−1),a working voltage of 2.9 V(vs.Na^(+)/Na),the retention of 89.2%of the initial capacity after 500 cycles,and enhanced rate capability of 51 mAh g^(−1)at a current density of 1600 mA g^(−1).This research shows that sodium ferric pyrophosphate could form extended solid solution composition and promising phase is concealed in the range of Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2),offering more chances for exploration of new cathode materials for the construction of high‐performance SIBs.
基金浙江省自然科学基金,Foundation of New Century "151 Talent Engineering" of Zhejiang Province,丽水学院校科研和教改项目,the Scientific Research Foundation of Key Discipline of Zhejiang Province
文摘Starting from an extended mapping approach, a new type of variable separation solution with arbitrary functions of generalized (2+1)-dimensional Broer-Kaup system (GBK) system is derived. Then based on the derived solitary wave solution, we obtain some specific chaotic solitons to the (2+1)-dimensional GBK system.
文摘In this work, an extended Jacobian elliptic function expansion method is proposed for constructing the exact solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its applications to the system of shallow water wave equations and modified Liouville equation which play an important role in mathematical physics.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11671219 and 11871446)
文摘We give the bilinear form and n-soliton solutions of a(2+1)-dimensional [(2+1)-D] extended shallow water wave(eSWW) equation associated with two functions v and r by using Hirota bilinear method. We provide solitons, breathers,and hybrid solutions of them. Four cases of a crucial φ(y), which is an arbitrary real continuous function appeared in f of bilinear form, are selected by using Jacobi elliptic functions, which yield a periodic solution and three kinds of doubly localized dormion-type solution. The first order Jacobi-type solution travels parallelly along the x axis with the velocity(3k12+ α, 0) on(x, y)-plane. If φ(y) = sn(y, 3/10), it is a periodic solution. If φ(y) = cn(y, 1), it is a dormion-type-Ⅰ solutions which has a maximum(3/4)k1p1 and a minimum-(3/4)k1p1. The width of the contour line is ln■. If φ(y) = sn(y, 1), we get a dormion-type-Ⅱ solution(26) which has only one extreme value-(3/2)k1p1. The width of the contour line is ln■. If φ(y) = sn(y, 1/2)/(1 + y2), we get a dormion-type-Ⅲ solution(21) which shows very strong doubly localized feature on(x, y) plane. Moreover, several interesting patterns of the mixture of periodic and localized solutions are also given in graphic way.
基金Project supported by the National Nature Science Foundation of China (Grant No 49894190) of the Chinese Academy of Science (Grant No KZCXI-sw-18), and Knowledge Innovation Program.
文摘The extended F-expansion method or mapping method is used to construct exact solutions for the coupled KleinGordon Schr/Sdinger equations (K-G-S equations) by the aid of the symbolic computation system Mathematica. More solutions in the Jacobi elliptic function form are obtained, including the single Jacobi elliptic function solutions, combined Jacobi elliptic function solutions, rational solutions, triangular solutions, soliton solutions and combined soliton solutions.
文摘The deterministic extended Korteweg-de Vries equation plays an essential role in the description of the creation and propagation of nonlinear waves in many fields. We study a stochastic extended Korteweg-de Vries equation driven by a multiplicative noise in the form of a cylindrical Wiener process. We prove the existence of a martingale solution to the equation studied for all physically relevant initial conditions. The proof of the solution is based on two approximations of the problem considered and the compactness method.
基金The project supported by National Natural Science Foundation of China and the Natural Science Foundation of Shandong Province of China
文摘In this paper, a new extended complex tanh-function method is presented for constructing traveling wave, non-traveling wave, and coefficient functions' soliton-like solutions of nonlinear equations. This method is more powerful than the complex tanh-function method [Chaos, Solitons and Fractals 20 (2004) 1037]. Abundant new solutions o[ (2q-1)-dimensional Hirota equation are obtained by using this method and symbolic computation system Maple.
基金The project supported by National Natural Science Foundation of China and the Natural Science Foundation of Shandong Province of China
文摘By using the generally projective Riccati equation method, more new exact travelling wave solutions to extended nonlinear Schrodinger equation (NLSE), which describes the femtosecond pulse propagation in monomode optical fiber, are found, which include bright soliton solution, dark soliton solution, new solitary waves, periodic solutions, and rational solutions. The finding of abundant solution structures for extended NLSE helps to study the movement rule of femtosecond pulse propagation in monomode optical fiber.
基金supported by the National Natural Science Foundation of China (10772024)
文摘In this paper, we derive the analytical solutions in a three-dimensional anisotropic magnetoelectroelastic bimaterial space subject to uniform extended dislocations and tractions within a horizontal circular area. By virtue of the Stroh formalism and Fourier transformation, the final expression of solutions in the physical domain contains only line integrals over [0, 2π] rather than infinite integrals. As the reduced cases, the half-space and homogeneous full-space solutions can be directly derived from the present solutions. Also, in terms of material domains, the present solutions can be reduced to the piezoelectric, piezomagnetic, purely elastic materials with different symmetries of material prop- erty. To carry out numerical calculations, Gauss quadrature is adopted. In the numerical examples, the effect of different loading locations on the response at the interface is analyzed. It is shown that, when the magnetic traction or electric dislocation is applied, the physical quantities on the interface may not decrease monotonically as the loading area moves away from the interface. The distributions of different in-plane physical quantities on the upper and lower interfaces under various extended horizontal loadings are compared and the differences are discussed. The work presented in this paper can serve as benchmarks for future numerical studies in related research fields.
文摘This paper considers interfacial waves propagating along the interface between a two-dimensional two-fluid with a flat bottom and a rigid upper boundary. There is a light fluid layer overlying a heavier one in the system, and a small density difference exists between the two layers. It just focuses on the weakly non-linear small amplitude waves by introducing two small independent parameters: the nonlinearity ratio ε, represented by the ratio of amplitude to depth, and the dispersion ratio μ, represented by the square of the ratio of depth to wave length, which quantify the relative importance of nonlinearity and dispersion. It derives an extended KdV equation of the interfacial waves using the method adopted by Dullin et al in the study of the surface waves when considering the order up to O(μ^2). As expected, the equation derived from the present work includes, as special cases, those obtained by Dullin et al for surface waves when the surface tension is neglected. The equation derived using an alternative method here is the same as the equation presented by Choi and Camassa. Also it solves the equation by borrowing the method presented by Marchant used for surface waves, and obtains its asymptotic solitary wave solutions when the weakly nonlinear and weakly dispersive terms are balanced in the extended KdV equation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11775047,11775146,and 11865013).
文摘We study a forced variable-coefficient extended Korteweg-de Vries(KdV)equation in fluid dynamics with respect to internal solitary wave.Bäcklund transformations of the forced variable-coefficient extended KdV equation are demonstrated with the help of truncated Painlevéexpansion.When the variable coefficients are time-periodic,the wave function evolves periodically over time.Symmetry calculation shows that the forced variable-coefficient extended KdV equation is invariant under the Galilean transformations and the scaling transformations.One-parameter group transformations and one-parameter subgroup invariant solutions are presented.Cnoidal wave solutions and solitary wave solutions of the forced variable-coefficient extended KdV equation are obtained by means of function expansion method.The consistent Riccati expansion(CRE)solvability of the forced variable-coefficient extended KdV equation is proved by means of CRE.Interaction phenomenon between cnoidal waves and solitary waves can be observed.Besides,the interaction waveform changes with the parameters.When the variable parameters are functions of time,the interaction waveform will be not regular and smooth.
基金The project supported by the Natural Science Foundation of Zhejiang Province of China under Grant No. Y604106, the Foundation of New Century "151 Talent Engineering" of Zhejiang Province, the Scientific Research Foundation of Key Discipline of Zhejiang Province, and the Natural Science Foundation of Zhejiang Lishui University under Grant No. KZ04008
文摘Starting from a special variable transformation and with the help of an extended mapping approach, the high-order Schrodinger equation (n = 3, 4) is solved. A new family of variable separation solutions with arbitrary functions is derived.
基金The project supported by the Natural Science Foundation of Zhejiang Province of China under Grant No. Y604106, the Foundation of New Century "151 Talent Engineering" of Zhejiang Province, the Scientific Research Foundation of Key Discipline of Zhejiang Province, and the Natural Science Foundation of Zhejiang Lishui University under Grant No. KZ05005
文摘In this paper, we extend the mapping approach to the N-order Schrodinger equation. In terms of the extended mapping approach, new families of variable separation solutions with some arbitrary functions are derived.
基金supported by the National Natural Science Foundation of China under Grant No.10672053the Scientific Research Fund of the Education Department of Hunan Province under Grant No.07D064
文摘The sinh-Gordon equation expansion method is further extended by generMizing the sinh-Gordon equation and constructing new ansatz solution of the considered equation. As its application, the (2+1)-dimensional Konopelchenko-Dubrovsky equation is investigated and abundant exact travelling wave solutions are explicitly obtained including solitary wave solutions, trigonometric function solutions and Jacobi elliptic doubly periodic function solutions, some of which are new exact solutions that we have never seen before within our knowledge. The method can be applied to other nonlinear evolution equations in mathematical physics.
文摘Based on the Hirota bilinear method,the second extended(3+1)-dimensional Jimbo–Miwa equation is established.By Maple symbolic calculation,lump and lump-kink soliton solutions are obtained.The interaction solutions between the lump and multi-kink soliton,and the interaction between the lump and triangular periodic soliton are derived by combining a multi-exponential function or trigonometric sine and cosine functions with quadratic functions.Furthermore,periodiclump wave solution is derived via the ansatz including hyperbolic and trigonometric functions.Finally,3D plots,2D curves,density plots,and contour plots with particular choices of the suitable parameters are depicted to illustrate the dynamical features of these solutions.
文摘In this paper, we generalize the extended tanh-function approach, which was used to find new exact travelling wave solutions of nonlinear partial differential equations or coupled nonlinear partial differential equations, to nonlinear differential-difference equations. As illustration, two series of exact travelling wave solutions of the discrete sine-Gordon equation are obtained by means of the extended tanh-function approach.
基金Supported by the Natural Science Foundation of China under Grant No.11071209
文摘First, two tanh-coth type solutions of a class of nonlinear wave equation are derived by using a simplified modified extended tanh-function method. Then, further analysis to some tanh-coth type solutions of nonlinear evolution equations are given. The results show that when balance number m is one or two, the tanh-eoth type solutions obtained by the modified extended tanh-funetion method can be obtained by using the hyperbolic-function method.
基金Supported by the National Natural Science Foundation of China under Grant No.60772023the Open Fund under Grant No.SKLSDE-2011KF-03+2 种基金Supported project under Grant No.SKLSDE-2010ZX-07 of the State Key Laboratory of Software Development Environment,Beijing University of Aeronautics and Astronauticsthe National High Technology Research and Development Program of China(863 Program) under Grant No.2009AA043303the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.200800130006,Chinese Ministry of Education
文摘This paper is to investigate the extended(2+1)-dimensional Konopelchenko-Dubrovsky equations,which can be applied to describing certain phenomena in the stratified shear flow,the internal and shallow-water waves, plasmas and other fields.Painleve analysis is passed through via symbolic computation.Bilinear-form equations are constructed and soliton solutions are derived.Soliton solutions and interactions are illustrated.Bilinear-form Backlund transformation and a type of solutions are obtained.