Tetrahydroisoquinolines are known to have various biological effects, including antitumor activity. This study investigated the effect of 1-chloromethyl-6, 7-dimethoxy-3, 4-dihydro-1H-isoquinoline-2-sulfonic acid amid...Tetrahydroisoquinolines are known to have various biological effects, including antitumor activity. This study investigated the effect of 1-chloromethyl-6, 7-dimethoxy-3, 4-dihydro-1H-isoquinoline-2-sulfonic acid amide (CDST), a newly synthesized anticancer agent, on cellular differentiation and proliferation in HL-60 cells. Differentiation and proliferation of HL-60 cells were determined through expression of CD11b and CD14 surface antigens using flow cytometry and nitroblue tetrazolium (NBT) assay, and through analysis of cell cycle using propidium iodide staining, western blot analysis and immunoprecipitation, respectively. CDST induced the differentiation of HL-60, as shown by increased expression of differentiation surface antigen CD11b (but no significant change in CD14 expression) and increased NBT-reducing functional activity. DNA flow cytometry analysis indicated that CDST markedly induced a G0/G1 phase arrest of HL-60 cells. Subsequently, we examined the expre-ssion of G0/G1 phase cell cycle-related proteins, including cyclin-dependent kinases (CDKs), cyclins and cyclin dependent kinase inhibitors (CKIs), during the differentiation of HL-60. The levels of CDK2, CDK6, cyclin E and cyclin A were decreased, whereas steady-state levels of CDK4 and cyclin D1 were unaffected. The expression of the p27Kip1 was markedly increased by CDST, but not p21WAF1/Cip1. Moreover, CDST markedly enhanced the binding of p27Kip1 with CDK2 and CDK6, resulting in the reduced activity of both kinases. Taken together, these results demonstrate that CDST is capable of inducing cellular differentiation and growth inhibition through p27Kip1 protein-related G0/G1 phase arrest in HL-60 cells.展开更多
Functional fullerene derivatives exhibit special inhibitory effects on tumor progress and metastasis via diverse tumor microenvironment regulations,while the elusive molecular mechanisms hinder their clinical transfor...Functional fullerene derivatives exhibit special inhibitory effects on tumor progress and metastasis via diverse tumor microenvironment regulations,while the elusive molecular mechanisms hinder their clinical transformation.Herein,it is initially revealed that nanosize aminated fullerene(C_(70)-EDA)can activate autophagic flux,induce G0/G1 cell cycle arrest to abrogate cancer cell proliferation,and significantly inhibit tumor growth in vivo.Mechanismly,C_(70)-EDA promotes the expression of cathepsin D involved in autophagic activation via post-transcriptional regulation,attributing to the interaction with a panel of RNA binding proteins.The accumulation of cathepsin D induces the autophagic degradation of cyclin D1,which arouses G0/G1 phase arrest.This work unveils the fantastic anti-tumor activity of aminated fullerene,elucidates the molecular mechanism,and provides a new strategy for the antineoplastic drug development on functional fullerenes.展开更多
Krill oil(KO)exhibits various biological activities,such as anti-inflammatory and antitumor effects.However,the inhibitory effects of benign prostatic hyperplasia(BPH)in vitro and in vivo have not yet been studied.Thi...Krill oil(KO)exhibits various biological activities,such as anti-inflammatory and antitumor effects.However,the inhibitory effects of benign prostatic hyperplasia(BPH)in vitro and in vivo have not yet been studied.This study investigated the anti-BPH effects of KO extracted by an enzymatic hydrolysis method.KO treatment inhibited the proliferation of WMPY-1 and BPH-1 cells by induction of G0/G1 phase arrest through the modulation of positive and negative regulators in both prostate cell types.KO treatment stimulated phosphorylation of c-Jun N-terminal kinase(JNK)and p38 signaling.In addition,KO changed the expression of BPH-related markers(5α-reductase,androgen receptor,FGF,Bcl-2,and Bax)and the activity of the proliferation-mediated NF-κB binding motif.KO-induced levels of proliferation-mediated molecules of prostate cells were attenuated in the presence of siRNA-specific p-38(si-p38)and JNK(si-JNK).Furthermore,the administration of KO alleviated prostate size and weight and the cell layer thickness of prostate glands in a testosterone enanthate-induced BPH rat model.KO treatment altered the level of dihydrotestosterone in serum and the expression levels of BPH-related markers in prostate tissues.Finally,KO-mediated inhibition of prostatic growth was validated by histological analysis.These results suggest that KO has an inhibitory effect on BPH in prostate cells in vitro and in vivo.Thus,KO might be a potential prophylactic or therapeutic agent for patients with BPH.展开更多
AIM: To investigate the anti-proliferative and apoptotic effects of Chaga mushroom (Inonotus obliquus) water extract on human hepatoma cell lines,HepG2 and Hep3B cells. METHODS: The cytotoxicity of Chaga extract was s...AIM: To investigate the anti-proliferative and apoptotic effects of Chaga mushroom (Inonotus obliquus) water extract on human hepatoma cell lines,HepG2 and Hep3B cells. METHODS: The cytotoxicity of Chaga extract was screened by 3-4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT) assay. Morphological observation,flow cytometry analysis,Western blot were employed to elucidate the cytotoxic mechanism of Chaga extract. RESULTS: HepG2 cells were more sensitive to Chaga extract than Hep3B cells,as demonstrated by markedly reduced cell viability. Chaga extract inhibited the cell growth in a dose-dependent manner,which was accompanied with G0/G1-phase arrest and apoptotic cell death. In addition,G0/G1 arrest in the cell cycle was closely associated with down-regulation of p53,pRb,p27,cyclins D1,D2,E,cyclin-dependent kinase (Cdk) 2,Cdk4,and Cdk6 expression. CONCLUSION: Chaga mushroom may provide a new therapeutic option,as a potential anticancer agent,in the treatment of hepatoma.展开更多
Objective: Squamous esophageal carcinoma is highly prevalent in developing countries, especially in China. Tu Bei Mu (TBM), a traditional folk medicine, has been used to treat esophageal squamous cell carcinoma (E...Objective: Squamous esophageal carcinoma is highly prevalent in developing countries, especially in China. Tu Bei Mu (TBM), a traditional folk medicine, has been used to treat esophageal squamous cell carcinoma (ESCC) for a long term. tubeimoside I (TBMS1) is the main component of TBM, exhibiting great anticancer potential. In this study, we investigated the mechanism of TBMS1 cytotoxic effect on EC109 cells. Methods: Comparative nuclear proteomic approach was applied in the current study and we identified several altered protein spots. Further biochemical studies were carried out to detect the mitochondrial membrane potential, cell cycle and corresponding proteins' expression and location. Results: Subcellular proteomic study in the nucleus from EC109 cells revealed that altered proteins were associated with mitochondrial function and cell proliferation. Further biochemical studies showed that TBMSl-induced molecular events were related to mitochondria-induced intrinsic apoptosis and P21-cyclin B 1/cdc2 complex-related G2/M cell cycle arrest. Conclusions: Considering the conventional application of TBM in esophageal cancer, TBMS1 therefore may have a great potential as a chemotherapeutic drug candidate for ESCC.展开更多
Objective:To investigate the effects of an ethanol extract of Kalopanax septemlobus(Thunb.)Koidz.leaf(EEKS) on cell proliferation in human hepatocellular carcinoma cells and its mechanisms of action.Methods:Cells were...Objective:To investigate the effects of an ethanol extract of Kalopanax septemlobus(Thunb.)Koidz.leaf(EEKS) on cell proliferation in human hepatocellular carcinoma cells and its mechanisms of action.Methods:Cells were treated with EEKS and subsequently analyzed for cell proliferation and flow cytometry analysis.Expressions of cell cycle regulators were determined by reverse transcriptase polymerase chain reaction analysis and Western blotting,and activation of eyclin-associaled kinases studied using kinase assays.Results:The EEKS suppressed cell proliferation in both HepG2 and Hep3 B cells,but showed a more sensitive anli-proliferative activity in HepG2 cells.Flow cytometry analysis revealed an association between the growth inhibitory effect of EEKS and with G_1 phase cell cycle arrest in HepG2 cells,along with the dephosphorylation of retinoblastoma protein(pRB) and enhanced binding of pRB with the E2 F transcription factor family proteins.Treatment with EEKS also increased the expression of cyclin-dependent kinase(CDK) inhibitors,such as p21WAF1/CIP1 and p27KIP1.without any noticeable changes in G_1 cyclins and CDKs(except for a slight decrease in CDK4).Treatment of HepG2 cells with EEKS also increased the binding of p21 and p27 with CDK4 and CDK6.which was paralleled by a marked decrease in the cyclin D- and cyclin E-associated kinase activities.Conclusions:Overall,our findings suggest that EEKS may be an effective treatment for liver cancer through suppression of cancer cell proliferation via G_1,cell cycle arrest Further studies arc required to identify the active compounds in EEKS.展开更多
Short-chain fatty acids(SCFAs)butyrate promote the postnatal rumen epithelial development and maturation in ruminants.However,molecular mechanisms of effects of butyrate on the bovine rumen epithelial cells(BRECs)prol...Short-chain fatty acids(SCFAs)butyrate promote the postnatal rumen epithelial development and maturation in ruminants.However,molecular mechanisms of effects of butyrate on the bovine rumen epithelial cells(BRECs)proliferation remain elusive.Therefore,purpose of this study was to investigate the effects of butyrate on the expression of genes and proteins at G0/G1 and S phase of BRECs cycle.Our results showed that BRECs treated with butyrate inhibited(P<0.05)the proliferation of BRECs,relatively to control.Flow cytometric assays revealed that butyrate triggers the BRECs cycle arrest at the G0/G1 phase.qRT-PCR analyses of mRNA level of genes involved in the G0/G1 phase of cell cycle showed that butyrate significantly upregulated(P<0.001)the expression of mRNA encoding p21^(Cip1)compared with control group,but it decreased(P<0.05)the mRNA levels of cyclin D1 and CDK4 genes at G0/G1 phase checkpoint compared with control.Moreover,Western blot also revealed that butyrate downregulated the expression of cyclin D3,CDK6,p-Rb,and E2F1 proteins involved in the modulation of G0/G1 phase of cell cycle.In conclusion,our results demonstrated that butyrate inhibits the proliferation of BRECs via downregulation of positive regulators at G0/G1 phase checkpoint.展开更多
AIM: To evaluate whether the cellular proliferation rate in the large bowel epithelial cells is characterized by circadian rhythm. METHODS: Between January 2003 and December 2004, twenty patients who were diagnosed ...AIM: To evaluate whether the cellular proliferation rate in the large bowel epithelial cells is characterized by circadian rhythm. METHODS: Between January 2003 and December 2004, twenty patients who were diagnosed as suffering from primary, resectable, non-metastatic adenocarcinoma of the lower rectum, infiltrating the sphincter mechanism, underwent abdominoperineal resection, total mesorectal excision and permanent left iliac colostomy. In formalinfixed and paraffin-embedded biopsy specimens obtained from the colostomy mucosa every six hours (00:00, 06:00, 12:00, 18:00 and 24:00), we studied the expression of G1 phase cyclins (D1 and E) as well as the expression of the G1 phase cyclin-dependent kinase (CDK) inhibitors p16 and p21 as indicators of cell cycle progres- sion in colonic epithelial cells using immunohistochemical methods. RESULTS: The expression of both cyclins showed a similar circadian fashion obtaining their lowest and highest values at 00:00 and 18:00, respectively (P〈 0.001). A circadian rhythm in the expression of CDK inhibitor proteins p16 and p21 was also observed, with the lowest levels obtained at 12:00 and 18:00 (P〈0.001), respectively. When the complexes cyclins D1-p21 and E-p21 were examined, the expression of the cyclins was adversely correlated to the p21 expression throughout the day. When the complexes the cyclins D1-p16 and E-p16 were examined, high levels of p16 expression were correlated to low levels of cyclin expression at 00:00, 06:00 and 24:00. Meanwhile, the highest expression levels of both cyclins were correlated to high levels of p16 expression at 18:00. CONCLUSION: Colonic epithelial cells seem to enter the G1 phase of the cell cycle during afternoon (between 12:00 and 18:00) with the highest rates obtained at 18:00. From a clinical point of view, the present results suggest that G1-phase specific anticancer therapies in afternoon might maximize their anti-tumor effect while minimizing toxicity.展开更多
文摘Tetrahydroisoquinolines are known to have various biological effects, including antitumor activity. This study investigated the effect of 1-chloromethyl-6, 7-dimethoxy-3, 4-dihydro-1H-isoquinoline-2-sulfonic acid amide (CDST), a newly synthesized anticancer agent, on cellular differentiation and proliferation in HL-60 cells. Differentiation and proliferation of HL-60 cells were determined through expression of CD11b and CD14 surface antigens using flow cytometry and nitroblue tetrazolium (NBT) assay, and through analysis of cell cycle using propidium iodide staining, western blot analysis and immunoprecipitation, respectively. CDST induced the differentiation of HL-60, as shown by increased expression of differentiation surface antigen CD11b (but no significant change in CD14 expression) and increased NBT-reducing functional activity. DNA flow cytometry analysis indicated that CDST markedly induced a G0/G1 phase arrest of HL-60 cells. Subsequently, we examined the expre-ssion of G0/G1 phase cell cycle-related proteins, including cyclin-dependent kinases (CDKs), cyclins and cyclin dependent kinase inhibitors (CKIs), during the differentiation of HL-60. The levels of CDK2, CDK6, cyclin E and cyclin A were decreased, whereas steady-state levels of CDK4 and cyclin D1 were unaffected. The expression of the p27Kip1 was markedly increased by CDST, but not p21WAF1/Cip1. Moreover, CDST markedly enhanced the binding of p27Kip1 with CDK2 and CDK6, resulting in the reduced activity of both kinases. Taken together, these results demonstrate that CDST is capable of inducing cellular differentiation and growth inhibition through p27Kip1 protein-related G0/G1 phase arrest in HL-60 cells.
基金This work was supported by the National Natural Science Foundation of China(No.51802310)All animal experiments were conducted according to protocols approved by the Institutional Animal Care and Use Committee in the Institute of Chemistry,Chinese Academy of Sciences.
文摘Functional fullerene derivatives exhibit special inhibitory effects on tumor progress and metastasis via diverse tumor microenvironment regulations,while the elusive molecular mechanisms hinder their clinical transformation.Herein,it is initially revealed that nanosize aminated fullerene(C_(70)-EDA)can activate autophagic flux,induce G0/G1 cell cycle arrest to abrogate cancer cell proliferation,and significantly inhibit tumor growth in vivo.Mechanismly,C_(70)-EDA promotes the expression of cathepsin D involved in autophagic activation via post-transcriptional regulation,attributing to the interaction with a panel of RNA binding proteins.The accumulation of cathepsin D induces the autophagic degradation of cyclin D1,which arouses G0/G1 phase arrest.This work unveils the fantastic anti-tumor activity of aminated fullerene,elucidates the molecular mechanism,and provides a new strategy for the antineoplastic drug development on functional fullerenes.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2018R1A6A1A03025159).
文摘Krill oil(KO)exhibits various biological activities,such as anti-inflammatory and antitumor effects.However,the inhibitory effects of benign prostatic hyperplasia(BPH)in vitro and in vivo have not yet been studied.This study investigated the anti-BPH effects of KO extracted by an enzymatic hydrolysis method.KO treatment inhibited the proliferation of WMPY-1 and BPH-1 cells by induction of G0/G1 phase arrest through the modulation of positive and negative regulators in both prostate cell types.KO treatment stimulated phosphorylation of c-Jun N-terminal kinase(JNK)and p38 signaling.In addition,KO changed the expression of BPH-related markers(5α-reductase,androgen receptor,FGF,Bcl-2,and Bax)and the activity of the proliferation-mediated NF-κB binding motif.KO-induced levels of proliferation-mediated molecules of prostate cells were attenuated in the presence of siRNA-specific p-38(si-p38)and JNK(si-JNK).Furthermore,the administration of KO alleviated prostate size and weight and the cell layer thickness of prostate glands in a testosterone enanthate-induced BPH rat model.KO treatment altered the level of dihydrotestosterone in serum and the expression levels of BPH-related markers in prostate tissues.Finally,KO-mediated inhibition of prostatic growth was validated by histological analysis.These results suggest that KO has an inhibitory effect on BPH in prostate cells in vitro and in vivo.Thus,KO might be a potential prophylactic or therapeutic agent for patients with BPH.
基金the Program for the Training of Graduate Students in Regional Innovation which was conducted by the Ministry of Commerce Industry and Energy of the Korean Government
文摘AIM: To investigate the anti-proliferative and apoptotic effects of Chaga mushroom (Inonotus obliquus) water extract on human hepatoma cell lines,HepG2 and Hep3B cells. METHODS: The cytotoxicity of Chaga extract was screened by 3-4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT) assay. Morphological observation,flow cytometry analysis,Western blot were employed to elucidate the cytotoxic mechanism of Chaga extract. RESULTS: HepG2 cells were more sensitive to Chaga extract than Hep3B cells,as demonstrated by markedly reduced cell viability. Chaga extract inhibited the cell growth in a dose-dependent manner,which was accompanied with G0/G1-phase arrest and apoptotic cell death. In addition,G0/G1 arrest in the cell cycle was closely associated with down-regulation of p53,pRb,p27,cyclins D1,D2,E,cyclin-dependent kinase (Cdk) 2,Cdk4,and Cdk6 expression. CONCLUSION: Chaga mushroom may provide a new therapeutic option,as a potential anticancer agent,in the treatment of hepatoma.
基金supported by the Natural Science Foundation of Fujian Province of China (No. 2011J05098)the Fundamental Research Funds for the Central Universities (No. 2011121055)+1 种基金Grants from the National Natural Science Foundation of China (No. 81202956)SRF for ROCS, SEM [2011]1568 and NSFC (No. 81102332)
文摘Objective: Squamous esophageal carcinoma is highly prevalent in developing countries, especially in China. Tu Bei Mu (TBM), a traditional folk medicine, has been used to treat esophageal squamous cell carcinoma (ESCC) for a long term. tubeimoside I (TBMS1) is the main component of TBM, exhibiting great anticancer potential. In this study, we investigated the mechanism of TBMS1 cytotoxic effect on EC109 cells. Methods: Comparative nuclear proteomic approach was applied in the current study and we identified several altered protein spots. Further biochemical studies were carried out to detect the mitochondrial membrane potential, cell cycle and corresponding proteins' expression and location. Results: Subcellular proteomic study in the nucleus from EC109 cells revealed that altered proteins were associated with mitochondrial function and cell proliferation. Further biochemical studies showed that TBMSl-induced molecular events were related to mitochondria-induced intrinsic apoptosis and P21-cyclin B 1/cdc2 complex-related G2/M cell cycle arrest. Conclusions: Considering the conventional application of TBM in esophageal cancer, TBMS1 therefore may have a great potential as a chemotherapeutic drug candidate for ESCC.
基金supported by Basic Science Research Program through the National Research Foundation of Korea grant funded by the Korea government(2015RLA2A2A01004633 and 2014RIAIA1008460)
文摘Objective:To investigate the effects of an ethanol extract of Kalopanax septemlobus(Thunb.)Koidz.leaf(EEKS) on cell proliferation in human hepatocellular carcinoma cells and its mechanisms of action.Methods:Cells were treated with EEKS and subsequently analyzed for cell proliferation and flow cytometry analysis.Expressions of cell cycle regulators were determined by reverse transcriptase polymerase chain reaction analysis and Western blotting,and activation of eyclin-associaled kinases studied using kinase assays.Results:The EEKS suppressed cell proliferation in both HepG2 and Hep3 B cells,but showed a more sensitive anli-proliferative activity in HepG2 cells.Flow cytometry analysis revealed an association between the growth inhibitory effect of EEKS and with G_1 phase cell cycle arrest in HepG2 cells,along with the dephosphorylation of retinoblastoma protein(pRB) and enhanced binding of pRB with the E2 F transcription factor family proteins.Treatment with EEKS also increased the expression of cyclin-dependent kinase(CDK) inhibitors,such as p21WAF1/CIP1 and p27KIP1.without any noticeable changes in G_1 cyclins and CDKs(except for a slight decrease in CDK4).Treatment of HepG2 cells with EEKS also increased the binding of p21 and p27 with CDK4 and CDK6.which was paralleled by a marked decrease in the cyclin D- and cyclin E-associated kinase activities.Conclusions:Overall,our findings suggest that EEKS may be an effective treatment for liver cancer through suppression of cancer cell proliferation via G_1,cell cycle arrest Further studies arc required to identify the active compounds in EEKS.
基金This study was supported by the National Natural Science Foundation of China(No.32002200)the Research Project of Natural Science Foundation of Jiangsu Province(BK20190898)China Agriculture Research System of MOF and MARA.
文摘Short-chain fatty acids(SCFAs)butyrate promote the postnatal rumen epithelial development and maturation in ruminants.However,molecular mechanisms of effects of butyrate on the bovine rumen epithelial cells(BRECs)proliferation remain elusive.Therefore,purpose of this study was to investigate the effects of butyrate on the expression of genes and proteins at G0/G1 and S phase of BRECs cycle.Our results showed that BRECs treated with butyrate inhibited(P<0.05)the proliferation of BRECs,relatively to control.Flow cytometric assays revealed that butyrate triggers the BRECs cycle arrest at the G0/G1 phase.qRT-PCR analyses of mRNA level of genes involved in the G0/G1 phase of cell cycle showed that butyrate significantly upregulated(P<0.001)the expression of mRNA encoding p21^(Cip1)compared with control group,but it decreased(P<0.05)the mRNA levels of cyclin D1 and CDK4 genes at G0/G1 phase checkpoint compared with control.Moreover,Western blot also revealed that butyrate downregulated the expression of cyclin D3,CDK6,p-Rb,and E2F1 proteins involved in the modulation of G0/G1 phase of cell cycle.In conclusion,our results demonstrated that butyrate inhibits the proliferation of BRECs via downregulation of positive regulators at G0/G1 phase checkpoint.
文摘AIM: To evaluate whether the cellular proliferation rate in the large bowel epithelial cells is characterized by circadian rhythm. METHODS: Between January 2003 and December 2004, twenty patients who were diagnosed as suffering from primary, resectable, non-metastatic adenocarcinoma of the lower rectum, infiltrating the sphincter mechanism, underwent abdominoperineal resection, total mesorectal excision and permanent left iliac colostomy. In formalinfixed and paraffin-embedded biopsy specimens obtained from the colostomy mucosa every six hours (00:00, 06:00, 12:00, 18:00 and 24:00), we studied the expression of G1 phase cyclins (D1 and E) as well as the expression of the G1 phase cyclin-dependent kinase (CDK) inhibitors p16 and p21 as indicators of cell cycle progres- sion in colonic epithelial cells using immunohistochemical methods. RESULTS: The expression of both cyclins showed a similar circadian fashion obtaining their lowest and highest values at 00:00 and 18:00, respectively (P〈 0.001). A circadian rhythm in the expression of CDK inhibitor proteins p16 and p21 was also observed, with the lowest levels obtained at 12:00 and 18:00 (P〈0.001), respectively. When the complexes cyclins D1-p21 and E-p21 were examined, the expression of the cyclins was adversely correlated to the p21 expression throughout the day. When the complexes the cyclins D1-p16 and E-p16 were examined, high levels of p16 expression were correlated to low levels of cyclin expression at 00:00, 06:00 and 24:00. Meanwhile, the highest expression levels of both cyclins were correlated to high levels of p16 expression at 18:00. CONCLUSION: Colonic epithelial cells seem to enter the G1 phase of the cell cycle during afternoon (between 12:00 and 18:00) with the highest rates obtained at 18:00. From a clinical point of view, the present results suggest that G1-phase specific anticancer therapies in afternoon might maximize their anti-tumor effect while minimizing toxicity.