鉴于Transformer的Self-Attention机制具有优秀的表征能力,许多研究者提出了基于Self-Attention机制的图像处理模型,并取得了巨大成功。然而,基于Self-Attention的传统图像分类网络无法兼顾全局信息和计算复杂度,限制了Self-Attention...鉴于Transformer的Self-Attention机制具有优秀的表征能力,许多研究者提出了基于Self-Attention机制的图像处理模型,并取得了巨大成功。然而,基于Self-Attention的传统图像分类网络无法兼顾全局信息和计算复杂度,限制了Self-Attention的广泛应用。文中提出了一种有效的、可扩展的注意力模块Local Neighbor Global Self-Attention(LNG-SA),该模块在任意时期都能进行局部信息、邻居信息和全局信息的交互。通过重复级联LNG-SA模块,设计了一个全新的网络,称为LNG-Transformer。该网络整体采用层次化结构,具有优秀的灵活性,其计算复杂度与图像分辨率呈线性关系。LNG-SA模块的特性使得LNG-Transformer即使在早期的高分辨率阶段,也可以进行局部信息、邻居信息和全局信息的交互,从而带来更高的效率、更强的学习能力。实验结果表明,LNG-Transformer在图像分类任务中具有良好的性能。展开更多
To study the formation and transformation mechanism of long-period stacked ordered(LPSO)structures,a systematic atomic scale analysis was conducted for the structural evolution of long-period stacked ordered(LPSO)stru...To study the formation and transformation mechanism of long-period stacked ordered(LPSO)structures,a systematic atomic scale analysis was conducted for the structural evolution of long-period stacked ordered(LPSO)structures in the Mg-Gd-Y-Zn-Zr alloy annealed at 300℃~500℃.Various types of metastable LPSO building block clusters were found to exist in alloy structures at different temperatures,which precipitate during the solidification and homogenization process.The stability of Zn/Y clusters is explained by the first principles of density functional theory.The LPSO structure is distinguished by the arrangement of its different Zn/Y enriched LPSO structural units,which comprises local fcc stacking sequences upon a tightly packed plane.The presence of solute atoms causes local lattice distortion,thereby enabling the rearrangement of Mg atoms in the different configurations in the local lattice,and local HCP-FCC transitions occur between Mg and Zn atoms occupying the nearest neighbor positions.This finding indicates that LPSO structures can generate necessary Schockley partial dislocations on specific slip surfaces,providing direct evidence of the transition from 18R to 14H.Growth of the LPSO,devoid of any defects and non-coherent interfaces,was observed separately from other precipitated phases.As a result,the precipitation sequence of LPSO in the solidification stage was as follows:Zn/Ycluster+Mg layers→various metastable LPSO building block clusters→18R/24R LPSO;whereas the precipitation sequence of LPSO during homogenization treatment was observed to be as follows:18R LPSO→various metastable LPSO building block clusters→14H LPSO.Of these,14H LPSO was found to be the most thermodynamically stable structure.展开更多
A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long peri...A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long period stacking ordered(LPSO)phase were characterized,and the mechanical properties uniformity was investigated.Moreover,a quantitative relationship between the microstructure and tensile yield strength was established.The results showed that the grains in the processed zone(PZ)and interfacial zone(IZ)were refined from 50μm to 3μm and 4μm,respectively,and numerous original LPSO phases were broken.In IZ,some block-shaped 18R LPSO phases were transformed into needle-like 14H LPSO phases due to stacking faults and the short-range diffusion of solute atoms.The severe shear deformation in the form of kinetic energy caused profuse stacking fault to be generated and move rapidly,greatly increasing the transformation rate of LPSO phase.After MFSP,the ultimate tensile strength,yield strength and elongation to failure of the large-scale plate were 367 MPa,305 MPa and 18.0% respectively.Grain refinement and LPSO phase strengthening were the major strengthening mechanisms for the MFSP sample.In particularly,the strength of IZ was comparable to that of PZ because the strength contribution of the 14H LPSO phase offsets the lack of grain refinement strengthening in IZ.This result opposes the widely accepted notion that IZ is a weak region in MFSP-prepared large-scale fine-grained plate.展开更多
Photoacoustic imaging(PAI)is a noninvasive emerging imaging method based on the photoacoustic effect,which provides necessary assistance for medical diagnosis.It has the characteristics of large imaging depth and high...Photoacoustic imaging(PAI)is a noninvasive emerging imaging method based on the photoacoustic effect,which provides necessary assistance for medical diagnosis.It has the characteristics of large imaging depth and high contrast.However,limited by the equipment cost and reconstruction time requirements,the existing PAI systems distributed with annular array transducers are difficult to take into account both the image quality and the imaging speed.In this paper,a triple-path feature transform network(TFT-Net)for ring-array photoacoustic tomography is proposed to enhance the imaging quality from limited-view and sparse measurement data.Specifically,the network combines the raw photoacoustic pressure signals and conventional linear reconstruction images as input data,and takes the photoacoustic physical model as a prior information to guide the reconstruction process.In addition,to enhance the ability of extracting signal features,the residual block and squeeze and excitation block are introduced into the TFT-Net.For further efficient reconstruction,the final output of photoacoustic signals uses‘filter-then-upsample’operation with a pixel-shuffle multiplexer and a max out module.Experiment results on simulated and in-vivo data demonstrate that the constructed TFT-Net can restore the target boundary clearly,reduce background noise,and realize fast and high-quality photoacoustic image reconstruction of limited view with sparse sampling.展开更多
The rapid development of short video platforms poses new challenges for traditional recommendation systems.Recommender systems typically depend on two types of user behavior feedback to construct user interest profile...The rapid development of short video platforms poses new challenges for traditional recommendation systems.Recommender systems typically depend on two types of user behavior feedback to construct user interest profiles:explicit feedback(interactive behavior),which significantly influences users’short-term interests,and implicit feedback(viewing time),which substantially affects their long-term interests.However,the previous model fails to distinguish between these two feedback methods,leading it to predict only the overall preferences of users based on extensive historical behavior sequences.Consequently,it cannot differentiate between users’long-term and shortterm interests,resulting in low accuracy in describing users’interest states and predicting the evolution of their interests.This paper introduces a video recommendationmodel calledCAT-MFRec(CrossAttention Transformer-Mixed Feedback Recommendation)designed to differentiate between explicit and implicit user feedback within the DIEN(Deep Interest Evolution Network)framework.This study emphasizes the separate learning of the two types of behavioral feedback,effectively integrating them through the cross-attention mechanism.Additionally,it leverages the long sequence dependence capabilities of Transformer technology to accurately construct user interest profiles and predict the evolution of user interests.Experimental results indicate that CAT-MF Rec significantly outperforms existing recommendation methods across various performance indicators.This advancement offers new theoretical and practical insights for the development of video recommendations,particularly in addressing complex and dynamic user behavior patterns.展开更多
This work reveals the significant effects of cobalt(Co)on the microstructure and impact toughness of as-quenched highstrength steels by experimental characterizations and thermo-kinetic analyses.The results show that ...This work reveals the significant effects of cobalt(Co)on the microstructure and impact toughness of as-quenched highstrength steels by experimental characterizations and thermo-kinetic analyses.The results show that the Co-bearing steel exhibits finer blocks and a lower ductile-brittle transition temperature than the steel without Co.Moreover,the Co-bearing steel reveals higher transformation rates at the intermediate stage with bainite volume fraction ranging from around 0.1 to 0.6.The improved impact toughness of the Co-bearing steel results from the higher dense block boundaries dominated by the V1/V2 variant pair.Furthermore,the addition of Co induces a larger transformation driving force and a lower bainite start temperature(BS),thereby contributing to the refinement of blocks and the increase of the V1/V2 variant pair.These findings would be instructive for the composition,microstructure design,and property optimization of high-strength steels.展开更多
We present exact solutions for the Klein Gordon equation with a ring-shaped oscillator potential. The energy eigenvalues and the normalized wave functions are obtained for a particle in the presence of non-central osc...We present exact solutions for the Klein Gordon equation with a ring-shaped oscillator potential. The energy eigenvalues and the normalized wave functions are obtained for a particle in the presence of non-central oscillator potential. The angulm" functions are expressed in terms of the hypergeometric functions. The radial eigenfunetions have been obtained by using the Laplace integral transform. By means of the Laplace transform method, which is efficient and simple, the radial Klein-Gordon equation is reduced to a first-order differential equation.展开更多
针对目前敌我识别辐射源个体识别(Specific Emitter Identification of Identification Friend or Foe,SEI-IFF)研究不足的问题,提出了一种基于多维特征与Transformer网络的SEI-IFF方法。该方法首先从单个脉冲及信号全局等多维度获取如...针对目前敌我识别辐射源个体识别(Specific Emitter Identification of Identification Friend or Foe,SEI-IFF)研究不足的问题,提出了一种基于多维特征与Transformer网络的SEI-IFF方法。该方法首先从单个脉冲及信号全局等多维度获取如相位、幅度、时间、功率谱密度等信号特征,结合Transformer网络进一步提取不同IFF辐射源个体特征中如前后关联特性的细微特征并最终实现SEI-IFF。试验结果表明,所提方法针对20个目标搭载的IFF辐射源个体的平均识别正确率达95.3%,可较准确地完成SEI-IFF,有助于提升战场SEI-IFF效率。展开更多
In this paper we use Böcklund transformation to construct soliton solutions for a coupled KdV system.This system was first proposed by Wang in 2010.First we generalize the well-known Bäcklund transformation ...In this paper we use Böcklund transformation to construct soliton solutions for a coupled KdV system.This system was first proposed by Wang in 2010.First we generalize the well-known Bäcklund transformation for the KdV equation to such coupled KdV system.Then from a trivial seed solution,we construct soliton solutions.We also give a nonlinear superposition formula,which allows us to generate multi-soliton solutions.展开更多
Detecting pavement cracks is critical for road safety and infrastructure management.Traditional methods,relying on manual inspection and basic image processing,are time-consuming and prone to errors.Recent deep-learni...Detecting pavement cracks is critical for road safety and infrastructure management.Traditional methods,relying on manual inspection and basic image processing,are time-consuming and prone to errors.Recent deep-learning(DL)methods automate crack detection,but many still struggle with variable crack patterns and environmental conditions.This study aims to address these limitations by introducing the Masker Transformer,a novel hybrid deep learning model that integrates the precise localization capabilities of Mask Region-based Convolutional Neural Network(Mask R-CNN)with the global contextual awareness of Vision Transformer(ViT).The research focuses on leveraging the strengths of both architectures to enhance segmentation accuracy and adaptability across different pavement conditions.We evaluated the performance of theMaskerTransformer against other state-of-theartmodels such asU-Net,TransformerU-Net(TransUNet),U-NetTransformer(UNETr),SwinU-NetTransformer(Swin-UNETr),You Only Look Once version 8(YoloV8),and Mask R-CNN using two benchmark datasets:Crack500 and DeepCrack.The findings reveal that the MaskerTransformer significantly outperforms the existing models,achieving the highest Dice SimilarityCoefficient(DSC),precision,recall,and F1-Score across both datasets.Specifically,the model attained a DSC of 80.04%on Crack500 and 91.37%on DeepCrack,demonstrating superior segmentation accuracy and reliability.The high precision and recall rates further substantiate its effectiveness in real-world applications,suggesting that the Masker Transformer can serve as a robust tool for automated pavement crack detection,potentially replacing more traditional methods.展开更多
文摘鉴于Transformer的Self-Attention机制具有优秀的表征能力,许多研究者提出了基于Self-Attention机制的图像处理模型,并取得了巨大成功。然而,基于Self-Attention的传统图像分类网络无法兼顾全局信息和计算复杂度,限制了Self-Attention的广泛应用。文中提出了一种有效的、可扩展的注意力模块Local Neighbor Global Self-Attention(LNG-SA),该模块在任意时期都能进行局部信息、邻居信息和全局信息的交互。通过重复级联LNG-SA模块,设计了一个全新的网络,称为LNG-Transformer。该网络整体采用层次化结构,具有优秀的灵活性,其计算复杂度与图像分辨率呈线性关系。LNG-SA模块的特性使得LNG-Transformer即使在早期的高分辨率阶段,也可以进行局部信息、邻居信息和全局信息的交互,从而带来更高的效率、更强的学习能力。实验结果表明,LNG-Transformer在图像分类任务中具有良好的性能。
基金financially funded by Natural Science Basic Research Program of Shaanxi(grant number 2022JM-239)Key Research and Development Project of Shaanxi Provincial(grant number 2021LLRH-05–08)。
文摘To study the formation and transformation mechanism of long-period stacked ordered(LPSO)structures,a systematic atomic scale analysis was conducted for the structural evolution of long-period stacked ordered(LPSO)structures in the Mg-Gd-Y-Zn-Zr alloy annealed at 300℃~500℃.Various types of metastable LPSO building block clusters were found to exist in alloy structures at different temperatures,which precipitate during the solidification and homogenization process.The stability of Zn/Y clusters is explained by the first principles of density functional theory.The LPSO structure is distinguished by the arrangement of its different Zn/Y enriched LPSO structural units,which comprises local fcc stacking sequences upon a tightly packed plane.The presence of solute atoms causes local lattice distortion,thereby enabling the rearrangement of Mg atoms in the different configurations in the local lattice,and local HCP-FCC transitions occur between Mg and Zn atoms occupying the nearest neighbor positions.This finding indicates that LPSO structures can generate necessary Schockley partial dislocations on specific slip surfaces,providing direct evidence of the transition from 18R to 14H.Growth of the LPSO,devoid of any defects and non-coherent interfaces,was observed separately from other precipitated phases.As a result,the precipitation sequence of LPSO in the solidification stage was as follows:Zn/Ycluster+Mg layers→various metastable LPSO building block clusters→18R/24R LPSO;whereas the precipitation sequence of LPSO during homogenization treatment was observed to be as follows:18R LPSO→various metastable LPSO building block clusters→14H LPSO.Of these,14H LPSO was found to be the most thermodynamically stable structure.
基金supported by the National Key Research and Development Program of China(2021YFB3501002)State Key Program of National Natural Science Foundation of China(5203405)+3 种基金National Natural Science Foundation of China(51974220,52104383)National Key Research and Development Program of China(2021YFB3700902)Key Research and Development Program of Shaanxi Province(2020ZDLGY13-06,2017ZDXM-GY-037)Shaanxi Province National Science Fund for Distinguished Young Scholars(2022JC-24)。
文摘A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long period stacking ordered(LPSO)phase were characterized,and the mechanical properties uniformity was investigated.Moreover,a quantitative relationship between the microstructure and tensile yield strength was established.The results showed that the grains in the processed zone(PZ)and interfacial zone(IZ)were refined from 50μm to 3μm and 4μm,respectively,and numerous original LPSO phases were broken.In IZ,some block-shaped 18R LPSO phases were transformed into needle-like 14H LPSO phases due to stacking faults and the short-range diffusion of solute atoms.The severe shear deformation in the form of kinetic energy caused profuse stacking fault to be generated and move rapidly,greatly increasing the transformation rate of LPSO phase.After MFSP,the ultimate tensile strength,yield strength and elongation to failure of the large-scale plate were 367 MPa,305 MPa and 18.0% respectively.Grain refinement and LPSO phase strengthening were the major strengthening mechanisms for the MFSP sample.In particularly,the strength of IZ was comparable to that of PZ because the strength contribution of the 14H LPSO phase offsets the lack of grain refinement strengthening in IZ.This result opposes the widely accepted notion that IZ is a weak region in MFSP-prepared large-scale fine-grained plate.
基金supported by National Key R&D Program of China[2022YFC2402400]the National Natural Science Foundation of China[Grant No.62275062]Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology[Grant No.2020B121201010-4].
文摘Photoacoustic imaging(PAI)is a noninvasive emerging imaging method based on the photoacoustic effect,which provides necessary assistance for medical diagnosis.It has the characteristics of large imaging depth and high contrast.However,limited by the equipment cost and reconstruction time requirements,the existing PAI systems distributed with annular array transducers are difficult to take into account both the image quality and the imaging speed.In this paper,a triple-path feature transform network(TFT-Net)for ring-array photoacoustic tomography is proposed to enhance the imaging quality from limited-view and sparse measurement data.Specifically,the network combines the raw photoacoustic pressure signals and conventional linear reconstruction images as input data,and takes the photoacoustic physical model as a prior information to guide the reconstruction process.In addition,to enhance the ability of extracting signal features,the residual block and squeeze and excitation block are introduced into the TFT-Net.For further efficient reconstruction,the final output of photoacoustic signals uses‘filter-then-upsample’operation with a pixel-shuffle multiplexer and a max out module.Experiment results on simulated and in-vivo data demonstrate that the constructed TFT-Net can restore the target boundary clearly,reduce background noise,and realize fast and high-quality photoacoustic image reconstruction of limited view with sparse sampling.
基金supported by National Natural Science Foundation of China(62072416)Key Research and Development Special Project of Henan Province(221111210500)Key TechnologiesR&DProgram of Henan rovince(232102211053,242102211071).
文摘The rapid development of short video platforms poses new challenges for traditional recommendation systems.Recommender systems typically depend on two types of user behavior feedback to construct user interest profiles:explicit feedback(interactive behavior),which significantly influences users’short-term interests,and implicit feedback(viewing time),which substantially affects their long-term interests.However,the previous model fails to distinguish between these two feedback methods,leading it to predict only the overall preferences of users based on extensive historical behavior sequences.Consequently,it cannot differentiate between users’long-term and shortterm interests,resulting in low accuracy in describing users’interest states and predicting the evolution of their interests.This paper introduces a video recommendationmodel calledCAT-MFRec(CrossAttention Transformer-Mixed Feedback Recommendation)designed to differentiate between explicit and implicit user feedback within the DIEN(Deep Interest Evolution Network)framework.This study emphasizes the separate learning of the two types of behavioral feedback,effectively integrating them through the cross-attention mechanism.Additionally,it leverages the long sequence dependence capabilities of Transformer technology to accurately construct user interest profiles and predict the evolution of user interests.Experimental results indicate that CAT-MF Rec significantly outperforms existing recommendation methods across various performance indicators.This advancement offers new theoretical and practical insights for the development of video recommendations,particularly in addressing complex and dynamic user behavior patterns.
基金supported by the National Natural Science Foundation of China(No.52271089)the financial support from the C hina Postdoctoral Science Foundation(No.2023M732192)。
文摘This work reveals the significant effects of cobalt(Co)on the microstructure and impact toughness of as-quenched highstrength steels by experimental characterizations and thermo-kinetic analyses.The results show that the Co-bearing steel exhibits finer blocks and a lower ductile-brittle transition temperature than the steel without Co.Moreover,the Co-bearing steel reveals higher transformation rates at the intermediate stage with bainite volume fraction ranging from around 0.1 to 0.6.The improved impact toughness of the Co-bearing steel results from the higher dense block boundaries dominated by the V1/V2 variant pair.Furthermore,the addition of Co induces a larger transformation driving force and a lower bainite start temperature(BS),thereby contributing to the refinement of blocks and the increase of the V1/V2 variant pair.These findings would be instructive for the composition,microstructure design,and property optimization of high-strength steels.
文摘We present exact solutions for the Klein Gordon equation with a ring-shaped oscillator potential. The energy eigenvalues and the normalized wave functions are obtained for a particle in the presence of non-central oscillator potential. The angulm" functions are expressed in terms of the hypergeometric functions. The radial eigenfunetions have been obtained by using the Laplace integral transform. By means of the Laplace transform method, which is efficient and simple, the radial Klein-Gordon equation is reduced to a first-order differential equation.
文摘针对目前敌我识别辐射源个体识别(Specific Emitter Identification of Identification Friend or Foe,SEI-IFF)研究不足的问题,提出了一种基于多维特征与Transformer网络的SEI-IFF方法。该方法首先从单个脉冲及信号全局等多维度获取如相位、幅度、时间、功率谱密度等信号特征,结合Transformer网络进一步提取不同IFF辐射源个体特征中如前后关联特性的细微特征并最终实现SEI-IFF。试验结果表明,所提方法针对20个目标搭载的IFF辐射源个体的平均识别正确率达95.3%,可较准确地完成SEI-IFF,有助于提升战场SEI-IFF效率。
基金Supported by the Jiangsu Higher School Undergraduate Innovation and Entrepreneurship Training Program(202311117078Y)。
文摘In this paper we use Böcklund transformation to construct soliton solutions for a coupled KdV system.This system was first proposed by Wang in 2010.First we generalize the well-known Bäcklund transformation for the KdV equation to such coupled KdV system.Then from a trivial seed solution,we construct soliton solutions.We also give a nonlinear superposition formula,which allows us to generate multi-soliton solutions.
文摘Detecting pavement cracks is critical for road safety and infrastructure management.Traditional methods,relying on manual inspection and basic image processing,are time-consuming and prone to errors.Recent deep-learning(DL)methods automate crack detection,but many still struggle with variable crack patterns and environmental conditions.This study aims to address these limitations by introducing the Masker Transformer,a novel hybrid deep learning model that integrates the precise localization capabilities of Mask Region-based Convolutional Neural Network(Mask R-CNN)with the global contextual awareness of Vision Transformer(ViT).The research focuses on leveraging the strengths of both architectures to enhance segmentation accuracy and adaptability across different pavement conditions.We evaluated the performance of theMaskerTransformer against other state-of-theartmodels such asU-Net,TransformerU-Net(TransUNet),U-NetTransformer(UNETr),SwinU-NetTransformer(Swin-UNETr),You Only Look Once version 8(YoloV8),and Mask R-CNN using two benchmark datasets:Crack500 and DeepCrack.The findings reveal that the MaskerTransformer significantly outperforms the existing models,achieving the highest Dice SimilarityCoefficient(DSC),precision,recall,and F1-Score across both datasets.Specifically,the model attained a DSC of 80.04%on Crack500 and 91.37%on DeepCrack,demonstrating superior segmentation accuracy and reliability.The high precision and recall rates further substantiate its effectiveness in real-world applications,suggesting that the Masker Transformer can serve as a robust tool for automated pavement crack detection,potentially replacing more traditional methods.